xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 160b8e75)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #define pr_fmt(fmt) "numa: " fmt
12 
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43 #include <asm/drmem.h>
44 
45 static int numa_enabled = 1;
46 
47 static char *cmdline __initdata;
48 
49 static int numa_debug;
50 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
51 
52 int numa_cpu_lookup_table[NR_CPUS];
53 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
54 struct pglist_data *node_data[MAX_NUMNODES];
55 
56 EXPORT_SYMBOL(numa_cpu_lookup_table);
57 EXPORT_SYMBOL(node_to_cpumask_map);
58 EXPORT_SYMBOL(node_data);
59 
60 static int min_common_depth;
61 static int n_mem_addr_cells, n_mem_size_cells;
62 static int form1_affinity;
63 
64 #define MAX_DISTANCE_REF_POINTS 4
65 static int distance_ref_points_depth;
66 static const __be32 *distance_ref_points;
67 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
68 
69 /*
70  * Allocate node_to_cpumask_map based on number of available nodes
71  * Requires node_possible_map to be valid.
72  *
73  * Note: cpumask_of_node() is not valid until after this is done.
74  */
75 static void __init setup_node_to_cpumask_map(void)
76 {
77 	unsigned int node;
78 
79 	/* setup nr_node_ids if not done yet */
80 	if (nr_node_ids == MAX_NUMNODES)
81 		setup_nr_node_ids();
82 
83 	/* allocate the map */
84 	for_each_node(node)
85 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
86 
87 	/* cpumask_of_node() will now work */
88 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
89 }
90 
91 static int __init fake_numa_create_new_node(unsigned long end_pfn,
92 						unsigned int *nid)
93 {
94 	unsigned long long mem;
95 	char *p = cmdline;
96 	static unsigned int fake_nid;
97 	static unsigned long long curr_boundary;
98 
99 	/*
100 	 * Modify node id, iff we started creating NUMA nodes
101 	 * We want to continue from where we left of the last time
102 	 */
103 	if (fake_nid)
104 		*nid = fake_nid;
105 	/*
106 	 * In case there are no more arguments to parse, the
107 	 * node_id should be the same as the last fake node id
108 	 * (we've handled this above).
109 	 */
110 	if (!p)
111 		return 0;
112 
113 	mem = memparse(p, &p);
114 	if (!mem)
115 		return 0;
116 
117 	if (mem < curr_boundary)
118 		return 0;
119 
120 	curr_boundary = mem;
121 
122 	if ((end_pfn << PAGE_SHIFT) > mem) {
123 		/*
124 		 * Skip commas and spaces
125 		 */
126 		while (*p == ',' || *p == ' ' || *p == '\t')
127 			p++;
128 
129 		cmdline = p;
130 		fake_nid++;
131 		*nid = fake_nid;
132 		dbg("created new fake_node with id %d\n", fake_nid);
133 		return 1;
134 	}
135 	return 0;
136 }
137 
138 static void reset_numa_cpu_lookup_table(void)
139 {
140 	unsigned int cpu;
141 
142 	for_each_possible_cpu(cpu)
143 		numa_cpu_lookup_table[cpu] = -1;
144 }
145 
146 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
147 {
148 	numa_cpu_lookup_table[cpu] = node;
149 }
150 
151 static void map_cpu_to_node(int cpu, int node)
152 {
153 	update_numa_cpu_lookup_table(cpu, node);
154 
155 	dbg("adding cpu %d to node %d\n", cpu, node);
156 
157 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
159 }
160 
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu)
163 {
164 	int node = numa_cpu_lookup_table[cpu];
165 
166 	dbg("removing cpu %lu from node %d\n", cpu, node);
167 
168 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
170 	} else {
171 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 		       cpu, node);
173 	}
174 }
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
176 
177 /* must hold reference to node during call */
178 static const __be32 *of_get_associativity(struct device_node *dev)
179 {
180 	return of_get_property(dev, "ibm,associativity", NULL);
181 }
182 
183 int __node_distance(int a, int b)
184 {
185 	int i;
186 	int distance = LOCAL_DISTANCE;
187 
188 	if (!form1_affinity)
189 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
190 
191 	for (i = 0; i < distance_ref_points_depth; i++) {
192 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
193 			break;
194 
195 		/* Double the distance for each NUMA level */
196 		distance *= 2;
197 	}
198 
199 	return distance;
200 }
201 EXPORT_SYMBOL(__node_distance);
202 
203 static void initialize_distance_lookup_table(int nid,
204 		const __be32 *associativity)
205 {
206 	int i;
207 
208 	if (!form1_affinity)
209 		return;
210 
211 	for (i = 0; i < distance_ref_points_depth; i++) {
212 		const __be32 *entry;
213 
214 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
215 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
216 	}
217 }
218 
219 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
220  * info is found.
221  */
222 static int associativity_to_nid(const __be32 *associativity)
223 {
224 	int nid = -1;
225 
226 	if (min_common_depth == -1)
227 		goto out;
228 
229 	if (of_read_number(associativity, 1) >= min_common_depth)
230 		nid = of_read_number(&associativity[min_common_depth], 1);
231 
232 	/* POWER4 LPAR uses 0xffff as invalid node */
233 	if (nid == 0xffff || nid >= MAX_NUMNODES)
234 		nid = -1;
235 
236 	if (nid > 0 &&
237 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
238 		/*
239 		 * Skip the length field and send start of associativity array
240 		 */
241 		initialize_distance_lookup_table(nid, associativity + 1);
242 	}
243 
244 out:
245 	return nid;
246 }
247 
248 /* Returns the nid associated with the given device tree node,
249  * or -1 if not found.
250  */
251 static int of_node_to_nid_single(struct device_node *device)
252 {
253 	int nid = -1;
254 	const __be32 *tmp;
255 
256 	tmp = of_get_associativity(device);
257 	if (tmp)
258 		nid = associativity_to_nid(tmp);
259 	return nid;
260 }
261 
262 /* Walk the device tree upwards, looking for an associativity id */
263 int of_node_to_nid(struct device_node *device)
264 {
265 	int nid = -1;
266 
267 	of_node_get(device);
268 	while (device) {
269 		nid = of_node_to_nid_single(device);
270 		if (nid != -1)
271 			break;
272 
273 		device = of_get_next_parent(device);
274 	}
275 	of_node_put(device);
276 
277 	return nid;
278 }
279 EXPORT_SYMBOL(of_node_to_nid);
280 
281 static int __init find_min_common_depth(void)
282 {
283 	int depth;
284 	struct device_node *root;
285 
286 	if (firmware_has_feature(FW_FEATURE_OPAL))
287 		root = of_find_node_by_path("/ibm,opal");
288 	else
289 		root = of_find_node_by_path("/rtas");
290 	if (!root)
291 		root = of_find_node_by_path("/");
292 
293 	/*
294 	 * This property is a set of 32-bit integers, each representing
295 	 * an index into the ibm,associativity nodes.
296 	 *
297 	 * With form 0 affinity the first integer is for an SMP configuration
298 	 * (should be all 0's) and the second is for a normal NUMA
299 	 * configuration. We have only one level of NUMA.
300 	 *
301 	 * With form 1 affinity the first integer is the most significant
302 	 * NUMA boundary and the following are progressively less significant
303 	 * boundaries. There can be more than one level of NUMA.
304 	 */
305 	distance_ref_points = of_get_property(root,
306 					"ibm,associativity-reference-points",
307 					&distance_ref_points_depth);
308 
309 	if (!distance_ref_points) {
310 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
311 		goto err;
312 	}
313 
314 	distance_ref_points_depth /= sizeof(int);
315 
316 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
317 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
318 		dbg("Using form 1 affinity\n");
319 		form1_affinity = 1;
320 	}
321 
322 	if (form1_affinity) {
323 		depth = of_read_number(distance_ref_points, 1);
324 	} else {
325 		if (distance_ref_points_depth < 2) {
326 			printk(KERN_WARNING "NUMA: "
327 				"short ibm,associativity-reference-points\n");
328 			goto err;
329 		}
330 
331 		depth = of_read_number(&distance_ref_points[1], 1);
332 	}
333 
334 	/*
335 	 * Warn and cap if the hardware supports more than
336 	 * MAX_DISTANCE_REF_POINTS domains.
337 	 */
338 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
339 		printk(KERN_WARNING "NUMA: distance array capped at "
340 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
341 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
342 	}
343 
344 	of_node_put(root);
345 	return depth;
346 
347 err:
348 	of_node_put(root);
349 	return -1;
350 }
351 
352 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
353 {
354 	struct device_node *memory = NULL;
355 
356 	memory = of_find_node_by_type(memory, "memory");
357 	if (!memory)
358 		panic("numa.c: No memory nodes found!");
359 
360 	*n_addr_cells = of_n_addr_cells(memory);
361 	*n_size_cells = of_n_size_cells(memory);
362 	of_node_put(memory);
363 }
364 
365 static unsigned long read_n_cells(int n, const __be32 **buf)
366 {
367 	unsigned long result = 0;
368 
369 	while (n--) {
370 		result = (result << 32) | of_read_number(*buf, 1);
371 		(*buf)++;
372 	}
373 	return result;
374 }
375 
376 struct assoc_arrays {
377 	u32	n_arrays;
378 	u32	array_sz;
379 	const __be32 *arrays;
380 };
381 
382 /*
383  * Retrieve and validate the list of associativity arrays for drconf
384  * memory from the ibm,associativity-lookup-arrays property of the
385  * device tree..
386  *
387  * The layout of the ibm,associativity-lookup-arrays property is a number N
388  * indicating the number of associativity arrays, followed by a number M
389  * indicating the size of each associativity array, followed by a list
390  * of N associativity arrays.
391  */
392 static int of_get_assoc_arrays(struct assoc_arrays *aa)
393 {
394 	struct device_node *memory;
395 	const __be32 *prop;
396 	u32 len;
397 
398 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
399 	if (!memory)
400 		return -1;
401 
402 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
403 	if (!prop || len < 2 * sizeof(unsigned int)) {
404 		of_node_put(memory);
405 		return -1;
406 	}
407 
408 	aa->n_arrays = of_read_number(prop++, 1);
409 	aa->array_sz = of_read_number(prop++, 1);
410 
411 	of_node_put(memory);
412 
413 	/* Now that we know the number of arrays and size of each array,
414 	 * revalidate the size of the property read in.
415 	 */
416 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
417 		return -1;
418 
419 	aa->arrays = prop;
420 	return 0;
421 }
422 
423 /*
424  * This is like of_node_to_nid_single() for memory represented in the
425  * ibm,dynamic-reconfiguration-memory node.
426  */
427 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
428 {
429 	struct assoc_arrays aa = { .arrays = NULL };
430 	int default_nid = 0;
431 	int nid = default_nid;
432 	int rc, index;
433 
434 	rc = of_get_assoc_arrays(&aa);
435 	if (rc)
436 		return default_nid;
437 
438 	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
439 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
440 	    lmb->aa_index < aa.n_arrays) {
441 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
442 		nid = of_read_number(&aa.arrays[index], 1);
443 
444 		if (nid == 0xffff || nid >= MAX_NUMNODES)
445 			nid = default_nid;
446 
447 		if (nid > 0) {
448 			index = lmb->aa_index * aa.array_sz;
449 			initialize_distance_lookup_table(nid,
450 							&aa.arrays[index]);
451 		}
452 	}
453 
454 	return nid;
455 }
456 
457 /*
458  * Figure out to which domain a cpu belongs and stick it there.
459  * Return the id of the domain used.
460  */
461 static int numa_setup_cpu(unsigned long lcpu)
462 {
463 	int nid = -1;
464 	struct device_node *cpu;
465 
466 	/*
467 	 * If a valid cpu-to-node mapping is already available, use it
468 	 * directly instead of querying the firmware, since it represents
469 	 * the most recent mapping notified to us by the platform (eg: VPHN).
470 	 */
471 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
472 		map_cpu_to_node(lcpu, nid);
473 		return nid;
474 	}
475 
476 	cpu = of_get_cpu_node(lcpu, NULL);
477 
478 	if (!cpu) {
479 		WARN_ON(1);
480 		if (cpu_present(lcpu))
481 			goto out_present;
482 		else
483 			goto out;
484 	}
485 
486 	nid = of_node_to_nid_single(cpu);
487 
488 out_present:
489 	if (nid < 0 || !node_possible(nid))
490 		nid = first_online_node;
491 
492 	map_cpu_to_node(lcpu, nid);
493 	of_node_put(cpu);
494 out:
495 	return nid;
496 }
497 
498 static void verify_cpu_node_mapping(int cpu, int node)
499 {
500 	int base, sibling, i;
501 
502 	/* Verify that all the threads in the core belong to the same node */
503 	base = cpu_first_thread_sibling(cpu);
504 
505 	for (i = 0; i < threads_per_core; i++) {
506 		sibling = base + i;
507 
508 		if (sibling == cpu || cpu_is_offline(sibling))
509 			continue;
510 
511 		if (cpu_to_node(sibling) != node) {
512 			WARN(1, "CPU thread siblings %d and %d don't belong"
513 				" to the same node!\n", cpu, sibling);
514 			break;
515 		}
516 	}
517 }
518 
519 /* Must run before sched domains notifier. */
520 static int ppc_numa_cpu_prepare(unsigned int cpu)
521 {
522 	int nid;
523 
524 	nid = numa_setup_cpu(cpu);
525 	verify_cpu_node_mapping(cpu, nid);
526 	return 0;
527 }
528 
529 static int ppc_numa_cpu_dead(unsigned int cpu)
530 {
531 #ifdef CONFIG_HOTPLUG_CPU
532 	unmap_cpu_from_node(cpu);
533 #endif
534 	return 0;
535 }
536 
537 /*
538  * Check and possibly modify a memory region to enforce the memory limit.
539  *
540  * Returns the size the region should have to enforce the memory limit.
541  * This will either be the original value of size, a truncated value,
542  * or zero. If the returned value of size is 0 the region should be
543  * discarded as it lies wholly above the memory limit.
544  */
545 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
546 						      unsigned long size)
547 {
548 	/*
549 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
550 	 * we've already adjusted it for the limit and it takes care of
551 	 * having memory holes below the limit.  Also, in the case of
552 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
553 	 */
554 
555 	if (start + size <= memblock_end_of_DRAM())
556 		return size;
557 
558 	if (start >= memblock_end_of_DRAM())
559 		return 0;
560 
561 	return memblock_end_of_DRAM() - start;
562 }
563 
564 /*
565  * Reads the counter for a given entry in
566  * linux,drconf-usable-memory property
567  */
568 static inline int __init read_usm_ranges(const __be32 **usm)
569 {
570 	/*
571 	 * For each lmb in ibm,dynamic-memory a corresponding
572 	 * entry in linux,drconf-usable-memory property contains
573 	 * a counter followed by that many (base, size) duple.
574 	 * read the counter from linux,drconf-usable-memory
575 	 */
576 	return read_n_cells(n_mem_size_cells, usm);
577 }
578 
579 /*
580  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
581  * node.  This assumes n_mem_{addr,size}_cells have been set.
582  */
583 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
584 					const __be32 **usm)
585 {
586 	unsigned int ranges, is_kexec_kdump = 0;
587 	unsigned long base, size, sz;
588 	int nid;
589 
590 	/*
591 	 * Skip this block if the reserved bit is set in flags (0x80)
592 	 * or if the block is not assigned to this partition (0x8)
593 	 */
594 	if ((lmb->flags & DRCONF_MEM_RESERVED)
595 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
596 		return;
597 
598 	if (*usm)
599 		is_kexec_kdump = 1;
600 
601 	base = lmb->base_addr;
602 	size = drmem_lmb_size();
603 	ranges = 1;
604 
605 	if (is_kexec_kdump) {
606 		ranges = read_usm_ranges(usm);
607 		if (!ranges) /* there are no (base, size) duple */
608 			return;
609 	}
610 
611 	do {
612 		if (is_kexec_kdump) {
613 			base = read_n_cells(n_mem_addr_cells, usm);
614 			size = read_n_cells(n_mem_size_cells, usm);
615 		}
616 
617 		nid = of_drconf_to_nid_single(lmb);
618 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
619 					  &nid);
620 		node_set_online(nid);
621 		sz = numa_enforce_memory_limit(base, size);
622 		if (sz)
623 			memblock_set_node(base, sz, &memblock.memory, nid);
624 	} while (--ranges);
625 }
626 
627 static int __init parse_numa_properties(void)
628 {
629 	struct device_node *memory;
630 	int default_nid = 0;
631 	unsigned long i;
632 
633 	if (numa_enabled == 0) {
634 		printk(KERN_WARNING "NUMA disabled by user\n");
635 		return -1;
636 	}
637 
638 	min_common_depth = find_min_common_depth();
639 
640 	if (min_common_depth < 0)
641 		return min_common_depth;
642 
643 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
644 
645 	/*
646 	 * Even though we connect cpus to numa domains later in SMP
647 	 * init, we need to know the node ids now. This is because
648 	 * each node to be onlined must have NODE_DATA etc backing it.
649 	 */
650 	for_each_present_cpu(i) {
651 		struct device_node *cpu;
652 		int nid;
653 
654 		cpu = of_get_cpu_node(i, NULL);
655 		BUG_ON(!cpu);
656 		nid = of_node_to_nid_single(cpu);
657 		of_node_put(cpu);
658 
659 		/*
660 		 * Don't fall back to default_nid yet -- we will plug
661 		 * cpus into nodes once the memory scan has discovered
662 		 * the topology.
663 		 */
664 		if (nid < 0)
665 			continue;
666 		node_set_online(nid);
667 	}
668 
669 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
670 
671 	for_each_node_by_type(memory, "memory") {
672 		unsigned long start;
673 		unsigned long size;
674 		int nid;
675 		int ranges;
676 		const __be32 *memcell_buf;
677 		unsigned int len;
678 
679 		memcell_buf = of_get_property(memory,
680 			"linux,usable-memory", &len);
681 		if (!memcell_buf || len <= 0)
682 			memcell_buf = of_get_property(memory, "reg", &len);
683 		if (!memcell_buf || len <= 0)
684 			continue;
685 
686 		/* ranges in cell */
687 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
688 new_range:
689 		/* these are order-sensitive, and modify the buffer pointer */
690 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
691 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
692 
693 		/*
694 		 * Assumption: either all memory nodes or none will
695 		 * have associativity properties.  If none, then
696 		 * everything goes to default_nid.
697 		 */
698 		nid = of_node_to_nid_single(memory);
699 		if (nid < 0)
700 			nid = default_nid;
701 
702 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
703 		node_set_online(nid);
704 
705 		size = numa_enforce_memory_limit(start, size);
706 		if (size)
707 			memblock_set_node(start, size, &memblock.memory, nid);
708 
709 		if (--ranges)
710 			goto new_range;
711 	}
712 
713 	/*
714 	 * Now do the same thing for each MEMBLOCK listed in the
715 	 * ibm,dynamic-memory property in the
716 	 * ibm,dynamic-reconfiguration-memory node.
717 	 */
718 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
719 	if (memory) {
720 		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
721 		of_node_put(memory);
722 	}
723 
724 	return 0;
725 }
726 
727 static void __init setup_nonnuma(void)
728 {
729 	unsigned long top_of_ram = memblock_end_of_DRAM();
730 	unsigned long total_ram = memblock_phys_mem_size();
731 	unsigned long start_pfn, end_pfn;
732 	unsigned int nid = 0;
733 	struct memblock_region *reg;
734 
735 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
736 	       top_of_ram, total_ram);
737 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
738 	       (top_of_ram - total_ram) >> 20);
739 
740 	for_each_memblock(memory, reg) {
741 		start_pfn = memblock_region_memory_base_pfn(reg);
742 		end_pfn = memblock_region_memory_end_pfn(reg);
743 
744 		fake_numa_create_new_node(end_pfn, &nid);
745 		memblock_set_node(PFN_PHYS(start_pfn),
746 				  PFN_PHYS(end_pfn - start_pfn),
747 				  &memblock.memory, nid);
748 		node_set_online(nid);
749 	}
750 }
751 
752 void __init dump_numa_cpu_topology(void)
753 {
754 	unsigned int node;
755 	unsigned int cpu, count;
756 
757 	if (min_common_depth == -1 || !numa_enabled)
758 		return;
759 
760 	for_each_online_node(node) {
761 		pr_info("Node %d CPUs:", node);
762 
763 		count = 0;
764 		/*
765 		 * If we used a CPU iterator here we would miss printing
766 		 * the holes in the cpumap.
767 		 */
768 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
769 			if (cpumask_test_cpu(cpu,
770 					node_to_cpumask_map[node])) {
771 				if (count == 0)
772 					pr_cont(" %u", cpu);
773 				++count;
774 			} else {
775 				if (count > 1)
776 					pr_cont("-%u", cpu - 1);
777 				count = 0;
778 			}
779 		}
780 
781 		if (count > 1)
782 			pr_cont("-%u", nr_cpu_ids - 1);
783 		pr_cont("\n");
784 	}
785 }
786 
787 /* Initialize NODE_DATA for a node on the local memory */
788 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
789 {
790 	u64 spanned_pages = end_pfn - start_pfn;
791 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
792 	u64 nd_pa;
793 	void *nd;
794 	int tnid;
795 
796 	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
797 	nd = __va(nd_pa);
798 
799 	/* report and initialize */
800 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
801 		nd_pa, nd_pa + nd_size - 1);
802 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
803 	if (tnid != nid)
804 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
805 
806 	node_data[nid] = nd;
807 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
808 	NODE_DATA(nid)->node_id = nid;
809 	NODE_DATA(nid)->node_start_pfn = start_pfn;
810 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
811 }
812 
813 static void __init find_possible_nodes(void)
814 {
815 	struct device_node *rtas;
816 	u32 numnodes, i;
817 
818 	if (min_common_depth <= 0)
819 		return;
820 
821 	rtas = of_find_node_by_path("/rtas");
822 	if (!rtas)
823 		return;
824 
825 	if (of_property_read_u32_index(rtas,
826 				"ibm,max-associativity-domains",
827 				min_common_depth, &numnodes))
828 		goto out;
829 
830 	for (i = 0; i < numnodes; i++) {
831 		if (!node_possible(i))
832 			node_set(i, node_possible_map);
833 	}
834 
835 out:
836 	of_node_put(rtas);
837 }
838 
839 void __init initmem_init(void)
840 {
841 	int nid, cpu;
842 
843 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
844 	max_pfn = max_low_pfn;
845 
846 	if (parse_numa_properties())
847 		setup_nonnuma();
848 
849 	memblock_dump_all();
850 
851 	/*
852 	 * Modify the set of possible NUMA nodes to reflect information
853 	 * available about the set of online nodes, and the set of nodes
854 	 * that we expect to make use of for this platform's affinity
855 	 * calculations.
856 	 */
857 	nodes_and(node_possible_map, node_possible_map, node_online_map);
858 
859 	find_possible_nodes();
860 
861 	for_each_online_node(nid) {
862 		unsigned long start_pfn, end_pfn;
863 
864 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
865 		setup_node_data(nid, start_pfn, end_pfn);
866 		sparse_memory_present_with_active_regions(nid);
867 	}
868 
869 	sparse_init();
870 
871 	setup_node_to_cpumask_map();
872 
873 	reset_numa_cpu_lookup_table();
874 
875 	/*
876 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
877 	 * even before we online them, so that we can use cpu_to_{node,mem}
878 	 * early in boot, cf. smp_prepare_cpus().
879 	 * _nocalls() + manual invocation is used because cpuhp is not yet
880 	 * initialized for the boot CPU.
881 	 */
882 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
883 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
884 	for_each_present_cpu(cpu)
885 		numa_setup_cpu(cpu);
886 }
887 
888 static int __init early_numa(char *p)
889 {
890 	if (!p)
891 		return 0;
892 
893 	if (strstr(p, "off"))
894 		numa_enabled = 0;
895 
896 	if (strstr(p, "debug"))
897 		numa_debug = 1;
898 
899 	p = strstr(p, "fake=");
900 	if (p)
901 		cmdline = p + strlen("fake=");
902 
903 	return 0;
904 }
905 early_param("numa", early_numa);
906 
907 static bool topology_updates_enabled = true;
908 
909 static int __init early_topology_updates(char *p)
910 {
911 	if (!p)
912 		return 0;
913 
914 	if (!strcmp(p, "off")) {
915 		pr_info("Disabling topology updates\n");
916 		topology_updates_enabled = false;
917 	}
918 
919 	return 0;
920 }
921 early_param("topology_updates", early_topology_updates);
922 
923 #ifdef CONFIG_MEMORY_HOTPLUG
924 /*
925  * Find the node associated with a hot added memory section for
926  * memory represented in the device tree by the property
927  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
928  */
929 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
930 {
931 	struct drmem_lmb *lmb;
932 	unsigned long lmb_size;
933 	int nid = -1;
934 
935 	lmb_size = drmem_lmb_size();
936 
937 	for_each_drmem_lmb(lmb) {
938 		/* skip this block if it is reserved or not assigned to
939 		 * this partition */
940 		if ((lmb->flags & DRCONF_MEM_RESERVED)
941 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
942 			continue;
943 
944 		if ((scn_addr < lmb->base_addr)
945 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
946 			continue;
947 
948 		nid = of_drconf_to_nid_single(lmb);
949 		break;
950 	}
951 
952 	return nid;
953 }
954 
955 /*
956  * Find the node associated with a hot added memory section for memory
957  * represented in the device tree as a node (i.e. memory@XXXX) for
958  * each memblock.
959  */
960 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
961 {
962 	struct device_node *memory;
963 	int nid = -1;
964 
965 	for_each_node_by_type(memory, "memory") {
966 		unsigned long start, size;
967 		int ranges;
968 		const __be32 *memcell_buf;
969 		unsigned int len;
970 
971 		memcell_buf = of_get_property(memory, "reg", &len);
972 		if (!memcell_buf || len <= 0)
973 			continue;
974 
975 		/* ranges in cell */
976 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
977 
978 		while (ranges--) {
979 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
980 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
981 
982 			if ((scn_addr < start) || (scn_addr >= (start + size)))
983 				continue;
984 
985 			nid = of_node_to_nid_single(memory);
986 			break;
987 		}
988 
989 		if (nid >= 0)
990 			break;
991 	}
992 
993 	of_node_put(memory);
994 
995 	return nid;
996 }
997 
998 /*
999  * Find the node associated with a hot added memory section.  Section
1000  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1001  * sections are fully contained within a single MEMBLOCK.
1002  */
1003 int hot_add_scn_to_nid(unsigned long scn_addr)
1004 {
1005 	struct device_node *memory = NULL;
1006 	int nid;
1007 
1008 	if (!numa_enabled || (min_common_depth < 0))
1009 		return first_online_node;
1010 
1011 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1012 	if (memory) {
1013 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1014 		of_node_put(memory);
1015 	} else {
1016 		nid = hot_add_node_scn_to_nid(scn_addr);
1017 	}
1018 
1019 	if (nid < 0 || !node_possible(nid))
1020 		nid = first_online_node;
1021 
1022 	return nid;
1023 }
1024 
1025 static u64 hot_add_drconf_memory_max(void)
1026 {
1027 	struct device_node *memory = NULL;
1028 	struct device_node *dn = NULL;
1029 	const __be64 *lrdr = NULL;
1030 
1031 	dn = of_find_node_by_path("/rtas");
1032 	if (dn) {
1033 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1034 		of_node_put(dn);
1035 		if (lrdr)
1036 			return be64_to_cpup(lrdr);
1037 	}
1038 
1039 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1040 	if (memory) {
1041 		of_node_put(memory);
1042 		return drmem_lmb_memory_max();
1043 	}
1044 	return 0;
1045 }
1046 
1047 /*
1048  * memory_hotplug_max - return max address of memory that may be added
1049  *
1050  * This is currently only used on systems that support drconfig memory
1051  * hotplug.
1052  */
1053 u64 memory_hotplug_max(void)
1054 {
1055         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1056 }
1057 #endif /* CONFIG_MEMORY_HOTPLUG */
1058 
1059 /* Virtual Processor Home Node (VPHN) support */
1060 #ifdef CONFIG_PPC_SPLPAR
1061 
1062 #include "vphn.h"
1063 
1064 struct topology_update_data {
1065 	struct topology_update_data *next;
1066 	unsigned int cpu;
1067 	int old_nid;
1068 	int new_nid;
1069 };
1070 
1071 #define TOPOLOGY_DEF_TIMER_SECS	60
1072 
1073 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1074 static cpumask_t cpu_associativity_changes_mask;
1075 static int vphn_enabled;
1076 static int prrn_enabled;
1077 static void reset_topology_timer(void);
1078 static int topology_timer_secs = 1;
1079 static int topology_inited;
1080 static int topology_update_needed;
1081 
1082 /*
1083  * Change polling interval for associativity changes.
1084  */
1085 int timed_topology_update(int nsecs)
1086 {
1087 	if (vphn_enabled) {
1088 		if (nsecs > 0)
1089 			topology_timer_secs = nsecs;
1090 		else
1091 			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1092 
1093 		reset_topology_timer();
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Store the current values of the associativity change counters in the
1101  * hypervisor.
1102  */
1103 static void setup_cpu_associativity_change_counters(void)
1104 {
1105 	int cpu;
1106 
1107 	/* The VPHN feature supports a maximum of 8 reference points */
1108 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1109 
1110 	for_each_possible_cpu(cpu) {
1111 		int i;
1112 		u8 *counts = vphn_cpu_change_counts[cpu];
1113 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1114 
1115 		for (i = 0; i < distance_ref_points_depth; i++)
1116 			counts[i] = hypervisor_counts[i];
1117 	}
1118 }
1119 
1120 /*
1121  * The hypervisor maintains a set of 8 associativity change counters in
1122  * the VPA of each cpu that correspond to the associativity levels in the
1123  * ibm,associativity-reference-points property. When an associativity
1124  * level changes, the corresponding counter is incremented.
1125  *
1126  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1127  * node associativity levels have changed.
1128  *
1129  * Returns the number of cpus with unhandled associativity changes.
1130  */
1131 static int update_cpu_associativity_changes_mask(void)
1132 {
1133 	int cpu;
1134 	cpumask_t *changes = &cpu_associativity_changes_mask;
1135 
1136 	for_each_possible_cpu(cpu) {
1137 		int i, changed = 0;
1138 		u8 *counts = vphn_cpu_change_counts[cpu];
1139 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1140 
1141 		for (i = 0; i < distance_ref_points_depth; i++) {
1142 			if (hypervisor_counts[i] != counts[i]) {
1143 				counts[i] = hypervisor_counts[i];
1144 				changed = 1;
1145 			}
1146 		}
1147 		if (changed) {
1148 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1149 			cpu = cpu_last_thread_sibling(cpu);
1150 		}
1151 	}
1152 
1153 	return cpumask_weight(changes);
1154 }
1155 
1156 /*
1157  * Retrieve the new associativity information for a virtual processor's
1158  * home node.
1159  */
1160 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1161 {
1162 	long rc;
1163 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1164 	u64 flags = 1;
1165 	int hwcpu = get_hard_smp_processor_id(cpu);
1166 
1167 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1168 	vphn_unpack_associativity(retbuf, associativity);
1169 
1170 	return rc;
1171 }
1172 
1173 static long vphn_get_associativity(unsigned long cpu,
1174 					__be32 *associativity)
1175 {
1176 	long rc;
1177 
1178 	rc = hcall_vphn(cpu, associativity);
1179 
1180 	switch (rc) {
1181 	case H_FUNCTION:
1182 		printk(KERN_INFO
1183 			"VPHN is not supported. Disabling polling...\n");
1184 		stop_topology_update();
1185 		break;
1186 	case H_HARDWARE:
1187 		printk(KERN_ERR
1188 			"hcall_vphn() experienced a hardware fault "
1189 			"preventing VPHN. Disabling polling...\n");
1190 		stop_topology_update();
1191 		break;
1192 	case H_SUCCESS:
1193 		dbg("VPHN hcall succeeded. Reset polling...\n");
1194 		timed_topology_update(0);
1195 		break;
1196 	}
1197 
1198 	return rc;
1199 }
1200 
1201 int find_and_online_cpu_nid(int cpu)
1202 {
1203 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1204 	int new_nid;
1205 
1206 	/* Use associativity from first thread for all siblings */
1207 	vphn_get_associativity(cpu, associativity);
1208 	new_nid = associativity_to_nid(associativity);
1209 	if (new_nid < 0 || !node_possible(new_nid))
1210 		new_nid = first_online_node;
1211 
1212 	if (NODE_DATA(new_nid) == NULL) {
1213 #ifdef CONFIG_MEMORY_HOTPLUG
1214 		/*
1215 		 * Need to ensure that NODE_DATA is initialized for a node from
1216 		 * available memory (see memblock_alloc_try_nid). If unable to
1217 		 * init the node, then default to nearest node that has memory
1218 		 * installed.
1219 		 */
1220 		if (try_online_node(new_nid))
1221 			new_nid = first_online_node;
1222 #else
1223 		/*
1224 		 * Default to using the nearest node that has memory installed.
1225 		 * Otherwise, it would be necessary to patch the kernel MM code
1226 		 * to deal with more memoryless-node error conditions.
1227 		 */
1228 		new_nid = first_online_node;
1229 #endif
1230 	}
1231 
1232 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1233 		cpu, new_nid);
1234 	return new_nid;
1235 }
1236 
1237 /*
1238  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1239  * characteristics change. This function doesn't perform any locking and is
1240  * only safe to call from stop_machine().
1241  */
1242 static int update_cpu_topology(void *data)
1243 {
1244 	struct topology_update_data *update;
1245 	unsigned long cpu;
1246 
1247 	if (!data)
1248 		return -EINVAL;
1249 
1250 	cpu = smp_processor_id();
1251 
1252 	for (update = data; update; update = update->next) {
1253 		int new_nid = update->new_nid;
1254 		if (cpu != update->cpu)
1255 			continue;
1256 
1257 		unmap_cpu_from_node(cpu);
1258 		map_cpu_to_node(cpu, new_nid);
1259 		set_cpu_numa_node(cpu, new_nid);
1260 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1261 		vdso_getcpu_init();
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static int update_lookup_table(void *data)
1268 {
1269 	struct topology_update_data *update;
1270 
1271 	if (!data)
1272 		return -EINVAL;
1273 
1274 	/*
1275 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1276 	 * for all threads in the core, including offline CPUs, to ensure that
1277 	 * future hotplug operations respect the cpu-to-node associativity
1278 	 * properly.
1279 	 */
1280 	for (update = data; update; update = update->next) {
1281 		int nid, base, j;
1282 
1283 		nid = update->new_nid;
1284 		base = cpu_first_thread_sibling(update->cpu);
1285 
1286 		for (j = 0; j < threads_per_core; j++) {
1287 			update_numa_cpu_lookup_table(base + j, nid);
1288 		}
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Update the node maps and sysfs entries for each cpu whose home node
1296  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1297  *
1298  * cpus_locked says whether we already hold cpu_hotplug_lock.
1299  */
1300 int numa_update_cpu_topology(bool cpus_locked)
1301 {
1302 	unsigned int cpu, sibling, changed = 0;
1303 	struct topology_update_data *updates, *ud;
1304 	cpumask_t updated_cpus;
1305 	struct device *dev;
1306 	int weight, new_nid, i = 0;
1307 
1308 	if (!prrn_enabled && !vphn_enabled) {
1309 		if (!topology_inited)
1310 			topology_update_needed = 1;
1311 		return 0;
1312 	}
1313 
1314 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1315 	if (!weight)
1316 		return 0;
1317 
1318 	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1319 	if (!updates)
1320 		return 0;
1321 
1322 	cpumask_clear(&updated_cpus);
1323 
1324 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1325 		/*
1326 		 * If siblings aren't flagged for changes, updates list
1327 		 * will be too short. Skip on this update and set for next
1328 		 * update.
1329 		 */
1330 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1331 					&cpu_associativity_changes_mask)) {
1332 			pr_info("Sibling bits not set for associativity "
1333 					"change, cpu%d\n", cpu);
1334 			cpumask_or(&cpu_associativity_changes_mask,
1335 					&cpu_associativity_changes_mask,
1336 					cpu_sibling_mask(cpu));
1337 			cpu = cpu_last_thread_sibling(cpu);
1338 			continue;
1339 		}
1340 
1341 		new_nid = find_and_online_cpu_nid(cpu);
1342 
1343 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1344 			cpumask_andnot(&cpu_associativity_changes_mask,
1345 					&cpu_associativity_changes_mask,
1346 					cpu_sibling_mask(cpu));
1347 			dbg("Assoc chg gives same node %d for cpu%d\n",
1348 					new_nid, cpu);
1349 			cpu = cpu_last_thread_sibling(cpu);
1350 			continue;
1351 		}
1352 
1353 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1354 			ud = &updates[i++];
1355 			ud->next = &updates[i];
1356 			ud->cpu = sibling;
1357 			ud->new_nid = new_nid;
1358 			ud->old_nid = numa_cpu_lookup_table[sibling];
1359 			cpumask_set_cpu(sibling, &updated_cpus);
1360 		}
1361 		cpu = cpu_last_thread_sibling(cpu);
1362 	}
1363 
1364 	/*
1365 	 * Prevent processing of 'updates' from overflowing array
1366 	 * where last entry filled in a 'next' pointer.
1367 	 */
1368 	if (i)
1369 		updates[i-1].next = NULL;
1370 
1371 	pr_debug("Topology update for the following CPUs:\n");
1372 	if (cpumask_weight(&updated_cpus)) {
1373 		for (ud = &updates[0]; ud; ud = ud->next) {
1374 			pr_debug("cpu %d moving from node %d "
1375 					  "to %d\n", ud->cpu,
1376 					  ud->old_nid, ud->new_nid);
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * In cases where we have nothing to update (because the updates list
1382 	 * is too short or because the new topology is same as the old one),
1383 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1384 	 * necessary (and not just a fast-path optimization) since stop-machine
1385 	 * can end up electing a random CPU to run update_cpu_topology(), and
1386 	 * thus trick us into setting up incorrect cpu-node mappings (since
1387 	 * 'updates' is kzalloc()'ed).
1388 	 *
1389 	 * And for the similar reason, we will skip all the following updating.
1390 	 */
1391 	if (!cpumask_weight(&updated_cpus))
1392 		goto out;
1393 
1394 	if (cpus_locked)
1395 		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1396 					&updated_cpus);
1397 	else
1398 		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1399 
1400 	/*
1401 	 * Update the numa-cpu lookup table with the new mappings, even for
1402 	 * offline CPUs. It is best to perform this update from the stop-
1403 	 * machine context.
1404 	 */
1405 	if (cpus_locked)
1406 		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1407 					cpumask_of(raw_smp_processor_id()));
1408 	else
1409 		stop_machine(update_lookup_table, &updates[0],
1410 			     cpumask_of(raw_smp_processor_id()));
1411 
1412 	for (ud = &updates[0]; ud; ud = ud->next) {
1413 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1414 		register_cpu_under_node(ud->cpu, ud->new_nid);
1415 
1416 		dev = get_cpu_device(ud->cpu);
1417 		if (dev)
1418 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1419 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1420 		changed = 1;
1421 	}
1422 
1423 out:
1424 	kfree(updates);
1425 	topology_update_needed = 0;
1426 	return changed;
1427 }
1428 
1429 int arch_update_cpu_topology(void)
1430 {
1431 	return numa_update_cpu_topology(true);
1432 }
1433 
1434 static void topology_work_fn(struct work_struct *work)
1435 {
1436 	rebuild_sched_domains();
1437 }
1438 static DECLARE_WORK(topology_work, topology_work_fn);
1439 
1440 static void topology_schedule_update(void)
1441 {
1442 	schedule_work(&topology_work);
1443 }
1444 
1445 static void topology_timer_fn(struct timer_list *unused)
1446 {
1447 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1448 		topology_schedule_update();
1449 	else if (vphn_enabled) {
1450 		if (update_cpu_associativity_changes_mask() > 0)
1451 			topology_schedule_update();
1452 		reset_topology_timer();
1453 	}
1454 }
1455 static struct timer_list topology_timer;
1456 
1457 static void reset_topology_timer(void)
1458 {
1459 	mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1460 }
1461 
1462 #ifdef CONFIG_SMP
1463 
1464 static void stage_topology_update(int core_id)
1465 {
1466 	cpumask_or(&cpu_associativity_changes_mask,
1467 		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1468 	reset_topology_timer();
1469 }
1470 
1471 static int dt_update_callback(struct notifier_block *nb,
1472 				unsigned long action, void *data)
1473 {
1474 	struct of_reconfig_data *update = data;
1475 	int rc = NOTIFY_DONE;
1476 
1477 	switch (action) {
1478 	case OF_RECONFIG_UPDATE_PROPERTY:
1479 		if (!of_prop_cmp(update->dn->type, "cpu") &&
1480 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1481 			u32 core_id;
1482 			of_property_read_u32(update->dn, "reg", &core_id);
1483 			stage_topology_update(core_id);
1484 			rc = NOTIFY_OK;
1485 		}
1486 		break;
1487 	}
1488 
1489 	return rc;
1490 }
1491 
1492 static struct notifier_block dt_update_nb = {
1493 	.notifier_call = dt_update_callback,
1494 };
1495 
1496 #endif
1497 
1498 /*
1499  * Start polling for associativity changes.
1500  */
1501 int start_topology_update(void)
1502 {
1503 	int rc = 0;
1504 
1505 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1506 		if (!prrn_enabled) {
1507 			prrn_enabled = 1;
1508 #ifdef CONFIG_SMP
1509 			rc = of_reconfig_notifier_register(&dt_update_nb);
1510 #endif
1511 		}
1512 	}
1513 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1514 		   lppaca_shared_proc(get_lppaca())) {
1515 		if (!vphn_enabled) {
1516 			vphn_enabled = 1;
1517 			setup_cpu_associativity_change_counters();
1518 			timer_setup(&topology_timer, topology_timer_fn,
1519 				    TIMER_DEFERRABLE);
1520 			reset_topology_timer();
1521 		}
1522 	}
1523 
1524 	return rc;
1525 }
1526 
1527 /*
1528  * Disable polling for VPHN associativity changes.
1529  */
1530 int stop_topology_update(void)
1531 {
1532 	int rc = 0;
1533 
1534 	if (prrn_enabled) {
1535 		prrn_enabled = 0;
1536 #ifdef CONFIG_SMP
1537 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1538 #endif
1539 	}
1540 	if (vphn_enabled) {
1541 		vphn_enabled = 0;
1542 		rc = del_timer_sync(&topology_timer);
1543 	}
1544 
1545 	return rc;
1546 }
1547 
1548 int prrn_is_enabled(void)
1549 {
1550 	return prrn_enabled;
1551 }
1552 
1553 static int topology_read(struct seq_file *file, void *v)
1554 {
1555 	if (vphn_enabled || prrn_enabled)
1556 		seq_puts(file, "on\n");
1557 	else
1558 		seq_puts(file, "off\n");
1559 
1560 	return 0;
1561 }
1562 
1563 static int topology_open(struct inode *inode, struct file *file)
1564 {
1565 	return single_open(file, topology_read, NULL);
1566 }
1567 
1568 static ssize_t topology_write(struct file *file, const char __user *buf,
1569 			      size_t count, loff_t *off)
1570 {
1571 	char kbuf[4]; /* "on" or "off" plus null. */
1572 	int read_len;
1573 
1574 	read_len = count < 3 ? count : 3;
1575 	if (copy_from_user(kbuf, buf, read_len))
1576 		return -EINVAL;
1577 
1578 	kbuf[read_len] = '\0';
1579 
1580 	if (!strncmp(kbuf, "on", 2))
1581 		start_topology_update();
1582 	else if (!strncmp(kbuf, "off", 3))
1583 		stop_topology_update();
1584 	else
1585 		return -EINVAL;
1586 
1587 	return count;
1588 }
1589 
1590 static const struct file_operations topology_ops = {
1591 	.read = seq_read,
1592 	.write = topology_write,
1593 	.open = topology_open,
1594 	.release = single_release
1595 };
1596 
1597 static int topology_update_init(void)
1598 {
1599 	/* Do not poll for changes if disabled at boot */
1600 	if (topology_updates_enabled)
1601 		start_topology_update();
1602 
1603 	if (vphn_enabled)
1604 		topology_schedule_update();
1605 
1606 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1607 		return -ENOMEM;
1608 
1609 	topology_inited = 1;
1610 	if (topology_update_needed)
1611 		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1612 					nr_cpumask_bits);
1613 
1614 	return 0;
1615 }
1616 device_initcall(topology_update_init);
1617 #endif /* CONFIG_PPC_SPLPAR */
1618