xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/smp.h>
30 #include <asm/topology.h>
31 #include <asm/firmware.h>
32 #include <asm/paca.h>
33 #include <asm/hvcall.h>
34 #include <asm/setup.h>
35 #include <asm/vdso.h>
36 #include <asm/drmem.h>
37 
38 static int numa_enabled = 1;
39 
40 static char *cmdline __initdata;
41 
42 int numa_cpu_lookup_table[NR_CPUS];
43 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
44 struct pglist_data *node_data[MAX_NUMNODES];
45 
46 EXPORT_SYMBOL(numa_cpu_lookup_table);
47 EXPORT_SYMBOL(node_to_cpumask_map);
48 EXPORT_SYMBOL(node_data);
49 
50 static int primary_domain_index;
51 static int n_mem_addr_cells, n_mem_size_cells;
52 
53 #define FORM0_AFFINITY 0
54 #define FORM1_AFFINITY 1
55 #define FORM2_AFFINITY 2
56 static int affinity_form;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
63 	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
64 };
65 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
66 
67 /*
68  * Allocate node_to_cpumask_map based on number of available nodes
69  * Requires node_possible_map to be valid.
70  *
71  * Note: cpumask_of_node() is not valid until after this is done.
72  */
73 static void __init setup_node_to_cpumask_map(void)
74 {
75 	unsigned int node;
76 
77 	/* setup nr_node_ids if not done yet */
78 	if (nr_node_ids == MAX_NUMNODES)
79 		setup_nr_node_ids();
80 
81 	/* allocate the map */
82 	for_each_node(node)
83 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
84 
85 	/* cpumask_of_node() will now work */
86 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
87 }
88 
89 static int __init fake_numa_create_new_node(unsigned long end_pfn,
90 						unsigned int *nid)
91 {
92 	unsigned long long mem;
93 	char *p = cmdline;
94 	static unsigned int fake_nid;
95 	static unsigned long long curr_boundary;
96 
97 	/*
98 	 * Modify node id, iff we started creating NUMA nodes
99 	 * We want to continue from where we left of the last time
100 	 */
101 	if (fake_nid)
102 		*nid = fake_nid;
103 	/*
104 	 * In case there are no more arguments to parse, the
105 	 * node_id should be the same as the last fake node id
106 	 * (we've handled this above).
107 	 */
108 	if (!p)
109 		return 0;
110 
111 	mem = memparse(p, &p);
112 	if (!mem)
113 		return 0;
114 
115 	if (mem < curr_boundary)
116 		return 0;
117 
118 	curr_boundary = mem;
119 
120 	if ((end_pfn << PAGE_SHIFT) > mem) {
121 		/*
122 		 * Skip commas and spaces
123 		 */
124 		while (*p == ',' || *p == ' ' || *p == '\t')
125 			p++;
126 
127 		cmdline = p;
128 		fake_nid++;
129 		*nid = fake_nid;
130 		pr_debug("created new fake_node with id %d\n", fake_nid);
131 		return 1;
132 	}
133 	return 0;
134 }
135 
136 static void __init reset_numa_cpu_lookup_table(void)
137 {
138 	unsigned int cpu;
139 
140 	for_each_possible_cpu(cpu)
141 		numa_cpu_lookup_table[cpu] = -1;
142 }
143 
144 void map_cpu_to_node(int cpu, int node)
145 {
146 	update_numa_cpu_lookup_table(cpu, node);
147 
148 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
149 		pr_debug("adding cpu %d to node %d\n", cpu, node);
150 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
151 	}
152 }
153 
154 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
155 void unmap_cpu_from_node(unsigned long cpu)
156 {
157 	int node = numa_cpu_lookup_table[cpu];
158 
159 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
160 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
161 		pr_debug("removing cpu %lu from node %d\n", cpu, node);
162 	} else {
163 		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
164 	}
165 }
166 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
167 
168 static int __associativity_to_nid(const __be32 *associativity,
169 				  int max_array_sz)
170 {
171 	int nid;
172 	/*
173 	 * primary_domain_index is 1 based array index.
174 	 */
175 	int index = primary_domain_index  - 1;
176 
177 	if (!numa_enabled || index >= max_array_sz)
178 		return NUMA_NO_NODE;
179 
180 	nid = of_read_number(&associativity[index], 1);
181 
182 	/* POWER4 LPAR uses 0xffff as invalid node */
183 	if (nid == 0xffff || nid >= nr_node_ids)
184 		nid = NUMA_NO_NODE;
185 	return nid;
186 }
187 /*
188  * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
189  * info is found.
190  */
191 static int associativity_to_nid(const __be32 *associativity)
192 {
193 	int array_sz = of_read_number(associativity, 1);
194 
195 	/* Skip the first element in the associativity array */
196 	return __associativity_to_nid((associativity + 1), array_sz);
197 }
198 
199 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
200 {
201 	int dist;
202 	int node1, node2;
203 
204 	node1 = associativity_to_nid(cpu1_assoc);
205 	node2 = associativity_to_nid(cpu2_assoc);
206 
207 	dist = numa_distance_table[node1][node2];
208 	if (dist <= LOCAL_DISTANCE)
209 		return 0;
210 	else if (dist <= REMOTE_DISTANCE)
211 		return 1;
212 	else
213 		return 2;
214 }
215 
216 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
217 {
218 	int dist = 0;
219 
220 	int i, index;
221 
222 	for (i = 0; i < distance_ref_points_depth; i++) {
223 		index = be32_to_cpu(distance_ref_points[i]);
224 		if (cpu1_assoc[index] == cpu2_assoc[index])
225 			break;
226 		dist++;
227 	}
228 
229 	return dist;
230 }
231 
232 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
233 {
234 	/* We should not get called with FORM0 */
235 	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
236 	if (affinity_form == FORM1_AFFINITY)
237 		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
238 	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
239 }
240 
241 /* must hold reference to node during call */
242 static const __be32 *of_get_associativity(struct device_node *dev)
243 {
244 	return of_get_property(dev, "ibm,associativity", NULL);
245 }
246 
247 int __node_distance(int a, int b)
248 {
249 	int i;
250 	int distance = LOCAL_DISTANCE;
251 
252 	if (affinity_form == FORM2_AFFINITY)
253 		return numa_distance_table[a][b];
254 	else if (affinity_form == FORM0_AFFINITY)
255 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
256 
257 	for (i = 0; i < distance_ref_points_depth; i++) {
258 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
259 			break;
260 
261 		/* Double the distance for each NUMA level */
262 		distance *= 2;
263 	}
264 
265 	return distance;
266 }
267 EXPORT_SYMBOL(__node_distance);
268 
269 /* Returns the nid associated with the given device tree node,
270  * or -1 if not found.
271  */
272 static int of_node_to_nid_single(struct device_node *device)
273 {
274 	int nid = NUMA_NO_NODE;
275 	const __be32 *tmp;
276 
277 	tmp = of_get_associativity(device);
278 	if (tmp)
279 		nid = associativity_to_nid(tmp);
280 	return nid;
281 }
282 
283 /* Walk the device tree upwards, looking for an associativity id */
284 int of_node_to_nid(struct device_node *device)
285 {
286 	int nid = NUMA_NO_NODE;
287 
288 	of_node_get(device);
289 	while (device) {
290 		nid = of_node_to_nid_single(device);
291 		if (nid != -1)
292 			break;
293 
294 		device = of_get_next_parent(device);
295 	}
296 	of_node_put(device);
297 
298 	return nid;
299 }
300 EXPORT_SYMBOL(of_node_to_nid);
301 
302 static void __initialize_form1_numa_distance(const __be32 *associativity,
303 					     int max_array_sz)
304 {
305 	int i, nid;
306 
307 	if (affinity_form != FORM1_AFFINITY)
308 		return;
309 
310 	nid = __associativity_to_nid(associativity, max_array_sz);
311 	if (nid != NUMA_NO_NODE) {
312 		for (i = 0; i < distance_ref_points_depth; i++) {
313 			const __be32 *entry;
314 			int index = be32_to_cpu(distance_ref_points[i]) - 1;
315 
316 			/*
317 			 * broken hierarchy, return with broken distance table
318 			 */
319 			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
320 				return;
321 
322 			entry = &associativity[index];
323 			distance_lookup_table[nid][i] = of_read_number(entry, 1);
324 		}
325 	}
326 }
327 
328 static void initialize_form1_numa_distance(const __be32 *associativity)
329 {
330 	int array_sz;
331 
332 	array_sz = of_read_number(associativity, 1);
333 	/* Skip the first element in the associativity array */
334 	__initialize_form1_numa_distance(associativity + 1, array_sz);
335 }
336 
337 /*
338  * Used to update distance information w.r.t newly added node.
339  */
340 void update_numa_distance(struct device_node *node)
341 {
342 	int nid;
343 
344 	if (affinity_form == FORM0_AFFINITY)
345 		return;
346 	else if (affinity_form == FORM1_AFFINITY) {
347 		const __be32 *associativity;
348 
349 		associativity = of_get_associativity(node);
350 		if (!associativity)
351 			return;
352 
353 		initialize_form1_numa_distance(associativity);
354 		return;
355 	}
356 
357 	/* FORM2 affinity  */
358 	nid = of_node_to_nid_single(node);
359 	if (nid == NUMA_NO_NODE)
360 		return;
361 
362 	/*
363 	 * With FORM2 we expect NUMA distance of all possible NUMA
364 	 * nodes to be provided during boot.
365 	 */
366 	WARN(numa_distance_table[nid][nid] == -1,
367 	     "NUMA distance details for node %d not provided\n", nid);
368 }
369 EXPORT_SYMBOL_GPL(update_numa_distance);
370 
371 /*
372  * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
373  * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
374  */
375 static void __init initialize_form2_numa_distance_lookup_table(void)
376 {
377 	int i, j;
378 	struct device_node *root;
379 	const __u8 *form2_distances;
380 	const __be32 *numa_lookup_index;
381 	int form2_distances_length;
382 	int max_numa_index, distance_index;
383 
384 	if (firmware_has_feature(FW_FEATURE_OPAL))
385 		root = of_find_node_by_path("/ibm,opal");
386 	else
387 		root = of_find_node_by_path("/rtas");
388 	if (!root)
389 		root = of_find_node_by_path("/");
390 
391 	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
392 	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
393 
394 	/* first element of the array is the size and is encode-int */
395 	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
396 	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
397 	/* Skip the size which is encoded int */
398 	form2_distances += sizeof(__be32);
399 
400 	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
401 		 form2_distances_length, max_numa_index);
402 
403 	for (i = 0; i < max_numa_index; i++)
404 		/* +1 skip the max_numa_index in the property */
405 		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
406 
407 
408 	if (form2_distances_length != max_numa_index * max_numa_index) {
409 		WARN(1, "Wrong NUMA distance information\n");
410 		form2_distances = NULL; // don't use it
411 	}
412 	distance_index = 0;
413 	for (i = 0;  i < max_numa_index; i++) {
414 		for (j = 0; j < max_numa_index; j++) {
415 			int nodeA = numa_id_index_table[i];
416 			int nodeB = numa_id_index_table[j];
417 			int dist;
418 
419 			if (form2_distances)
420 				dist = form2_distances[distance_index++];
421 			else if (nodeA == nodeB)
422 				dist = LOCAL_DISTANCE;
423 			else
424 				dist = REMOTE_DISTANCE;
425 			numa_distance_table[nodeA][nodeB] = dist;
426 			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
427 		}
428 	}
429 
430 	of_node_put(root);
431 }
432 
433 static int __init find_primary_domain_index(void)
434 {
435 	int index;
436 	struct device_node *root;
437 
438 	/*
439 	 * Check for which form of affinity.
440 	 */
441 	if (firmware_has_feature(FW_FEATURE_OPAL)) {
442 		affinity_form = FORM1_AFFINITY;
443 	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
444 		pr_debug("Using form 2 affinity\n");
445 		affinity_form = FORM2_AFFINITY;
446 	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
447 		pr_debug("Using form 1 affinity\n");
448 		affinity_form = FORM1_AFFINITY;
449 	} else
450 		affinity_form = FORM0_AFFINITY;
451 
452 	if (firmware_has_feature(FW_FEATURE_OPAL))
453 		root = of_find_node_by_path("/ibm,opal");
454 	else
455 		root = of_find_node_by_path("/rtas");
456 	if (!root)
457 		root = of_find_node_by_path("/");
458 
459 	/*
460 	 * This property is a set of 32-bit integers, each representing
461 	 * an index into the ibm,associativity nodes.
462 	 *
463 	 * With form 0 affinity the first integer is for an SMP configuration
464 	 * (should be all 0's) and the second is for a normal NUMA
465 	 * configuration. We have only one level of NUMA.
466 	 *
467 	 * With form 1 affinity the first integer is the most significant
468 	 * NUMA boundary and the following are progressively less significant
469 	 * boundaries. There can be more than one level of NUMA.
470 	 */
471 	distance_ref_points = of_get_property(root,
472 					"ibm,associativity-reference-points",
473 					&distance_ref_points_depth);
474 
475 	if (!distance_ref_points) {
476 		pr_debug("ibm,associativity-reference-points not found.\n");
477 		goto err;
478 	}
479 
480 	distance_ref_points_depth /= sizeof(int);
481 	if (affinity_form == FORM0_AFFINITY) {
482 		if (distance_ref_points_depth < 2) {
483 			pr_warn("short ibm,associativity-reference-points\n");
484 			goto err;
485 		}
486 
487 		index = of_read_number(&distance_ref_points[1], 1);
488 	} else {
489 		/*
490 		 * Both FORM1 and FORM2 affinity find the primary domain details
491 		 * at the same offset.
492 		 */
493 		index = of_read_number(distance_ref_points, 1);
494 	}
495 	/*
496 	 * Warn and cap if the hardware supports more than
497 	 * MAX_DISTANCE_REF_POINTS domains.
498 	 */
499 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
500 		pr_warn("distance array capped at %d entries\n",
501 			MAX_DISTANCE_REF_POINTS);
502 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
503 	}
504 
505 	of_node_put(root);
506 	return index;
507 
508 err:
509 	of_node_put(root);
510 	return -1;
511 }
512 
513 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
514 {
515 	struct device_node *memory = NULL;
516 
517 	memory = of_find_node_by_type(memory, "memory");
518 	if (!memory)
519 		panic("numa.c: No memory nodes found!");
520 
521 	*n_addr_cells = of_n_addr_cells(memory);
522 	*n_size_cells = of_n_size_cells(memory);
523 	of_node_put(memory);
524 }
525 
526 static unsigned long read_n_cells(int n, const __be32 **buf)
527 {
528 	unsigned long result = 0;
529 
530 	while (n--) {
531 		result = (result << 32) | of_read_number(*buf, 1);
532 		(*buf)++;
533 	}
534 	return result;
535 }
536 
537 struct assoc_arrays {
538 	u32	n_arrays;
539 	u32	array_sz;
540 	const __be32 *arrays;
541 };
542 
543 /*
544  * Retrieve and validate the list of associativity arrays for drconf
545  * memory from the ibm,associativity-lookup-arrays property of the
546  * device tree..
547  *
548  * The layout of the ibm,associativity-lookup-arrays property is a number N
549  * indicating the number of associativity arrays, followed by a number M
550  * indicating the size of each associativity array, followed by a list
551  * of N associativity arrays.
552  */
553 static int of_get_assoc_arrays(struct assoc_arrays *aa)
554 {
555 	struct device_node *memory;
556 	const __be32 *prop;
557 	u32 len;
558 
559 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
560 	if (!memory)
561 		return -1;
562 
563 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
564 	if (!prop || len < 2 * sizeof(unsigned int)) {
565 		of_node_put(memory);
566 		return -1;
567 	}
568 
569 	aa->n_arrays = of_read_number(prop++, 1);
570 	aa->array_sz = of_read_number(prop++, 1);
571 
572 	of_node_put(memory);
573 
574 	/* Now that we know the number of arrays and size of each array,
575 	 * revalidate the size of the property read in.
576 	 */
577 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
578 		return -1;
579 
580 	aa->arrays = prop;
581 	return 0;
582 }
583 
584 static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
585 {
586 	struct assoc_arrays aa = { .arrays = NULL };
587 	int default_nid = NUMA_NO_NODE;
588 	int nid = default_nid;
589 	int rc, index;
590 
591 	if ((primary_domain_index < 0) || !numa_enabled)
592 		return default_nid;
593 
594 	rc = of_get_assoc_arrays(&aa);
595 	if (rc)
596 		return default_nid;
597 
598 	if (primary_domain_index <= aa.array_sz &&
599 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
600 		const __be32 *associativity;
601 
602 		index = lmb->aa_index * aa.array_sz;
603 		associativity = &aa.arrays[index];
604 		nid = __associativity_to_nid(associativity, aa.array_sz);
605 		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
606 			/*
607 			 * lookup array associativity entries have
608 			 * no length of the array as the first element.
609 			 */
610 			__initialize_form1_numa_distance(associativity, aa.array_sz);
611 		}
612 	}
613 	return nid;
614 }
615 
616 /*
617  * This is like of_node_to_nid_single() for memory represented in the
618  * ibm,dynamic-reconfiguration-memory node.
619  */
620 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
621 {
622 	struct assoc_arrays aa = { .arrays = NULL };
623 	int default_nid = NUMA_NO_NODE;
624 	int nid = default_nid;
625 	int rc, index;
626 
627 	if ((primary_domain_index < 0) || !numa_enabled)
628 		return default_nid;
629 
630 	rc = of_get_assoc_arrays(&aa);
631 	if (rc)
632 		return default_nid;
633 
634 	if (primary_domain_index <= aa.array_sz &&
635 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
636 		const __be32 *associativity;
637 
638 		index = lmb->aa_index * aa.array_sz;
639 		associativity = &aa.arrays[index];
640 		nid = __associativity_to_nid(associativity, aa.array_sz);
641 	}
642 	return nid;
643 }
644 
645 #ifdef CONFIG_PPC_SPLPAR
646 
647 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
648 {
649 	long rc, hwid;
650 
651 	/*
652 	 * On a shared lpar, device tree will not have node associativity.
653 	 * At this time lppaca, or its __old_status field may not be
654 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
655 	 * request an explicit associativity irrespective of whether the
656 	 * lpar is shared or dedicated. Use the device tree property as a
657 	 * fallback. cpu_to_phys_id is only valid between
658 	 * smp_setup_cpu_maps() and smp_setup_pacas().
659 	 */
660 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
661 		if (cpu_to_phys_id)
662 			hwid = cpu_to_phys_id[lcpu];
663 		else
664 			hwid = get_hard_smp_processor_id(lcpu);
665 
666 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
667 		if (rc == H_SUCCESS)
668 			return 0;
669 	}
670 
671 	return -1;
672 }
673 
674 static int vphn_get_nid(long lcpu)
675 {
676 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
677 
678 
679 	if (!__vphn_get_associativity(lcpu, associativity))
680 		return associativity_to_nid(associativity);
681 
682 	return NUMA_NO_NODE;
683 
684 }
685 #else
686 
687 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
688 {
689 	return -1;
690 }
691 
692 static int vphn_get_nid(long unused)
693 {
694 	return NUMA_NO_NODE;
695 }
696 #endif  /* CONFIG_PPC_SPLPAR */
697 
698 /*
699  * Figure out to which domain a cpu belongs and stick it there.
700  * Return the id of the domain used.
701  */
702 static int numa_setup_cpu(unsigned long lcpu)
703 {
704 	struct device_node *cpu;
705 	int fcpu = cpu_first_thread_sibling(lcpu);
706 	int nid = NUMA_NO_NODE;
707 
708 	if (!cpu_present(lcpu)) {
709 		set_cpu_numa_node(lcpu, first_online_node);
710 		return first_online_node;
711 	}
712 
713 	/*
714 	 * If a valid cpu-to-node mapping is already available, use it
715 	 * directly instead of querying the firmware, since it represents
716 	 * the most recent mapping notified to us by the platform (eg: VPHN).
717 	 * Since cpu_to_node binding remains the same for all threads in the
718 	 * core. If a valid cpu-to-node mapping is already available, for
719 	 * the first thread in the core, use it.
720 	 */
721 	nid = numa_cpu_lookup_table[fcpu];
722 	if (nid >= 0) {
723 		map_cpu_to_node(lcpu, nid);
724 		return nid;
725 	}
726 
727 	nid = vphn_get_nid(lcpu);
728 	if (nid != NUMA_NO_NODE)
729 		goto out_present;
730 
731 	cpu = of_get_cpu_node(lcpu, NULL);
732 
733 	if (!cpu) {
734 		WARN_ON(1);
735 		if (cpu_present(lcpu))
736 			goto out_present;
737 		else
738 			goto out;
739 	}
740 
741 	nid = of_node_to_nid_single(cpu);
742 	of_node_put(cpu);
743 
744 out_present:
745 	if (nid < 0 || !node_possible(nid))
746 		nid = first_online_node;
747 
748 	/*
749 	 * Update for the first thread of the core. All threads of a core
750 	 * have to be part of the same node. This not only avoids querying
751 	 * for every other thread in the core, but always avoids a case
752 	 * where virtual node associativity change causes subsequent threads
753 	 * of a core to be associated with different nid. However if first
754 	 * thread is already online, expect it to have a valid mapping.
755 	 */
756 	if (fcpu != lcpu) {
757 		WARN_ON(cpu_online(fcpu));
758 		map_cpu_to_node(fcpu, nid);
759 	}
760 
761 	map_cpu_to_node(lcpu, nid);
762 out:
763 	return nid;
764 }
765 
766 static void verify_cpu_node_mapping(int cpu, int node)
767 {
768 	int base, sibling, i;
769 
770 	/* Verify that all the threads in the core belong to the same node */
771 	base = cpu_first_thread_sibling(cpu);
772 
773 	for (i = 0; i < threads_per_core; i++) {
774 		sibling = base + i;
775 
776 		if (sibling == cpu || cpu_is_offline(sibling))
777 			continue;
778 
779 		if (cpu_to_node(sibling) != node) {
780 			WARN(1, "CPU thread siblings %d and %d don't belong"
781 				" to the same node!\n", cpu, sibling);
782 			break;
783 		}
784 	}
785 }
786 
787 /* Must run before sched domains notifier. */
788 static int ppc_numa_cpu_prepare(unsigned int cpu)
789 {
790 	int nid;
791 
792 	nid = numa_setup_cpu(cpu);
793 	verify_cpu_node_mapping(cpu, nid);
794 	return 0;
795 }
796 
797 static int ppc_numa_cpu_dead(unsigned int cpu)
798 {
799 	return 0;
800 }
801 
802 /*
803  * Check and possibly modify a memory region to enforce the memory limit.
804  *
805  * Returns the size the region should have to enforce the memory limit.
806  * This will either be the original value of size, a truncated value,
807  * or zero. If the returned value of size is 0 the region should be
808  * discarded as it lies wholly above the memory limit.
809  */
810 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
811 						      unsigned long size)
812 {
813 	/*
814 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
815 	 * we've already adjusted it for the limit and it takes care of
816 	 * having memory holes below the limit.  Also, in the case of
817 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
818 	 */
819 
820 	if (start + size <= memblock_end_of_DRAM())
821 		return size;
822 
823 	if (start >= memblock_end_of_DRAM())
824 		return 0;
825 
826 	return memblock_end_of_DRAM() - start;
827 }
828 
829 /*
830  * Reads the counter for a given entry in
831  * linux,drconf-usable-memory property
832  */
833 static inline int __init read_usm_ranges(const __be32 **usm)
834 {
835 	/*
836 	 * For each lmb in ibm,dynamic-memory a corresponding
837 	 * entry in linux,drconf-usable-memory property contains
838 	 * a counter followed by that many (base, size) duple.
839 	 * read the counter from linux,drconf-usable-memory
840 	 */
841 	return read_n_cells(n_mem_size_cells, usm);
842 }
843 
844 /*
845  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
846  * node.  This assumes n_mem_{addr,size}_cells have been set.
847  */
848 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
849 					const __be32 **usm,
850 					void *data)
851 {
852 	unsigned int ranges, is_kexec_kdump = 0;
853 	unsigned long base, size, sz;
854 	int nid;
855 
856 	/*
857 	 * Skip this block if the reserved bit is set in flags (0x80)
858 	 * or if the block is not assigned to this partition (0x8)
859 	 */
860 	if ((lmb->flags & DRCONF_MEM_RESERVED)
861 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
862 		return 0;
863 
864 	if (*usm)
865 		is_kexec_kdump = 1;
866 
867 	base = lmb->base_addr;
868 	size = drmem_lmb_size();
869 	ranges = 1;
870 
871 	if (is_kexec_kdump) {
872 		ranges = read_usm_ranges(usm);
873 		if (!ranges) /* there are no (base, size) duple */
874 			return 0;
875 	}
876 
877 	do {
878 		if (is_kexec_kdump) {
879 			base = read_n_cells(n_mem_addr_cells, usm);
880 			size = read_n_cells(n_mem_size_cells, usm);
881 		}
882 
883 		nid = get_nid_and_numa_distance(lmb);
884 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
885 					  &nid);
886 		node_set_online(nid);
887 		sz = numa_enforce_memory_limit(base, size);
888 		if (sz)
889 			memblock_set_node(base, sz, &memblock.memory, nid);
890 	} while (--ranges);
891 
892 	return 0;
893 }
894 
895 static int __init parse_numa_properties(void)
896 {
897 	struct device_node *memory;
898 	int default_nid = 0;
899 	unsigned long i;
900 	const __be32 *associativity;
901 
902 	if (numa_enabled == 0) {
903 		pr_warn("disabled by user\n");
904 		return -1;
905 	}
906 
907 	primary_domain_index = find_primary_domain_index();
908 
909 	if (primary_domain_index < 0) {
910 		/*
911 		 * if we fail to parse primary_domain_index from device tree
912 		 * mark the numa disabled, boot with numa disabled.
913 		 */
914 		numa_enabled = false;
915 		return primary_domain_index;
916 	}
917 
918 	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
919 
920 	/*
921 	 * If it is FORM2 initialize the distance table here.
922 	 */
923 	if (affinity_form == FORM2_AFFINITY)
924 		initialize_form2_numa_distance_lookup_table();
925 
926 	/*
927 	 * Even though we connect cpus to numa domains later in SMP
928 	 * init, we need to know the node ids now. This is because
929 	 * each node to be onlined must have NODE_DATA etc backing it.
930 	 */
931 	for_each_present_cpu(i) {
932 		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
933 		struct device_node *cpu;
934 		int nid = NUMA_NO_NODE;
935 
936 		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
937 
938 		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
939 			nid = associativity_to_nid(vphn_assoc);
940 			initialize_form1_numa_distance(vphn_assoc);
941 		} else {
942 
943 			/*
944 			 * Don't fall back to default_nid yet -- we will plug
945 			 * cpus into nodes once the memory scan has discovered
946 			 * the topology.
947 			 */
948 			cpu = of_get_cpu_node(i, NULL);
949 			BUG_ON(!cpu);
950 
951 			associativity = of_get_associativity(cpu);
952 			if (associativity) {
953 				nid = associativity_to_nid(associativity);
954 				initialize_form1_numa_distance(associativity);
955 			}
956 			of_node_put(cpu);
957 		}
958 
959 		/* node_set_online() is an UB if 'nid' is negative */
960 		if (likely(nid >= 0))
961 			node_set_online(nid);
962 	}
963 
964 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
965 
966 	for_each_node_by_type(memory, "memory") {
967 		unsigned long start;
968 		unsigned long size;
969 		int nid;
970 		int ranges;
971 		const __be32 *memcell_buf;
972 		unsigned int len;
973 
974 		memcell_buf = of_get_property(memory,
975 			"linux,usable-memory", &len);
976 		if (!memcell_buf || len <= 0)
977 			memcell_buf = of_get_property(memory, "reg", &len);
978 		if (!memcell_buf || len <= 0)
979 			continue;
980 
981 		/* ranges in cell */
982 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
983 new_range:
984 		/* these are order-sensitive, and modify the buffer pointer */
985 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
986 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
987 
988 		/*
989 		 * Assumption: either all memory nodes or none will
990 		 * have associativity properties.  If none, then
991 		 * everything goes to default_nid.
992 		 */
993 		associativity = of_get_associativity(memory);
994 		if (associativity) {
995 			nid = associativity_to_nid(associativity);
996 			initialize_form1_numa_distance(associativity);
997 		} else
998 			nid = default_nid;
999 
1000 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1001 		node_set_online(nid);
1002 
1003 		size = numa_enforce_memory_limit(start, size);
1004 		if (size)
1005 			memblock_set_node(start, size, &memblock.memory, nid);
1006 
1007 		if (--ranges)
1008 			goto new_range;
1009 	}
1010 
1011 	/*
1012 	 * Now do the same thing for each MEMBLOCK listed in the
1013 	 * ibm,dynamic-memory property in the
1014 	 * ibm,dynamic-reconfiguration-memory node.
1015 	 */
1016 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1017 	if (memory) {
1018 		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1019 		of_node_put(memory);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 static void __init setup_nonnuma(void)
1026 {
1027 	unsigned long top_of_ram = memblock_end_of_DRAM();
1028 	unsigned long total_ram = memblock_phys_mem_size();
1029 	unsigned long start_pfn, end_pfn;
1030 	unsigned int nid = 0;
1031 	int i;
1032 
1033 	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1034 	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1035 
1036 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1037 		fake_numa_create_new_node(end_pfn, &nid);
1038 		memblock_set_node(PFN_PHYS(start_pfn),
1039 				  PFN_PHYS(end_pfn - start_pfn),
1040 				  &memblock.memory, nid);
1041 		node_set_online(nid);
1042 	}
1043 }
1044 
1045 void __init dump_numa_cpu_topology(void)
1046 {
1047 	unsigned int node;
1048 	unsigned int cpu, count;
1049 
1050 	if (!numa_enabled)
1051 		return;
1052 
1053 	for_each_online_node(node) {
1054 		pr_info("Node %d CPUs:", node);
1055 
1056 		count = 0;
1057 		/*
1058 		 * If we used a CPU iterator here we would miss printing
1059 		 * the holes in the cpumap.
1060 		 */
1061 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1062 			if (cpumask_test_cpu(cpu,
1063 					node_to_cpumask_map[node])) {
1064 				if (count == 0)
1065 					pr_cont(" %u", cpu);
1066 				++count;
1067 			} else {
1068 				if (count > 1)
1069 					pr_cont("-%u", cpu - 1);
1070 				count = 0;
1071 			}
1072 		}
1073 
1074 		if (count > 1)
1075 			pr_cont("-%u", nr_cpu_ids - 1);
1076 		pr_cont("\n");
1077 	}
1078 }
1079 
1080 /* Initialize NODE_DATA for a node on the local memory */
1081 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1082 {
1083 	u64 spanned_pages = end_pfn - start_pfn;
1084 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1085 	u64 nd_pa;
1086 	void *nd;
1087 	int tnid;
1088 
1089 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1090 	if (!nd_pa)
1091 		panic("Cannot allocate %zu bytes for node %d data\n",
1092 		      nd_size, nid);
1093 
1094 	nd = __va(nd_pa);
1095 
1096 	/* report and initialize */
1097 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1098 		nd_pa, nd_pa + nd_size - 1);
1099 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1100 	if (tnid != nid)
1101 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1102 
1103 	node_data[nid] = nd;
1104 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1105 	NODE_DATA(nid)->node_id = nid;
1106 	NODE_DATA(nid)->node_start_pfn = start_pfn;
1107 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1108 }
1109 
1110 static void __init find_possible_nodes(void)
1111 {
1112 	struct device_node *rtas;
1113 	const __be32 *domains = NULL;
1114 	int prop_length, max_nodes;
1115 	u32 i;
1116 
1117 	if (!numa_enabled)
1118 		return;
1119 
1120 	rtas = of_find_node_by_path("/rtas");
1121 	if (!rtas)
1122 		return;
1123 
1124 	/*
1125 	 * ibm,current-associativity-domains is a fairly recent property. If
1126 	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1127 	 * Current denotes what the platform can support compared to max
1128 	 * which denotes what the Hypervisor can support.
1129 	 *
1130 	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1131 	 * so we should consider the max number in that case.
1132 	 */
1133 	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1134 		domains = of_get_property(rtas,
1135 					  "ibm,current-associativity-domains",
1136 					  &prop_length);
1137 	if (!domains) {
1138 		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1139 					&prop_length);
1140 		if (!domains)
1141 			goto out;
1142 	}
1143 
1144 	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1145 	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1146 
1147 	for (i = 0; i < max_nodes; i++) {
1148 		if (!node_possible(i))
1149 			node_set(i, node_possible_map);
1150 	}
1151 
1152 	prop_length /= sizeof(int);
1153 	if (prop_length > primary_domain_index + 2)
1154 		coregroup_enabled = 1;
1155 
1156 out:
1157 	of_node_put(rtas);
1158 }
1159 
1160 void __init mem_topology_setup(void)
1161 {
1162 	int cpu;
1163 
1164 	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1165 	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1166 
1167 	/*
1168 	 * Linux/mm assumes node 0 to be online at boot. However this is not
1169 	 * true on PowerPC, where node 0 is similar to any other node, it
1170 	 * could be cpuless, memoryless node. So force node 0 to be offline
1171 	 * for now. This will prevent cpuless, memoryless node 0 showing up
1172 	 * unnecessarily as online. If a node has cpus or memory that need
1173 	 * to be online, then node will anyway be marked online.
1174 	 */
1175 	node_set_offline(0);
1176 
1177 	if (parse_numa_properties())
1178 		setup_nonnuma();
1179 
1180 	/*
1181 	 * Modify the set of possible NUMA nodes to reflect information
1182 	 * available about the set of online nodes, and the set of nodes
1183 	 * that we expect to make use of for this platform's affinity
1184 	 * calculations.
1185 	 */
1186 	nodes_and(node_possible_map, node_possible_map, node_online_map);
1187 
1188 	find_possible_nodes();
1189 
1190 	setup_node_to_cpumask_map();
1191 
1192 	reset_numa_cpu_lookup_table();
1193 
1194 	for_each_possible_cpu(cpu) {
1195 		/*
1196 		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1197 		 * even if it was memoryless or cpuless. For all cpus that
1198 		 * are possible but not present, cpu_to_node() would point
1199 		 * to node 0. To remove a cpuless, memoryless dummy node,
1200 		 * powerpc need to make sure all possible but not present
1201 		 * cpu_to_node are set to a proper node.
1202 		 */
1203 		numa_setup_cpu(cpu);
1204 	}
1205 }
1206 
1207 void __init initmem_init(void)
1208 {
1209 	int nid;
1210 
1211 	memblock_dump_all();
1212 
1213 	for_each_online_node(nid) {
1214 		unsigned long start_pfn, end_pfn;
1215 
1216 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1217 		setup_node_data(nid, start_pfn, end_pfn);
1218 	}
1219 
1220 	sparse_init();
1221 
1222 	/*
1223 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1224 	 * even before we online them, so that we can use cpu_to_{node,mem}
1225 	 * early in boot, cf. smp_prepare_cpus().
1226 	 * _nocalls() + manual invocation is used because cpuhp is not yet
1227 	 * initialized for the boot CPU.
1228 	 */
1229 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1230 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1231 }
1232 
1233 static int __init early_numa(char *p)
1234 {
1235 	if (!p)
1236 		return 0;
1237 
1238 	if (strstr(p, "off"))
1239 		numa_enabled = 0;
1240 
1241 	p = strstr(p, "fake=");
1242 	if (p)
1243 		cmdline = p + strlen("fake=");
1244 
1245 	return 0;
1246 }
1247 early_param("numa", early_numa);
1248 
1249 #ifdef CONFIG_MEMORY_HOTPLUG
1250 /*
1251  * Find the node associated with a hot added memory section for
1252  * memory represented in the device tree by the property
1253  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1254  */
1255 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1256 {
1257 	struct drmem_lmb *lmb;
1258 	unsigned long lmb_size;
1259 	int nid = NUMA_NO_NODE;
1260 
1261 	lmb_size = drmem_lmb_size();
1262 
1263 	for_each_drmem_lmb(lmb) {
1264 		/* skip this block if it is reserved or not assigned to
1265 		 * this partition */
1266 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1267 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1268 			continue;
1269 
1270 		if ((scn_addr < lmb->base_addr)
1271 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1272 			continue;
1273 
1274 		nid = of_drconf_to_nid_single(lmb);
1275 		break;
1276 	}
1277 
1278 	return nid;
1279 }
1280 
1281 /*
1282  * Find the node associated with a hot added memory section for memory
1283  * represented in the device tree as a node (i.e. memory@XXXX) for
1284  * each memblock.
1285  */
1286 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1287 {
1288 	struct device_node *memory;
1289 	int nid = NUMA_NO_NODE;
1290 
1291 	for_each_node_by_type(memory, "memory") {
1292 		unsigned long start, size;
1293 		int ranges;
1294 		const __be32 *memcell_buf;
1295 		unsigned int len;
1296 
1297 		memcell_buf = of_get_property(memory, "reg", &len);
1298 		if (!memcell_buf || len <= 0)
1299 			continue;
1300 
1301 		/* ranges in cell */
1302 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1303 
1304 		while (ranges--) {
1305 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1306 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1307 
1308 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1309 				continue;
1310 
1311 			nid = of_node_to_nid_single(memory);
1312 			break;
1313 		}
1314 
1315 		if (nid >= 0)
1316 			break;
1317 	}
1318 
1319 	of_node_put(memory);
1320 
1321 	return nid;
1322 }
1323 
1324 /*
1325  * Find the node associated with a hot added memory section.  Section
1326  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1327  * sections are fully contained within a single MEMBLOCK.
1328  */
1329 int hot_add_scn_to_nid(unsigned long scn_addr)
1330 {
1331 	struct device_node *memory = NULL;
1332 	int nid;
1333 
1334 	if (!numa_enabled)
1335 		return first_online_node;
1336 
1337 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1338 	if (memory) {
1339 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1340 		of_node_put(memory);
1341 	} else {
1342 		nid = hot_add_node_scn_to_nid(scn_addr);
1343 	}
1344 
1345 	if (nid < 0 || !node_possible(nid))
1346 		nid = first_online_node;
1347 
1348 	return nid;
1349 }
1350 
1351 static u64 hot_add_drconf_memory_max(void)
1352 {
1353 	struct device_node *memory = NULL;
1354 	struct device_node *dn = NULL;
1355 	const __be64 *lrdr = NULL;
1356 
1357 	dn = of_find_node_by_path("/rtas");
1358 	if (dn) {
1359 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1360 		of_node_put(dn);
1361 		if (lrdr)
1362 			return be64_to_cpup(lrdr);
1363 	}
1364 
1365 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1366 	if (memory) {
1367 		of_node_put(memory);
1368 		return drmem_lmb_memory_max();
1369 	}
1370 	return 0;
1371 }
1372 
1373 /*
1374  * memory_hotplug_max - return max address of memory that may be added
1375  *
1376  * This is currently only used on systems that support drconfig memory
1377  * hotplug.
1378  */
1379 u64 memory_hotplug_max(void)
1380 {
1381         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1382 }
1383 #endif /* CONFIG_MEMORY_HOTPLUG */
1384 
1385 /* Virtual Processor Home Node (VPHN) support */
1386 #ifdef CONFIG_PPC_SPLPAR
1387 static int topology_inited;
1388 
1389 /*
1390  * Retrieve the new associativity information for a virtual processor's
1391  * home node.
1392  */
1393 static long vphn_get_associativity(unsigned long cpu,
1394 					__be32 *associativity)
1395 {
1396 	long rc;
1397 
1398 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1399 				VPHN_FLAG_VCPU, associativity);
1400 
1401 	switch (rc) {
1402 	case H_SUCCESS:
1403 		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1404 		goto out;
1405 
1406 	case H_FUNCTION:
1407 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1408 		break;
1409 	case H_HARDWARE:
1410 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1411 			"preventing VPHN. Disabling polling...\n");
1412 		break;
1413 	case H_PARAMETER:
1414 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1415 			"Disabling polling...\n");
1416 		break;
1417 	default:
1418 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1419 			, rc);
1420 		break;
1421 	}
1422 out:
1423 	return rc;
1424 }
1425 
1426 void find_and_update_cpu_nid(int cpu)
1427 {
1428 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1429 	int new_nid;
1430 
1431 	/* Use associativity from first thread for all siblings */
1432 	if (vphn_get_associativity(cpu, associativity))
1433 		return;
1434 
1435 	/* Do not have previous associativity, so find it now. */
1436 	new_nid = associativity_to_nid(associativity);
1437 
1438 	if (new_nid < 0 || !node_possible(new_nid))
1439 		new_nid = first_online_node;
1440 	else
1441 		// Associate node <-> cpu, so cpu_up() calls
1442 		// try_online_node() on the right node.
1443 		set_cpu_numa_node(cpu, new_nid);
1444 
1445 	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1446 }
1447 
1448 int cpu_to_coregroup_id(int cpu)
1449 {
1450 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1451 	int index;
1452 
1453 	if (cpu < 0 || cpu > nr_cpu_ids)
1454 		return -1;
1455 
1456 	if (!coregroup_enabled)
1457 		goto out;
1458 
1459 	if (!firmware_has_feature(FW_FEATURE_VPHN))
1460 		goto out;
1461 
1462 	if (vphn_get_associativity(cpu, associativity))
1463 		goto out;
1464 
1465 	index = of_read_number(associativity, 1);
1466 	if (index > primary_domain_index + 1)
1467 		return of_read_number(&associativity[index - 1], 1);
1468 
1469 out:
1470 	return cpu_to_core_id(cpu);
1471 }
1472 
1473 static int topology_update_init(void)
1474 {
1475 	topology_inited = 1;
1476 	return 0;
1477 }
1478 device_initcall(topology_update_init);
1479 #endif /* CONFIG_PPC_SPLPAR */
1480