1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * pSeries NUMA support 4 * 5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 6 */ 7 #define pr_fmt(fmt) "numa: " fmt 8 9 #include <linux/threads.h> 10 #include <linux/memblock.h> 11 #include <linux/init.h> 12 #include <linux/mm.h> 13 #include <linux/mmzone.h> 14 #include <linux/export.h> 15 #include <linux/nodemask.h> 16 #include <linux/cpu.h> 17 #include <linux/notifier.h> 18 #include <linux/of.h> 19 #include <linux/pfn.h> 20 #include <linux/cpuset.h> 21 #include <linux/node.h> 22 #include <linux/stop_machine.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/uaccess.h> 26 #include <linux/slab.h> 27 #include <asm/cputhreads.h> 28 #include <asm/sparsemem.h> 29 #include <asm/prom.h> 30 #include <asm/smp.h> 31 #include <asm/topology.h> 32 #include <asm/firmware.h> 33 #include <asm/paca.h> 34 #include <asm/hvcall.h> 35 #include <asm/setup.h> 36 #include <asm/vdso.h> 37 #include <asm/drmem.h> 38 39 static int numa_enabled = 1; 40 41 static char *cmdline __initdata; 42 43 static int numa_debug; 44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 45 46 int numa_cpu_lookup_table[NR_CPUS]; 47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 48 struct pglist_data *node_data[MAX_NUMNODES]; 49 50 EXPORT_SYMBOL(numa_cpu_lookup_table); 51 EXPORT_SYMBOL(node_to_cpumask_map); 52 EXPORT_SYMBOL(node_data); 53 54 static int min_common_depth; 55 static int n_mem_addr_cells, n_mem_size_cells; 56 static int form1_affinity; 57 58 #define MAX_DISTANCE_REF_POINTS 4 59 static int distance_ref_points_depth; 60 static const __be32 *distance_ref_points; 61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 62 63 /* 64 * Allocate node_to_cpumask_map based on number of available nodes 65 * Requires node_possible_map to be valid. 66 * 67 * Note: cpumask_of_node() is not valid until after this is done. 68 */ 69 static void __init setup_node_to_cpumask_map(void) 70 { 71 unsigned int node; 72 73 /* setup nr_node_ids if not done yet */ 74 if (nr_node_ids == MAX_NUMNODES) 75 setup_nr_node_ids(); 76 77 /* allocate the map */ 78 for_each_node(node) 79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 80 81 /* cpumask_of_node() will now work */ 82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids); 83 } 84 85 static int __init fake_numa_create_new_node(unsigned long end_pfn, 86 unsigned int *nid) 87 { 88 unsigned long long mem; 89 char *p = cmdline; 90 static unsigned int fake_nid; 91 static unsigned long long curr_boundary; 92 93 /* 94 * Modify node id, iff we started creating NUMA nodes 95 * We want to continue from where we left of the last time 96 */ 97 if (fake_nid) 98 *nid = fake_nid; 99 /* 100 * In case there are no more arguments to parse, the 101 * node_id should be the same as the last fake node id 102 * (we've handled this above). 103 */ 104 if (!p) 105 return 0; 106 107 mem = memparse(p, &p); 108 if (!mem) 109 return 0; 110 111 if (mem < curr_boundary) 112 return 0; 113 114 curr_boundary = mem; 115 116 if ((end_pfn << PAGE_SHIFT) > mem) { 117 /* 118 * Skip commas and spaces 119 */ 120 while (*p == ',' || *p == ' ' || *p == '\t') 121 p++; 122 123 cmdline = p; 124 fake_nid++; 125 *nid = fake_nid; 126 dbg("created new fake_node with id %d\n", fake_nid); 127 return 1; 128 } 129 return 0; 130 } 131 132 static void reset_numa_cpu_lookup_table(void) 133 { 134 unsigned int cpu; 135 136 for_each_possible_cpu(cpu) 137 numa_cpu_lookup_table[cpu] = -1; 138 } 139 140 static void map_cpu_to_node(int cpu, int node) 141 { 142 update_numa_cpu_lookup_table(cpu, node); 143 144 dbg("adding cpu %d to node %d\n", cpu, node); 145 146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 148 } 149 150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 151 static void unmap_cpu_from_node(unsigned long cpu) 152 { 153 int node = numa_cpu_lookup_table[cpu]; 154 155 dbg("removing cpu %lu from node %d\n", cpu, node); 156 157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 159 } else { 160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 161 cpu, node); 162 } 163 } 164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 165 166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) 167 { 168 int dist = 0; 169 170 int i, index; 171 172 for (i = 0; i < distance_ref_points_depth; i++) { 173 index = be32_to_cpu(distance_ref_points[i]); 174 if (cpu1_assoc[index] == cpu2_assoc[index]) 175 break; 176 dist++; 177 } 178 179 return dist; 180 } 181 182 /* must hold reference to node during call */ 183 static const __be32 *of_get_associativity(struct device_node *dev) 184 { 185 return of_get_property(dev, "ibm,associativity", NULL); 186 } 187 188 int __node_distance(int a, int b) 189 { 190 int i; 191 int distance = LOCAL_DISTANCE; 192 193 if (!form1_affinity) 194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 195 196 for (i = 0; i < distance_ref_points_depth; i++) { 197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 198 break; 199 200 /* Double the distance for each NUMA level */ 201 distance *= 2; 202 } 203 204 return distance; 205 } 206 EXPORT_SYMBOL(__node_distance); 207 208 static void initialize_distance_lookup_table(int nid, 209 const __be32 *associativity) 210 { 211 int i; 212 213 if (!form1_affinity) 214 return; 215 216 for (i = 0; i < distance_ref_points_depth; i++) { 217 const __be32 *entry; 218 219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 220 distance_lookup_table[nid][i] = of_read_number(entry, 1); 221 } 222 } 223 224 /* 225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA 226 * info is found. 227 */ 228 static int associativity_to_nid(const __be32 *associativity) 229 { 230 int nid = NUMA_NO_NODE; 231 232 if (!numa_enabled) 233 goto out; 234 235 if (of_read_number(associativity, 1) >= min_common_depth) 236 nid = of_read_number(&associativity[min_common_depth], 1); 237 238 /* POWER4 LPAR uses 0xffff as invalid node */ 239 if (nid == 0xffff || nid >= nr_node_ids) 240 nid = NUMA_NO_NODE; 241 242 if (nid > 0 && 243 of_read_number(associativity, 1) >= distance_ref_points_depth) { 244 /* 245 * Skip the length field and send start of associativity array 246 */ 247 initialize_distance_lookup_table(nid, associativity + 1); 248 } 249 250 out: 251 return nid; 252 } 253 254 /* Returns the nid associated with the given device tree node, 255 * or -1 if not found. 256 */ 257 static int of_node_to_nid_single(struct device_node *device) 258 { 259 int nid = NUMA_NO_NODE; 260 const __be32 *tmp; 261 262 tmp = of_get_associativity(device); 263 if (tmp) 264 nid = associativity_to_nid(tmp); 265 return nid; 266 } 267 268 /* Walk the device tree upwards, looking for an associativity id */ 269 int of_node_to_nid(struct device_node *device) 270 { 271 int nid = NUMA_NO_NODE; 272 273 of_node_get(device); 274 while (device) { 275 nid = of_node_to_nid_single(device); 276 if (nid != -1) 277 break; 278 279 device = of_get_next_parent(device); 280 } 281 of_node_put(device); 282 283 return nid; 284 } 285 EXPORT_SYMBOL(of_node_to_nid); 286 287 static int __init find_min_common_depth(void) 288 { 289 int depth; 290 struct device_node *root; 291 292 if (firmware_has_feature(FW_FEATURE_OPAL)) 293 root = of_find_node_by_path("/ibm,opal"); 294 else 295 root = of_find_node_by_path("/rtas"); 296 if (!root) 297 root = of_find_node_by_path("/"); 298 299 /* 300 * This property is a set of 32-bit integers, each representing 301 * an index into the ibm,associativity nodes. 302 * 303 * With form 0 affinity the first integer is for an SMP configuration 304 * (should be all 0's) and the second is for a normal NUMA 305 * configuration. We have only one level of NUMA. 306 * 307 * With form 1 affinity the first integer is the most significant 308 * NUMA boundary and the following are progressively less significant 309 * boundaries. There can be more than one level of NUMA. 310 */ 311 distance_ref_points = of_get_property(root, 312 "ibm,associativity-reference-points", 313 &distance_ref_points_depth); 314 315 if (!distance_ref_points) { 316 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 317 goto err; 318 } 319 320 distance_ref_points_depth /= sizeof(int); 321 322 if (firmware_has_feature(FW_FEATURE_OPAL) || 323 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 324 dbg("Using form 1 affinity\n"); 325 form1_affinity = 1; 326 } 327 328 if (form1_affinity) { 329 depth = of_read_number(distance_ref_points, 1); 330 } else { 331 if (distance_ref_points_depth < 2) { 332 printk(KERN_WARNING "NUMA: " 333 "short ibm,associativity-reference-points\n"); 334 goto err; 335 } 336 337 depth = of_read_number(&distance_ref_points[1], 1); 338 } 339 340 /* 341 * Warn and cap if the hardware supports more than 342 * MAX_DISTANCE_REF_POINTS domains. 343 */ 344 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 345 printk(KERN_WARNING "NUMA: distance array capped at " 346 "%d entries\n", MAX_DISTANCE_REF_POINTS); 347 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 348 } 349 350 of_node_put(root); 351 return depth; 352 353 err: 354 of_node_put(root); 355 return -1; 356 } 357 358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 359 { 360 struct device_node *memory = NULL; 361 362 memory = of_find_node_by_type(memory, "memory"); 363 if (!memory) 364 panic("numa.c: No memory nodes found!"); 365 366 *n_addr_cells = of_n_addr_cells(memory); 367 *n_size_cells = of_n_size_cells(memory); 368 of_node_put(memory); 369 } 370 371 static unsigned long read_n_cells(int n, const __be32 **buf) 372 { 373 unsigned long result = 0; 374 375 while (n--) { 376 result = (result << 32) | of_read_number(*buf, 1); 377 (*buf)++; 378 } 379 return result; 380 } 381 382 struct assoc_arrays { 383 u32 n_arrays; 384 u32 array_sz; 385 const __be32 *arrays; 386 }; 387 388 /* 389 * Retrieve and validate the list of associativity arrays for drconf 390 * memory from the ibm,associativity-lookup-arrays property of the 391 * device tree.. 392 * 393 * The layout of the ibm,associativity-lookup-arrays property is a number N 394 * indicating the number of associativity arrays, followed by a number M 395 * indicating the size of each associativity array, followed by a list 396 * of N associativity arrays. 397 */ 398 static int of_get_assoc_arrays(struct assoc_arrays *aa) 399 { 400 struct device_node *memory; 401 const __be32 *prop; 402 u32 len; 403 404 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 405 if (!memory) 406 return -1; 407 408 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 409 if (!prop || len < 2 * sizeof(unsigned int)) { 410 of_node_put(memory); 411 return -1; 412 } 413 414 aa->n_arrays = of_read_number(prop++, 1); 415 aa->array_sz = of_read_number(prop++, 1); 416 417 of_node_put(memory); 418 419 /* Now that we know the number of arrays and size of each array, 420 * revalidate the size of the property read in. 421 */ 422 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 423 return -1; 424 425 aa->arrays = prop; 426 return 0; 427 } 428 429 /* 430 * This is like of_node_to_nid_single() for memory represented in the 431 * ibm,dynamic-reconfiguration-memory node. 432 */ 433 int of_drconf_to_nid_single(struct drmem_lmb *lmb) 434 { 435 struct assoc_arrays aa = { .arrays = NULL }; 436 int default_nid = NUMA_NO_NODE; 437 int nid = default_nid; 438 int rc, index; 439 440 if ((min_common_depth < 0) || !numa_enabled) 441 return default_nid; 442 443 rc = of_get_assoc_arrays(&aa); 444 if (rc) 445 return default_nid; 446 447 if (min_common_depth <= aa.array_sz && 448 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { 449 index = lmb->aa_index * aa.array_sz + min_common_depth - 1; 450 nid = of_read_number(&aa.arrays[index], 1); 451 452 if (nid == 0xffff || nid >= nr_node_ids) 453 nid = default_nid; 454 455 if (nid > 0) { 456 index = lmb->aa_index * aa.array_sz; 457 initialize_distance_lookup_table(nid, 458 &aa.arrays[index]); 459 } 460 } 461 462 return nid; 463 } 464 465 #ifdef CONFIG_PPC_SPLPAR 466 static int vphn_get_nid(long lcpu) 467 { 468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 469 long rc, hwid; 470 471 /* 472 * On a shared lpar, device tree will not have node associativity. 473 * At this time lppaca, or its __old_status field may not be 474 * updated. Hence kernel cannot detect if its on a shared lpar. So 475 * request an explicit associativity irrespective of whether the 476 * lpar is shared or dedicated. Use the device tree property as a 477 * fallback. cpu_to_phys_id is only valid between 478 * smp_setup_cpu_maps() and smp_setup_pacas(). 479 */ 480 if (firmware_has_feature(FW_FEATURE_VPHN)) { 481 if (cpu_to_phys_id) 482 hwid = cpu_to_phys_id[lcpu]; 483 else 484 hwid = get_hard_smp_processor_id(lcpu); 485 486 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); 487 if (rc == H_SUCCESS) 488 return associativity_to_nid(associativity); 489 } 490 491 return NUMA_NO_NODE; 492 } 493 #else 494 static int vphn_get_nid(long unused) 495 { 496 return NUMA_NO_NODE; 497 } 498 #endif /* CONFIG_PPC_SPLPAR */ 499 500 /* 501 * Figure out to which domain a cpu belongs and stick it there. 502 * Return the id of the domain used. 503 */ 504 static int numa_setup_cpu(unsigned long lcpu) 505 { 506 struct device_node *cpu; 507 int fcpu = cpu_first_thread_sibling(lcpu); 508 int nid = NUMA_NO_NODE; 509 510 if (!cpu_present(lcpu)) { 511 set_cpu_numa_node(lcpu, first_online_node); 512 return first_online_node; 513 } 514 515 /* 516 * If a valid cpu-to-node mapping is already available, use it 517 * directly instead of querying the firmware, since it represents 518 * the most recent mapping notified to us by the platform (eg: VPHN). 519 * Since cpu_to_node binding remains the same for all threads in the 520 * core. If a valid cpu-to-node mapping is already available, for 521 * the first thread in the core, use it. 522 */ 523 nid = numa_cpu_lookup_table[fcpu]; 524 if (nid >= 0) { 525 map_cpu_to_node(lcpu, nid); 526 return nid; 527 } 528 529 nid = vphn_get_nid(lcpu); 530 if (nid != NUMA_NO_NODE) 531 goto out_present; 532 533 cpu = of_get_cpu_node(lcpu, NULL); 534 535 if (!cpu) { 536 WARN_ON(1); 537 if (cpu_present(lcpu)) 538 goto out_present; 539 else 540 goto out; 541 } 542 543 nid = of_node_to_nid_single(cpu); 544 of_node_put(cpu); 545 546 out_present: 547 if (nid < 0 || !node_possible(nid)) 548 nid = first_online_node; 549 550 /* 551 * Update for the first thread of the core. All threads of a core 552 * have to be part of the same node. This not only avoids querying 553 * for every other thread in the core, but always avoids a case 554 * where virtual node associativity change causes subsequent threads 555 * of a core to be associated with different nid. However if first 556 * thread is already online, expect it to have a valid mapping. 557 */ 558 if (fcpu != lcpu) { 559 WARN_ON(cpu_online(fcpu)); 560 map_cpu_to_node(fcpu, nid); 561 } 562 563 map_cpu_to_node(lcpu, nid); 564 out: 565 return nid; 566 } 567 568 static void verify_cpu_node_mapping(int cpu, int node) 569 { 570 int base, sibling, i; 571 572 /* Verify that all the threads in the core belong to the same node */ 573 base = cpu_first_thread_sibling(cpu); 574 575 for (i = 0; i < threads_per_core; i++) { 576 sibling = base + i; 577 578 if (sibling == cpu || cpu_is_offline(sibling)) 579 continue; 580 581 if (cpu_to_node(sibling) != node) { 582 WARN(1, "CPU thread siblings %d and %d don't belong" 583 " to the same node!\n", cpu, sibling); 584 break; 585 } 586 } 587 } 588 589 /* Must run before sched domains notifier. */ 590 static int ppc_numa_cpu_prepare(unsigned int cpu) 591 { 592 int nid; 593 594 nid = numa_setup_cpu(cpu); 595 verify_cpu_node_mapping(cpu, nid); 596 return 0; 597 } 598 599 static int ppc_numa_cpu_dead(unsigned int cpu) 600 { 601 #ifdef CONFIG_HOTPLUG_CPU 602 unmap_cpu_from_node(cpu); 603 #endif 604 return 0; 605 } 606 607 /* 608 * Check and possibly modify a memory region to enforce the memory limit. 609 * 610 * Returns the size the region should have to enforce the memory limit. 611 * This will either be the original value of size, a truncated value, 612 * or zero. If the returned value of size is 0 the region should be 613 * discarded as it lies wholly above the memory limit. 614 */ 615 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 616 unsigned long size) 617 { 618 /* 619 * We use memblock_end_of_DRAM() in here instead of memory_limit because 620 * we've already adjusted it for the limit and it takes care of 621 * having memory holes below the limit. Also, in the case of 622 * iommu_is_off, memory_limit is not set but is implicitly enforced. 623 */ 624 625 if (start + size <= memblock_end_of_DRAM()) 626 return size; 627 628 if (start >= memblock_end_of_DRAM()) 629 return 0; 630 631 return memblock_end_of_DRAM() - start; 632 } 633 634 /* 635 * Reads the counter for a given entry in 636 * linux,drconf-usable-memory property 637 */ 638 static inline int __init read_usm_ranges(const __be32 **usm) 639 { 640 /* 641 * For each lmb in ibm,dynamic-memory a corresponding 642 * entry in linux,drconf-usable-memory property contains 643 * a counter followed by that many (base, size) duple. 644 * read the counter from linux,drconf-usable-memory 645 */ 646 return read_n_cells(n_mem_size_cells, usm); 647 } 648 649 /* 650 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 651 * node. This assumes n_mem_{addr,size}_cells have been set. 652 */ 653 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, 654 const __be32 **usm, 655 void *data) 656 { 657 unsigned int ranges, is_kexec_kdump = 0; 658 unsigned long base, size, sz; 659 int nid; 660 661 /* 662 * Skip this block if the reserved bit is set in flags (0x80) 663 * or if the block is not assigned to this partition (0x8) 664 */ 665 if ((lmb->flags & DRCONF_MEM_RESERVED) 666 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 667 return 0; 668 669 if (*usm) 670 is_kexec_kdump = 1; 671 672 base = lmb->base_addr; 673 size = drmem_lmb_size(); 674 ranges = 1; 675 676 if (is_kexec_kdump) { 677 ranges = read_usm_ranges(usm); 678 if (!ranges) /* there are no (base, size) duple */ 679 return 0; 680 } 681 682 do { 683 if (is_kexec_kdump) { 684 base = read_n_cells(n_mem_addr_cells, usm); 685 size = read_n_cells(n_mem_size_cells, usm); 686 } 687 688 nid = of_drconf_to_nid_single(lmb); 689 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), 690 &nid); 691 node_set_online(nid); 692 sz = numa_enforce_memory_limit(base, size); 693 if (sz) 694 memblock_set_node(base, sz, &memblock.memory, nid); 695 } while (--ranges); 696 697 return 0; 698 } 699 700 static int __init parse_numa_properties(void) 701 { 702 struct device_node *memory; 703 int default_nid = 0; 704 unsigned long i; 705 706 if (numa_enabled == 0) { 707 printk(KERN_WARNING "NUMA disabled by user\n"); 708 return -1; 709 } 710 711 min_common_depth = find_min_common_depth(); 712 713 if (min_common_depth < 0) { 714 /* 715 * if we fail to parse min_common_depth from device tree 716 * mark the numa disabled, boot with numa disabled. 717 */ 718 numa_enabled = false; 719 return min_common_depth; 720 } 721 722 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 723 724 /* 725 * Even though we connect cpus to numa domains later in SMP 726 * init, we need to know the node ids now. This is because 727 * each node to be onlined must have NODE_DATA etc backing it. 728 */ 729 for_each_present_cpu(i) { 730 struct device_node *cpu; 731 int nid = vphn_get_nid(i); 732 733 /* 734 * Don't fall back to default_nid yet -- we will plug 735 * cpus into nodes once the memory scan has discovered 736 * the topology. 737 */ 738 if (nid == NUMA_NO_NODE) { 739 cpu = of_get_cpu_node(i, NULL); 740 BUG_ON(!cpu); 741 nid = of_node_to_nid_single(cpu); 742 of_node_put(cpu); 743 } 744 745 if (likely(nid > 0)) 746 node_set_online(nid); 747 } 748 749 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 750 751 for_each_node_by_type(memory, "memory") { 752 unsigned long start; 753 unsigned long size; 754 int nid; 755 int ranges; 756 const __be32 *memcell_buf; 757 unsigned int len; 758 759 memcell_buf = of_get_property(memory, 760 "linux,usable-memory", &len); 761 if (!memcell_buf || len <= 0) 762 memcell_buf = of_get_property(memory, "reg", &len); 763 if (!memcell_buf || len <= 0) 764 continue; 765 766 /* ranges in cell */ 767 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 768 new_range: 769 /* these are order-sensitive, and modify the buffer pointer */ 770 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 771 size = read_n_cells(n_mem_size_cells, &memcell_buf); 772 773 /* 774 * Assumption: either all memory nodes or none will 775 * have associativity properties. If none, then 776 * everything goes to default_nid. 777 */ 778 nid = of_node_to_nid_single(memory); 779 if (nid < 0) 780 nid = default_nid; 781 782 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 783 node_set_online(nid); 784 785 size = numa_enforce_memory_limit(start, size); 786 if (size) 787 memblock_set_node(start, size, &memblock.memory, nid); 788 789 if (--ranges) 790 goto new_range; 791 } 792 793 /* 794 * Now do the same thing for each MEMBLOCK listed in the 795 * ibm,dynamic-memory property in the 796 * ibm,dynamic-reconfiguration-memory node. 797 */ 798 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 799 if (memory) { 800 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); 801 of_node_put(memory); 802 } 803 804 return 0; 805 } 806 807 static void __init setup_nonnuma(void) 808 { 809 unsigned long top_of_ram = memblock_end_of_DRAM(); 810 unsigned long total_ram = memblock_phys_mem_size(); 811 unsigned long start_pfn, end_pfn; 812 unsigned int nid = 0; 813 int i; 814 815 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 816 top_of_ram, total_ram); 817 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 818 (top_of_ram - total_ram) >> 20); 819 820 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { 821 fake_numa_create_new_node(end_pfn, &nid); 822 memblock_set_node(PFN_PHYS(start_pfn), 823 PFN_PHYS(end_pfn - start_pfn), 824 &memblock.memory, nid); 825 node_set_online(nid); 826 } 827 } 828 829 void __init dump_numa_cpu_topology(void) 830 { 831 unsigned int node; 832 unsigned int cpu, count; 833 834 if (!numa_enabled) 835 return; 836 837 for_each_online_node(node) { 838 pr_info("Node %d CPUs:", node); 839 840 count = 0; 841 /* 842 * If we used a CPU iterator here we would miss printing 843 * the holes in the cpumap. 844 */ 845 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 846 if (cpumask_test_cpu(cpu, 847 node_to_cpumask_map[node])) { 848 if (count == 0) 849 pr_cont(" %u", cpu); 850 ++count; 851 } else { 852 if (count > 1) 853 pr_cont("-%u", cpu - 1); 854 count = 0; 855 } 856 } 857 858 if (count > 1) 859 pr_cont("-%u", nr_cpu_ids - 1); 860 pr_cont("\n"); 861 } 862 } 863 864 /* Initialize NODE_DATA for a node on the local memory */ 865 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 866 { 867 u64 spanned_pages = end_pfn - start_pfn; 868 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 869 u64 nd_pa; 870 void *nd; 871 int tnid; 872 873 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 874 if (!nd_pa) 875 panic("Cannot allocate %zu bytes for node %d data\n", 876 nd_size, nid); 877 878 nd = __va(nd_pa); 879 880 /* report and initialize */ 881 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 882 nd_pa, nd_pa + nd_size - 1); 883 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 884 if (tnid != nid) 885 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 886 887 node_data[nid] = nd; 888 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 889 NODE_DATA(nid)->node_id = nid; 890 NODE_DATA(nid)->node_start_pfn = start_pfn; 891 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 892 } 893 894 static void __init find_possible_nodes(void) 895 { 896 struct device_node *rtas; 897 const __be32 *domains; 898 int prop_length, max_nodes; 899 u32 i; 900 901 if (!numa_enabled) 902 return; 903 904 rtas = of_find_node_by_path("/rtas"); 905 if (!rtas) 906 return; 907 908 /* 909 * ibm,current-associativity-domains is a fairly recent property. If 910 * it doesn't exist, then fallback on ibm,max-associativity-domains. 911 * Current denotes what the platform can support compared to max 912 * which denotes what the Hypervisor can support. 913 */ 914 domains = of_get_property(rtas, "ibm,current-associativity-domains", 915 &prop_length); 916 if (!domains) { 917 domains = of_get_property(rtas, "ibm,max-associativity-domains", 918 &prop_length); 919 if (!domains) 920 goto out; 921 } 922 923 max_nodes = of_read_number(&domains[min_common_depth], 1); 924 for (i = 0; i < max_nodes; i++) { 925 if (!node_possible(i)) 926 node_set(i, node_possible_map); 927 } 928 929 prop_length /= sizeof(int); 930 if (prop_length > min_common_depth + 2) 931 coregroup_enabled = 1; 932 933 out: 934 of_node_put(rtas); 935 } 936 937 void __init mem_topology_setup(void) 938 { 939 int cpu; 940 941 /* 942 * Linux/mm assumes node 0 to be online at boot. However this is not 943 * true on PowerPC, where node 0 is similar to any other node, it 944 * could be cpuless, memoryless node. So force node 0 to be offline 945 * for now. This will prevent cpuless, memoryless node 0 showing up 946 * unnecessarily as online. If a node has cpus or memory that need 947 * to be online, then node will anyway be marked online. 948 */ 949 node_set_offline(0); 950 951 if (parse_numa_properties()) 952 setup_nonnuma(); 953 954 /* 955 * Modify the set of possible NUMA nodes to reflect information 956 * available about the set of online nodes, and the set of nodes 957 * that we expect to make use of for this platform's affinity 958 * calculations. 959 */ 960 nodes_and(node_possible_map, node_possible_map, node_online_map); 961 962 find_possible_nodes(); 963 964 setup_node_to_cpumask_map(); 965 966 reset_numa_cpu_lookup_table(); 967 968 for_each_possible_cpu(cpu) { 969 /* 970 * Powerpc with CONFIG_NUMA always used to have a node 0, 971 * even if it was memoryless or cpuless. For all cpus that 972 * are possible but not present, cpu_to_node() would point 973 * to node 0. To remove a cpuless, memoryless dummy node, 974 * powerpc need to make sure all possible but not present 975 * cpu_to_node are set to a proper node. 976 */ 977 numa_setup_cpu(cpu); 978 } 979 } 980 981 void __init initmem_init(void) 982 { 983 int nid; 984 985 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 986 max_pfn = max_low_pfn; 987 988 memblock_dump_all(); 989 990 for_each_online_node(nid) { 991 unsigned long start_pfn, end_pfn; 992 993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 994 setup_node_data(nid, start_pfn, end_pfn); 995 } 996 997 sparse_init(); 998 999 /* 1000 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 1001 * even before we online them, so that we can use cpu_to_{node,mem} 1002 * early in boot, cf. smp_prepare_cpus(). 1003 * _nocalls() + manual invocation is used because cpuhp is not yet 1004 * initialized for the boot CPU. 1005 */ 1006 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", 1007 ppc_numa_cpu_prepare, ppc_numa_cpu_dead); 1008 } 1009 1010 static int __init early_numa(char *p) 1011 { 1012 if (!p) 1013 return 0; 1014 1015 if (strstr(p, "off")) 1016 numa_enabled = 0; 1017 1018 if (strstr(p, "debug")) 1019 numa_debug = 1; 1020 1021 p = strstr(p, "fake="); 1022 if (p) 1023 cmdline = p + strlen("fake="); 1024 1025 return 0; 1026 } 1027 early_param("numa", early_numa); 1028 1029 #ifdef CONFIG_MEMORY_HOTPLUG 1030 /* 1031 * Find the node associated with a hot added memory section for 1032 * memory represented in the device tree by the property 1033 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1034 */ 1035 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) 1036 { 1037 struct drmem_lmb *lmb; 1038 unsigned long lmb_size; 1039 int nid = NUMA_NO_NODE; 1040 1041 lmb_size = drmem_lmb_size(); 1042 1043 for_each_drmem_lmb(lmb) { 1044 /* skip this block if it is reserved or not assigned to 1045 * this partition */ 1046 if ((lmb->flags & DRCONF_MEM_RESERVED) 1047 || !(lmb->flags & DRCONF_MEM_ASSIGNED)) 1048 continue; 1049 1050 if ((scn_addr < lmb->base_addr) 1051 || (scn_addr >= (lmb->base_addr + lmb_size))) 1052 continue; 1053 1054 nid = of_drconf_to_nid_single(lmb); 1055 break; 1056 } 1057 1058 return nid; 1059 } 1060 1061 /* 1062 * Find the node associated with a hot added memory section for memory 1063 * represented in the device tree as a node (i.e. memory@XXXX) for 1064 * each memblock. 1065 */ 1066 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1067 { 1068 struct device_node *memory; 1069 int nid = NUMA_NO_NODE; 1070 1071 for_each_node_by_type(memory, "memory") { 1072 unsigned long start, size; 1073 int ranges; 1074 const __be32 *memcell_buf; 1075 unsigned int len; 1076 1077 memcell_buf = of_get_property(memory, "reg", &len); 1078 if (!memcell_buf || len <= 0) 1079 continue; 1080 1081 /* ranges in cell */ 1082 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1083 1084 while (ranges--) { 1085 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1086 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1087 1088 if ((scn_addr < start) || (scn_addr >= (start + size))) 1089 continue; 1090 1091 nid = of_node_to_nid_single(memory); 1092 break; 1093 } 1094 1095 if (nid >= 0) 1096 break; 1097 } 1098 1099 of_node_put(memory); 1100 1101 return nid; 1102 } 1103 1104 /* 1105 * Find the node associated with a hot added memory section. Section 1106 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1107 * sections are fully contained within a single MEMBLOCK. 1108 */ 1109 int hot_add_scn_to_nid(unsigned long scn_addr) 1110 { 1111 struct device_node *memory = NULL; 1112 int nid; 1113 1114 if (!numa_enabled) 1115 return first_online_node; 1116 1117 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1118 if (memory) { 1119 nid = hot_add_drconf_scn_to_nid(scn_addr); 1120 of_node_put(memory); 1121 } else { 1122 nid = hot_add_node_scn_to_nid(scn_addr); 1123 } 1124 1125 if (nid < 0 || !node_possible(nid)) 1126 nid = first_online_node; 1127 1128 return nid; 1129 } 1130 1131 static u64 hot_add_drconf_memory_max(void) 1132 { 1133 struct device_node *memory = NULL; 1134 struct device_node *dn = NULL; 1135 const __be64 *lrdr = NULL; 1136 1137 dn = of_find_node_by_path("/rtas"); 1138 if (dn) { 1139 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); 1140 of_node_put(dn); 1141 if (lrdr) 1142 return be64_to_cpup(lrdr); 1143 } 1144 1145 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1146 if (memory) { 1147 of_node_put(memory); 1148 return drmem_lmb_memory_max(); 1149 } 1150 return 0; 1151 } 1152 1153 /* 1154 * memory_hotplug_max - return max address of memory that may be added 1155 * 1156 * This is currently only used on systems that support drconfig memory 1157 * hotplug. 1158 */ 1159 u64 memory_hotplug_max(void) 1160 { 1161 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1162 } 1163 #endif /* CONFIG_MEMORY_HOTPLUG */ 1164 1165 /* Virtual Processor Home Node (VPHN) support */ 1166 #ifdef CONFIG_PPC_SPLPAR 1167 static int topology_inited; 1168 1169 /* 1170 * Retrieve the new associativity information for a virtual processor's 1171 * home node. 1172 */ 1173 static long vphn_get_associativity(unsigned long cpu, 1174 __be32 *associativity) 1175 { 1176 long rc; 1177 1178 rc = hcall_vphn(get_hard_smp_processor_id(cpu), 1179 VPHN_FLAG_VCPU, associativity); 1180 1181 switch (rc) { 1182 case H_SUCCESS: 1183 dbg("VPHN hcall succeeded. Reset polling...\n"); 1184 goto out; 1185 1186 case H_FUNCTION: 1187 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); 1188 break; 1189 case H_HARDWARE: 1190 pr_err_ratelimited("hcall_vphn() experienced a hardware fault " 1191 "preventing VPHN. Disabling polling...\n"); 1192 break; 1193 case H_PARAMETER: 1194 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " 1195 "Disabling polling...\n"); 1196 break; 1197 default: 1198 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" 1199 , rc); 1200 break; 1201 } 1202 out: 1203 return rc; 1204 } 1205 1206 int find_and_online_cpu_nid(int cpu) 1207 { 1208 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1209 int new_nid; 1210 1211 /* Use associativity from first thread for all siblings */ 1212 if (vphn_get_associativity(cpu, associativity)) 1213 return cpu_to_node(cpu); 1214 1215 new_nid = associativity_to_nid(associativity); 1216 if (new_nid < 0 || !node_possible(new_nid)) 1217 new_nid = first_online_node; 1218 1219 if (NODE_DATA(new_nid) == NULL) { 1220 #ifdef CONFIG_MEMORY_HOTPLUG 1221 /* 1222 * Need to ensure that NODE_DATA is initialized for a node from 1223 * available memory (see memblock_alloc_try_nid). If unable to 1224 * init the node, then default to nearest node that has memory 1225 * installed. Skip onlining a node if the subsystems are not 1226 * yet initialized. 1227 */ 1228 if (!topology_inited || try_online_node(new_nid)) 1229 new_nid = first_online_node; 1230 #else 1231 /* 1232 * Default to using the nearest node that has memory installed. 1233 * Otherwise, it would be necessary to patch the kernel MM code 1234 * to deal with more memoryless-node error conditions. 1235 */ 1236 new_nid = first_online_node; 1237 #endif 1238 } 1239 1240 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, 1241 cpu, new_nid); 1242 return new_nid; 1243 } 1244 1245 int cpu_to_coregroup_id(int cpu) 1246 { 1247 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1248 int index; 1249 1250 if (cpu < 0 || cpu > nr_cpu_ids) 1251 return -1; 1252 1253 if (!coregroup_enabled) 1254 goto out; 1255 1256 if (!firmware_has_feature(FW_FEATURE_VPHN)) 1257 goto out; 1258 1259 if (vphn_get_associativity(cpu, associativity)) 1260 goto out; 1261 1262 index = of_read_number(associativity, 1); 1263 if (index > min_common_depth + 1) 1264 return of_read_number(&associativity[index - 1], 1); 1265 1266 out: 1267 return cpu_to_core_id(cpu); 1268 } 1269 1270 static int topology_update_init(void) 1271 { 1272 topology_inited = 1; 1273 return 0; 1274 } 1275 device_initcall(topology_update_init); 1276 #endif /* CONFIG_PPC_SPLPAR */ 1277