xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for_each_node(node)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84 
85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
132 static void reset_numa_cpu_lookup_table(void)
133 {
134 	unsigned int cpu;
135 
136 	for_each_possible_cpu(cpu)
137 		numa_cpu_lookup_table[cpu] = -1;
138 }
139 
140 static void map_cpu_to_node(int cpu, int node)
141 {
142 	update_numa_cpu_lookup_table(cpu, node);
143 
144 	dbg("adding cpu %d to node %d\n", cpu, node);
145 
146 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149 
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
151 static void unmap_cpu_from_node(unsigned long cpu)
152 {
153 	int node = numa_cpu_lookup_table[cpu];
154 
155 	dbg("removing cpu %lu from node %d\n", cpu, node);
156 
157 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 	} else {
160 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 		       cpu, node);
162 	}
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165 
166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 	int dist = 0;
169 
170 	int i, index;
171 
172 	for (i = 0; i < distance_ref_points_depth; i++) {
173 		index = be32_to_cpu(distance_ref_points[i]);
174 		if (cpu1_assoc[index] == cpu2_assoc[index])
175 			break;
176 		dist++;
177 	}
178 
179 	return dist;
180 }
181 
182 /* must hold reference to node during call */
183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 	return of_get_property(dev, "ibm,associativity", NULL);
186 }
187 
188 int __node_distance(int a, int b)
189 {
190 	int i;
191 	int distance = LOCAL_DISTANCE;
192 
193 	if (!form1_affinity)
194 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195 
196 	for (i = 0; i < distance_ref_points_depth; i++) {
197 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 			break;
199 
200 		/* Double the distance for each NUMA level */
201 		distance *= 2;
202 	}
203 
204 	return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207 
208 static void initialize_distance_lookup_table(int nid,
209 		const __be32 *associativity)
210 {
211 	int i;
212 
213 	if (!form1_affinity)
214 		return;
215 
216 	for (i = 0; i < distance_ref_points_depth; i++) {
217 		const __be32 *entry;
218 
219 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 	}
222 }
223 
224 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
225  * info is found.
226  */
227 static int associativity_to_nid(const __be32 *associativity)
228 {
229 	int nid = NUMA_NO_NODE;
230 
231 	if (!numa_enabled)
232 		goto out;
233 
234 	if (of_read_number(associativity, 1) >= min_common_depth)
235 		nid = of_read_number(&associativity[min_common_depth], 1);
236 
237 	/* POWER4 LPAR uses 0xffff as invalid node */
238 	if (nid == 0xffff || nid >= MAX_NUMNODES)
239 		nid = NUMA_NO_NODE;
240 
241 	if (nid > 0 &&
242 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
243 		/*
244 		 * Skip the length field and send start of associativity array
245 		 */
246 		initialize_distance_lookup_table(nid, associativity + 1);
247 	}
248 
249 out:
250 	return nid;
251 }
252 
253 /* Returns the nid associated with the given device tree node,
254  * or -1 if not found.
255  */
256 static int of_node_to_nid_single(struct device_node *device)
257 {
258 	int nid = NUMA_NO_NODE;
259 	const __be32 *tmp;
260 
261 	tmp = of_get_associativity(device);
262 	if (tmp)
263 		nid = associativity_to_nid(tmp);
264 	return nid;
265 }
266 
267 /* Walk the device tree upwards, looking for an associativity id */
268 int of_node_to_nid(struct device_node *device)
269 {
270 	int nid = NUMA_NO_NODE;
271 
272 	of_node_get(device);
273 	while (device) {
274 		nid = of_node_to_nid_single(device);
275 		if (nid != -1)
276 			break;
277 
278 		device = of_get_next_parent(device);
279 	}
280 	of_node_put(device);
281 
282 	return nid;
283 }
284 EXPORT_SYMBOL(of_node_to_nid);
285 
286 static int __init find_min_common_depth(void)
287 {
288 	int depth;
289 	struct device_node *root;
290 
291 	if (firmware_has_feature(FW_FEATURE_OPAL))
292 		root = of_find_node_by_path("/ibm,opal");
293 	else
294 		root = of_find_node_by_path("/rtas");
295 	if (!root)
296 		root = of_find_node_by_path("/");
297 
298 	/*
299 	 * This property is a set of 32-bit integers, each representing
300 	 * an index into the ibm,associativity nodes.
301 	 *
302 	 * With form 0 affinity the first integer is for an SMP configuration
303 	 * (should be all 0's) and the second is for a normal NUMA
304 	 * configuration. We have only one level of NUMA.
305 	 *
306 	 * With form 1 affinity the first integer is the most significant
307 	 * NUMA boundary and the following are progressively less significant
308 	 * boundaries. There can be more than one level of NUMA.
309 	 */
310 	distance_ref_points = of_get_property(root,
311 					"ibm,associativity-reference-points",
312 					&distance_ref_points_depth);
313 
314 	if (!distance_ref_points) {
315 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
316 		goto err;
317 	}
318 
319 	distance_ref_points_depth /= sizeof(int);
320 
321 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
322 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
323 		dbg("Using form 1 affinity\n");
324 		form1_affinity = 1;
325 	}
326 
327 	if (form1_affinity) {
328 		depth = of_read_number(distance_ref_points, 1);
329 	} else {
330 		if (distance_ref_points_depth < 2) {
331 			printk(KERN_WARNING "NUMA: "
332 				"short ibm,associativity-reference-points\n");
333 			goto err;
334 		}
335 
336 		depth = of_read_number(&distance_ref_points[1], 1);
337 	}
338 
339 	/*
340 	 * Warn and cap if the hardware supports more than
341 	 * MAX_DISTANCE_REF_POINTS domains.
342 	 */
343 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
344 		printk(KERN_WARNING "NUMA: distance array capped at "
345 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
346 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
347 	}
348 
349 	of_node_put(root);
350 	return depth;
351 
352 err:
353 	of_node_put(root);
354 	return -1;
355 }
356 
357 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
358 {
359 	struct device_node *memory = NULL;
360 
361 	memory = of_find_node_by_type(memory, "memory");
362 	if (!memory)
363 		panic("numa.c: No memory nodes found!");
364 
365 	*n_addr_cells = of_n_addr_cells(memory);
366 	*n_size_cells = of_n_size_cells(memory);
367 	of_node_put(memory);
368 }
369 
370 static unsigned long read_n_cells(int n, const __be32 **buf)
371 {
372 	unsigned long result = 0;
373 
374 	while (n--) {
375 		result = (result << 32) | of_read_number(*buf, 1);
376 		(*buf)++;
377 	}
378 	return result;
379 }
380 
381 struct assoc_arrays {
382 	u32	n_arrays;
383 	u32	array_sz;
384 	const __be32 *arrays;
385 };
386 
387 /*
388  * Retrieve and validate the list of associativity arrays for drconf
389  * memory from the ibm,associativity-lookup-arrays property of the
390  * device tree..
391  *
392  * The layout of the ibm,associativity-lookup-arrays property is a number N
393  * indicating the number of associativity arrays, followed by a number M
394  * indicating the size of each associativity array, followed by a list
395  * of N associativity arrays.
396  */
397 static int of_get_assoc_arrays(struct assoc_arrays *aa)
398 {
399 	struct device_node *memory;
400 	const __be32 *prop;
401 	u32 len;
402 
403 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
404 	if (!memory)
405 		return -1;
406 
407 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
408 	if (!prop || len < 2 * sizeof(unsigned int)) {
409 		of_node_put(memory);
410 		return -1;
411 	}
412 
413 	aa->n_arrays = of_read_number(prop++, 1);
414 	aa->array_sz = of_read_number(prop++, 1);
415 
416 	of_node_put(memory);
417 
418 	/* Now that we know the number of arrays and size of each array,
419 	 * revalidate the size of the property read in.
420 	 */
421 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
422 		return -1;
423 
424 	aa->arrays = prop;
425 	return 0;
426 }
427 
428 /*
429  * This is like of_node_to_nid_single() for memory represented in the
430  * ibm,dynamic-reconfiguration-memory node.
431  */
432 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
433 {
434 	struct assoc_arrays aa = { .arrays = NULL };
435 	int default_nid = NUMA_NO_NODE;
436 	int nid = default_nid;
437 	int rc, index;
438 
439 	if ((min_common_depth < 0) || !numa_enabled)
440 		return default_nid;
441 
442 	rc = of_get_assoc_arrays(&aa);
443 	if (rc)
444 		return default_nid;
445 
446 	if (min_common_depth <= aa.array_sz &&
447 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
448 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
449 		nid = of_read_number(&aa.arrays[index], 1);
450 
451 		if (nid == 0xffff || nid >= MAX_NUMNODES)
452 			nid = default_nid;
453 
454 		if (nid > 0) {
455 			index = lmb->aa_index * aa.array_sz;
456 			initialize_distance_lookup_table(nid,
457 							&aa.arrays[index]);
458 		}
459 	}
460 
461 	return nid;
462 }
463 
464 #ifdef CONFIG_PPC_SPLPAR
465 static int vphn_get_nid(long lcpu)
466 {
467 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
468 	long rc, hwid;
469 
470 	/*
471 	 * On a shared lpar, device tree will not have node associativity.
472 	 * At this time lppaca, or its __old_status field may not be
473 	 * updated. Hence kernel cannot detect if its on a shared lpar. So
474 	 * request an explicit associativity irrespective of whether the
475 	 * lpar is shared or dedicated. Use the device tree property as a
476 	 * fallback. cpu_to_phys_id is only valid between
477 	 * smp_setup_cpu_maps() and smp_setup_pacas().
478 	 */
479 	if (firmware_has_feature(FW_FEATURE_VPHN)) {
480 		if (cpu_to_phys_id)
481 			hwid = cpu_to_phys_id[lcpu];
482 		else
483 			hwid = get_hard_smp_processor_id(lcpu);
484 
485 		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
486 		if (rc == H_SUCCESS)
487 			return associativity_to_nid(associativity);
488 	}
489 
490 	return NUMA_NO_NODE;
491 }
492 #else
493 static int vphn_get_nid(long unused)
494 {
495 	return NUMA_NO_NODE;
496 }
497 #endif  /* CONFIG_PPC_SPLPAR */
498 
499 /*
500  * Figure out to which domain a cpu belongs and stick it there.
501  * Return the id of the domain used.
502  */
503 static int numa_setup_cpu(unsigned long lcpu)
504 {
505 	struct device_node *cpu;
506 	int fcpu = cpu_first_thread_sibling(lcpu);
507 	int nid = NUMA_NO_NODE;
508 
509 	/*
510 	 * If a valid cpu-to-node mapping is already available, use it
511 	 * directly instead of querying the firmware, since it represents
512 	 * the most recent mapping notified to us by the platform (eg: VPHN).
513 	 * Since cpu_to_node binding remains the same for all threads in the
514 	 * core. If a valid cpu-to-node mapping is already available, for
515 	 * the first thread in the core, use it.
516 	 */
517 	nid = numa_cpu_lookup_table[fcpu];
518 	if (nid >= 0) {
519 		map_cpu_to_node(lcpu, nid);
520 		return nid;
521 	}
522 
523 	nid = vphn_get_nid(lcpu);
524 	if (nid != NUMA_NO_NODE)
525 		goto out_present;
526 
527 	cpu = of_get_cpu_node(lcpu, NULL);
528 
529 	if (!cpu) {
530 		WARN_ON(1);
531 		if (cpu_present(lcpu))
532 			goto out_present;
533 		else
534 			goto out;
535 	}
536 
537 	nid = of_node_to_nid_single(cpu);
538 	of_node_put(cpu);
539 
540 out_present:
541 	if (nid < 0 || !node_possible(nid))
542 		nid = first_online_node;
543 
544 	/*
545 	 * Update for the first thread of the core. All threads of a core
546 	 * have to be part of the same node. This not only avoids querying
547 	 * for every other thread in the core, but always avoids a case
548 	 * where virtual node associativity change causes subsequent threads
549 	 * of a core to be associated with different nid. However if first
550 	 * thread is already online, expect it to have a valid mapping.
551 	 */
552 	if (fcpu != lcpu) {
553 		WARN_ON(cpu_online(fcpu));
554 		map_cpu_to_node(fcpu, nid);
555 	}
556 
557 	map_cpu_to_node(lcpu, nid);
558 out:
559 	return nid;
560 }
561 
562 static void verify_cpu_node_mapping(int cpu, int node)
563 {
564 	int base, sibling, i;
565 
566 	/* Verify that all the threads in the core belong to the same node */
567 	base = cpu_first_thread_sibling(cpu);
568 
569 	for (i = 0; i < threads_per_core; i++) {
570 		sibling = base + i;
571 
572 		if (sibling == cpu || cpu_is_offline(sibling))
573 			continue;
574 
575 		if (cpu_to_node(sibling) != node) {
576 			WARN(1, "CPU thread siblings %d and %d don't belong"
577 				" to the same node!\n", cpu, sibling);
578 			break;
579 		}
580 	}
581 }
582 
583 /* Must run before sched domains notifier. */
584 static int ppc_numa_cpu_prepare(unsigned int cpu)
585 {
586 	int nid;
587 
588 	nid = numa_setup_cpu(cpu);
589 	verify_cpu_node_mapping(cpu, nid);
590 	return 0;
591 }
592 
593 static int ppc_numa_cpu_dead(unsigned int cpu)
594 {
595 #ifdef CONFIG_HOTPLUG_CPU
596 	unmap_cpu_from_node(cpu);
597 #endif
598 	return 0;
599 }
600 
601 /*
602  * Check and possibly modify a memory region to enforce the memory limit.
603  *
604  * Returns the size the region should have to enforce the memory limit.
605  * This will either be the original value of size, a truncated value,
606  * or zero. If the returned value of size is 0 the region should be
607  * discarded as it lies wholly above the memory limit.
608  */
609 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
610 						      unsigned long size)
611 {
612 	/*
613 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
614 	 * we've already adjusted it for the limit and it takes care of
615 	 * having memory holes below the limit.  Also, in the case of
616 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
617 	 */
618 
619 	if (start + size <= memblock_end_of_DRAM())
620 		return size;
621 
622 	if (start >= memblock_end_of_DRAM())
623 		return 0;
624 
625 	return memblock_end_of_DRAM() - start;
626 }
627 
628 /*
629  * Reads the counter for a given entry in
630  * linux,drconf-usable-memory property
631  */
632 static inline int __init read_usm_ranges(const __be32 **usm)
633 {
634 	/*
635 	 * For each lmb in ibm,dynamic-memory a corresponding
636 	 * entry in linux,drconf-usable-memory property contains
637 	 * a counter followed by that many (base, size) duple.
638 	 * read the counter from linux,drconf-usable-memory
639 	 */
640 	return read_n_cells(n_mem_size_cells, usm);
641 }
642 
643 /*
644  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
645  * node.  This assumes n_mem_{addr,size}_cells have been set.
646  */
647 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
648 					const __be32 **usm)
649 {
650 	unsigned int ranges, is_kexec_kdump = 0;
651 	unsigned long base, size, sz;
652 	int nid;
653 
654 	/*
655 	 * Skip this block if the reserved bit is set in flags (0x80)
656 	 * or if the block is not assigned to this partition (0x8)
657 	 */
658 	if ((lmb->flags & DRCONF_MEM_RESERVED)
659 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
660 		return;
661 
662 	if (*usm)
663 		is_kexec_kdump = 1;
664 
665 	base = lmb->base_addr;
666 	size = drmem_lmb_size();
667 	ranges = 1;
668 
669 	if (is_kexec_kdump) {
670 		ranges = read_usm_ranges(usm);
671 		if (!ranges) /* there are no (base, size) duple */
672 			return;
673 	}
674 
675 	do {
676 		if (is_kexec_kdump) {
677 			base = read_n_cells(n_mem_addr_cells, usm);
678 			size = read_n_cells(n_mem_size_cells, usm);
679 		}
680 
681 		nid = of_drconf_to_nid_single(lmb);
682 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
683 					  &nid);
684 		node_set_online(nid);
685 		sz = numa_enforce_memory_limit(base, size);
686 		if (sz)
687 			memblock_set_node(base, sz, &memblock.memory, nid);
688 	} while (--ranges);
689 }
690 
691 static int __init parse_numa_properties(void)
692 {
693 	struct device_node *memory;
694 	int default_nid = 0;
695 	unsigned long i;
696 
697 	if (numa_enabled == 0) {
698 		printk(KERN_WARNING "NUMA disabled by user\n");
699 		return -1;
700 	}
701 
702 	min_common_depth = find_min_common_depth();
703 
704 	if (min_common_depth < 0) {
705 		/*
706 		 * if we fail to parse min_common_depth from device tree
707 		 * mark the numa disabled, boot with numa disabled.
708 		 */
709 		numa_enabled = false;
710 		return min_common_depth;
711 	}
712 
713 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
714 
715 	/*
716 	 * Even though we connect cpus to numa domains later in SMP
717 	 * init, we need to know the node ids now. This is because
718 	 * each node to be onlined must have NODE_DATA etc backing it.
719 	 */
720 	for_each_present_cpu(i) {
721 		struct device_node *cpu;
722 		int nid;
723 
724 		cpu = of_get_cpu_node(i, NULL);
725 		BUG_ON(!cpu);
726 		nid = of_node_to_nid_single(cpu);
727 		of_node_put(cpu);
728 
729 		/*
730 		 * Don't fall back to default_nid yet -- we will plug
731 		 * cpus into nodes once the memory scan has discovered
732 		 * the topology.
733 		 */
734 		if (nid < 0)
735 			continue;
736 		node_set_online(nid);
737 	}
738 
739 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
740 
741 	for_each_node_by_type(memory, "memory") {
742 		unsigned long start;
743 		unsigned long size;
744 		int nid;
745 		int ranges;
746 		const __be32 *memcell_buf;
747 		unsigned int len;
748 
749 		memcell_buf = of_get_property(memory,
750 			"linux,usable-memory", &len);
751 		if (!memcell_buf || len <= 0)
752 			memcell_buf = of_get_property(memory, "reg", &len);
753 		if (!memcell_buf || len <= 0)
754 			continue;
755 
756 		/* ranges in cell */
757 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
758 new_range:
759 		/* these are order-sensitive, and modify the buffer pointer */
760 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
761 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
762 
763 		/*
764 		 * Assumption: either all memory nodes or none will
765 		 * have associativity properties.  If none, then
766 		 * everything goes to default_nid.
767 		 */
768 		nid = of_node_to_nid_single(memory);
769 		if (nid < 0)
770 			nid = default_nid;
771 
772 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
773 		node_set_online(nid);
774 
775 		size = numa_enforce_memory_limit(start, size);
776 		if (size)
777 			memblock_set_node(start, size, &memblock.memory, nid);
778 
779 		if (--ranges)
780 			goto new_range;
781 	}
782 
783 	/*
784 	 * Now do the same thing for each MEMBLOCK listed in the
785 	 * ibm,dynamic-memory property in the
786 	 * ibm,dynamic-reconfiguration-memory node.
787 	 */
788 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
789 	if (memory) {
790 		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
791 		of_node_put(memory);
792 	}
793 
794 	return 0;
795 }
796 
797 static void __init setup_nonnuma(void)
798 {
799 	unsigned long top_of_ram = memblock_end_of_DRAM();
800 	unsigned long total_ram = memblock_phys_mem_size();
801 	unsigned long start_pfn, end_pfn;
802 	unsigned int nid = 0;
803 	struct memblock_region *reg;
804 
805 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
806 	       top_of_ram, total_ram);
807 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
808 	       (top_of_ram - total_ram) >> 20);
809 
810 	for_each_memblock(memory, reg) {
811 		start_pfn = memblock_region_memory_base_pfn(reg);
812 		end_pfn = memblock_region_memory_end_pfn(reg);
813 
814 		fake_numa_create_new_node(end_pfn, &nid);
815 		memblock_set_node(PFN_PHYS(start_pfn),
816 				  PFN_PHYS(end_pfn - start_pfn),
817 				  &memblock.memory, nid);
818 		node_set_online(nid);
819 	}
820 }
821 
822 void __init dump_numa_cpu_topology(void)
823 {
824 	unsigned int node;
825 	unsigned int cpu, count;
826 
827 	if (!numa_enabled)
828 		return;
829 
830 	for_each_online_node(node) {
831 		pr_info("Node %d CPUs:", node);
832 
833 		count = 0;
834 		/*
835 		 * If we used a CPU iterator here we would miss printing
836 		 * the holes in the cpumap.
837 		 */
838 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
839 			if (cpumask_test_cpu(cpu,
840 					node_to_cpumask_map[node])) {
841 				if (count == 0)
842 					pr_cont(" %u", cpu);
843 				++count;
844 			} else {
845 				if (count > 1)
846 					pr_cont("-%u", cpu - 1);
847 				count = 0;
848 			}
849 		}
850 
851 		if (count > 1)
852 			pr_cont("-%u", nr_cpu_ids - 1);
853 		pr_cont("\n");
854 	}
855 }
856 
857 /* Initialize NODE_DATA for a node on the local memory */
858 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
859 {
860 	u64 spanned_pages = end_pfn - start_pfn;
861 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
862 	u64 nd_pa;
863 	void *nd;
864 	int tnid;
865 
866 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
867 	if (!nd_pa)
868 		panic("Cannot allocate %zu bytes for node %d data\n",
869 		      nd_size, nid);
870 
871 	nd = __va(nd_pa);
872 
873 	/* report and initialize */
874 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
875 		nd_pa, nd_pa + nd_size - 1);
876 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
877 	if (tnid != nid)
878 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
879 
880 	node_data[nid] = nd;
881 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
882 	NODE_DATA(nid)->node_id = nid;
883 	NODE_DATA(nid)->node_start_pfn = start_pfn;
884 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
885 }
886 
887 static void __init find_possible_nodes(void)
888 {
889 	struct device_node *rtas;
890 	u32 numnodes, i;
891 
892 	if (!numa_enabled)
893 		return;
894 
895 	rtas = of_find_node_by_path("/rtas");
896 	if (!rtas)
897 		return;
898 
899 	if (of_property_read_u32_index(rtas,
900 				"ibm,max-associativity-domains",
901 				min_common_depth, &numnodes))
902 		goto out;
903 
904 	for (i = 0; i < numnodes; i++) {
905 		if (!node_possible(i))
906 			node_set(i, node_possible_map);
907 	}
908 
909 out:
910 	of_node_put(rtas);
911 }
912 
913 void __init mem_topology_setup(void)
914 {
915 	int cpu;
916 
917 	if (parse_numa_properties())
918 		setup_nonnuma();
919 
920 	/*
921 	 * Modify the set of possible NUMA nodes to reflect information
922 	 * available about the set of online nodes, and the set of nodes
923 	 * that we expect to make use of for this platform's affinity
924 	 * calculations.
925 	 */
926 	nodes_and(node_possible_map, node_possible_map, node_online_map);
927 
928 	find_possible_nodes();
929 
930 	setup_node_to_cpumask_map();
931 
932 	reset_numa_cpu_lookup_table();
933 
934 	for_each_present_cpu(cpu)
935 		numa_setup_cpu(cpu);
936 }
937 
938 void __init initmem_init(void)
939 {
940 	int nid;
941 
942 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
943 	max_pfn = max_low_pfn;
944 
945 	memblock_dump_all();
946 
947 	for_each_online_node(nid) {
948 		unsigned long start_pfn, end_pfn;
949 
950 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
951 		setup_node_data(nid, start_pfn, end_pfn);
952 		sparse_memory_present_with_active_regions(nid);
953 	}
954 
955 	sparse_init();
956 
957 	/*
958 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
959 	 * even before we online them, so that we can use cpu_to_{node,mem}
960 	 * early in boot, cf. smp_prepare_cpus().
961 	 * _nocalls() + manual invocation is used because cpuhp is not yet
962 	 * initialized for the boot CPU.
963 	 */
964 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
965 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
966 }
967 
968 static int __init early_numa(char *p)
969 {
970 	if (!p)
971 		return 0;
972 
973 	if (strstr(p, "off"))
974 		numa_enabled = 0;
975 
976 	if (strstr(p, "debug"))
977 		numa_debug = 1;
978 
979 	p = strstr(p, "fake=");
980 	if (p)
981 		cmdline = p + strlen("fake=");
982 
983 	return 0;
984 }
985 early_param("numa", early_numa);
986 
987 /*
988  * The platform can inform us through one of several mechanisms
989  * (post-migration device tree updates, PRRN or VPHN) that the NUMA
990  * assignment of a resource has changed. This controls whether we act
991  * on that. Disabled by default.
992  */
993 static bool topology_updates_enabled;
994 
995 static int __init early_topology_updates(char *p)
996 {
997 	if (!p)
998 		return 0;
999 
1000 	if (!strcmp(p, "on")) {
1001 		pr_warn("Caution: enabling topology updates\n");
1002 		topology_updates_enabled = true;
1003 	}
1004 
1005 	return 0;
1006 }
1007 early_param("topology_updates", early_topology_updates);
1008 
1009 #ifdef CONFIG_MEMORY_HOTPLUG
1010 /*
1011  * Find the node associated with a hot added memory section for
1012  * memory represented in the device tree by the property
1013  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1014  */
1015 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1016 {
1017 	struct drmem_lmb *lmb;
1018 	unsigned long lmb_size;
1019 	int nid = NUMA_NO_NODE;
1020 
1021 	lmb_size = drmem_lmb_size();
1022 
1023 	for_each_drmem_lmb(lmb) {
1024 		/* skip this block if it is reserved or not assigned to
1025 		 * this partition */
1026 		if ((lmb->flags & DRCONF_MEM_RESERVED)
1027 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1028 			continue;
1029 
1030 		if ((scn_addr < lmb->base_addr)
1031 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1032 			continue;
1033 
1034 		nid = of_drconf_to_nid_single(lmb);
1035 		break;
1036 	}
1037 
1038 	return nid;
1039 }
1040 
1041 /*
1042  * Find the node associated with a hot added memory section for memory
1043  * represented in the device tree as a node (i.e. memory@XXXX) for
1044  * each memblock.
1045  */
1046 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1047 {
1048 	struct device_node *memory;
1049 	int nid = NUMA_NO_NODE;
1050 
1051 	for_each_node_by_type(memory, "memory") {
1052 		unsigned long start, size;
1053 		int ranges;
1054 		const __be32 *memcell_buf;
1055 		unsigned int len;
1056 
1057 		memcell_buf = of_get_property(memory, "reg", &len);
1058 		if (!memcell_buf || len <= 0)
1059 			continue;
1060 
1061 		/* ranges in cell */
1062 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1063 
1064 		while (ranges--) {
1065 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1066 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1067 
1068 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1069 				continue;
1070 
1071 			nid = of_node_to_nid_single(memory);
1072 			break;
1073 		}
1074 
1075 		if (nid >= 0)
1076 			break;
1077 	}
1078 
1079 	of_node_put(memory);
1080 
1081 	return nid;
1082 }
1083 
1084 /*
1085  * Find the node associated with a hot added memory section.  Section
1086  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1087  * sections are fully contained within a single MEMBLOCK.
1088  */
1089 int hot_add_scn_to_nid(unsigned long scn_addr)
1090 {
1091 	struct device_node *memory = NULL;
1092 	int nid;
1093 
1094 	if (!numa_enabled)
1095 		return first_online_node;
1096 
1097 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1098 	if (memory) {
1099 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1100 		of_node_put(memory);
1101 	} else {
1102 		nid = hot_add_node_scn_to_nid(scn_addr);
1103 	}
1104 
1105 	if (nid < 0 || !node_possible(nid))
1106 		nid = first_online_node;
1107 
1108 	return nid;
1109 }
1110 
1111 static u64 hot_add_drconf_memory_max(void)
1112 {
1113 	struct device_node *memory = NULL;
1114 	struct device_node *dn = NULL;
1115 	const __be64 *lrdr = NULL;
1116 
1117 	dn = of_find_node_by_path("/rtas");
1118 	if (dn) {
1119 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1120 		of_node_put(dn);
1121 		if (lrdr)
1122 			return be64_to_cpup(lrdr);
1123 	}
1124 
1125 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1126 	if (memory) {
1127 		of_node_put(memory);
1128 		return drmem_lmb_memory_max();
1129 	}
1130 	return 0;
1131 }
1132 
1133 /*
1134  * memory_hotplug_max - return max address of memory that may be added
1135  *
1136  * This is currently only used on systems that support drconfig memory
1137  * hotplug.
1138  */
1139 u64 memory_hotplug_max(void)
1140 {
1141         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1142 }
1143 #endif /* CONFIG_MEMORY_HOTPLUG */
1144 
1145 /* Virtual Processor Home Node (VPHN) support */
1146 #ifdef CONFIG_PPC_SPLPAR
1147 struct topology_update_data {
1148 	struct topology_update_data *next;
1149 	unsigned int cpu;
1150 	int old_nid;
1151 	int new_nid;
1152 };
1153 
1154 #define TOPOLOGY_DEF_TIMER_SECS	60
1155 
1156 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1157 static cpumask_t cpu_associativity_changes_mask;
1158 static int vphn_enabled;
1159 static int prrn_enabled;
1160 static void reset_topology_timer(void);
1161 static int topology_timer_secs = 1;
1162 static int topology_inited;
1163 
1164 /*
1165  * Change polling interval for associativity changes.
1166  */
1167 int timed_topology_update(int nsecs)
1168 {
1169 	if (vphn_enabled) {
1170 		if (nsecs > 0)
1171 			topology_timer_secs = nsecs;
1172 		else
1173 			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1174 
1175 		reset_topology_timer();
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * Store the current values of the associativity change counters in the
1183  * hypervisor.
1184  */
1185 static void setup_cpu_associativity_change_counters(void)
1186 {
1187 	int cpu;
1188 
1189 	/* The VPHN feature supports a maximum of 8 reference points */
1190 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1191 
1192 	for_each_possible_cpu(cpu) {
1193 		int i;
1194 		u8 *counts = vphn_cpu_change_counts[cpu];
1195 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1196 
1197 		for (i = 0; i < distance_ref_points_depth; i++)
1198 			counts[i] = hypervisor_counts[i];
1199 	}
1200 }
1201 
1202 /*
1203  * The hypervisor maintains a set of 8 associativity change counters in
1204  * the VPA of each cpu that correspond to the associativity levels in the
1205  * ibm,associativity-reference-points property. When an associativity
1206  * level changes, the corresponding counter is incremented.
1207  *
1208  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1209  * node associativity levels have changed.
1210  *
1211  * Returns the number of cpus with unhandled associativity changes.
1212  */
1213 static int update_cpu_associativity_changes_mask(void)
1214 {
1215 	int cpu;
1216 	cpumask_t *changes = &cpu_associativity_changes_mask;
1217 
1218 	for_each_possible_cpu(cpu) {
1219 		int i, changed = 0;
1220 		u8 *counts = vphn_cpu_change_counts[cpu];
1221 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1222 
1223 		for (i = 0; i < distance_ref_points_depth; i++) {
1224 			if (hypervisor_counts[i] != counts[i]) {
1225 				counts[i] = hypervisor_counts[i];
1226 				changed = 1;
1227 			}
1228 		}
1229 		if (changed) {
1230 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1231 			cpu = cpu_last_thread_sibling(cpu);
1232 		}
1233 	}
1234 
1235 	return cpumask_weight(changes);
1236 }
1237 
1238 /*
1239  * Retrieve the new associativity information for a virtual processor's
1240  * home node.
1241  */
1242 static long vphn_get_associativity(unsigned long cpu,
1243 					__be32 *associativity)
1244 {
1245 	long rc;
1246 
1247 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1248 				VPHN_FLAG_VCPU, associativity);
1249 
1250 	switch (rc) {
1251 	case H_SUCCESS:
1252 		dbg("VPHN hcall succeeded. Reset polling...\n");
1253 		timed_topology_update(0);
1254 		goto out;
1255 
1256 	case H_FUNCTION:
1257 		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1258 		break;
1259 	case H_HARDWARE:
1260 		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1261 			"preventing VPHN. Disabling polling...\n");
1262 		break;
1263 	case H_PARAMETER:
1264 		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1265 			"Disabling polling...\n");
1266 		break;
1267 	default:
1268 		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1269 			, rc);
1270 		break;
1271 	}
1272 
1273 	stop_topology_update();
1274 out:
1275 	return rc;
1276 }
1277 
1278 int find_and_online_cpu_nid(int cpu)
1279 {
1280 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1281 	int new_nid;
1282 
1283 	/* Use associativity from first thread for all siblings */
1284 	if (vphn_get_associativity(cpu, associativity))
1285 		return cpu_to_node(cpu);
1286 
1287 	new_nid = associativity_to_nid(associativity);
1288 	if (new_nid < 0 || !node_possible(new_nid))
1289 		new_nid = first_online_node;
1290 
1291 	if (NODE_DATA(new_nid) == NULL) {
1292 #ifdef CONFIG_MEMORY_HOTPLUG
1293 		/*
1294 		 * Need to ensure that NODE_DATA is initialized for a node from
1295 		 * available memory (see memblock_alloc_try_nid). If unable to
1296 		 * init the node, then default to nearest node that has memory
1297 		 * installed. Skip onlining a node if the subsystems are not
1298 		 * yet initialized.
1299 		 */
1300 		if (!topology_inited || try_online_node(new_nid))
1301 			new_nid = first_online_node;
1302 #else
1303 		/*
1304 		 * Default to using the nearest node that has memory installed.
1305 		 * Otherwise, it would be necessary to patch the kernel MM code
1306 		 * to deal with more memoryless-node error conditions.
1307 		 */
1308 		new_nid = first_online_node;
1309 #endif
1310 	}
1311 
1312 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1313 		cpu, new_nid);
1314 	return new_nid;
1315 }
1316 
1317 /*
1318  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1319  * characteristics change. This function doesn't perform any locking and is
1320  * only safe to call from stop_machine().
1321  */
1322 static int update_cpu_topology(void *data)
1323 {
1324 	struct topology_update_data *update;
1325 	unsigned long cpu;
1326 
1327 	if (!data)
1328 		return -EINVAL;
1329 
1330 	cpu = smp_processor_id();
1331 
1332 	for (update = data; update; update = update->next) {
1333 		int new_nid = update->new_nid;
1334 		if (cpu != update->cpu)
1335 			continue;
1336 
1337 		unmap_cpu_from_node(cpu);
1338 		map_cpu_to_node(cpu, new_nid);
1339 		set_cpu_numa_node(cpu, new_nid);
1340 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1341 		vdso_getcpu_init();
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static int update_lookup_table(void *data)
1348 {
1349 	struct topology_update_data *update;
1350 
1351 	if (!data)
1352 		return -EINVAL;
1353 
1354 	/*
1355 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1356 	 * for all threads in the core, including offline CPUs, to ensure that
1357 	 * future hotplug operations respect the cpu-to-node associativity
1358 	 * properly.
1359 	 */
1360 	for (update = data; update; update = update->next) {
1361 		int nid, base, j;
1362 
1363 		nid = update->new_nid;
1364 		base = cpu_first_thread_sibling(update->cpu);
1365 
1366 		for (j = 0; j < threads_per_core; j++) {
1367 			update_numa_cpu_lookup_table(base + j, nid);
1368 		}
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Update the node maps and sysfs entries for each cpu whose home node
1376  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1377  *
1378  * cpus_locked says whether we already hold cpu_hotplug_lock.
1379  */
1380 int numa_update_cpu_topology(bool cpus_locked)
1381 {
1382 	unsigned int cpu, sibling, changed = 0;
1383 	struct topology_update_data *updates, *ud;
1384 	cpumask_t updated_cpus;
1385 	struct device *dev;
1386 	int weight, new_nid, i = 0;
1387 
1388 	if (!prrn_enabled && !vphn_enabled && topology_inited)
1389 		return 0;
1390 
1391 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1392 	if (!weight)
1393 		return 0;
1394 
1395 	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1396 	if (!updates)
1397 		return 0;
1398 
1399 	cpumask_clear(&updated_cpus);
1400 
1401 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1402 		/*
1403 		 * If siblings aren't flagged for changes, updates list
1404 		 * will be too short. Skip on this update and set for next
1405 		 * update.
1406 		 */
1407 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1408 					&cpu_associativity_changes_mask)) {
1409 			pr_info("Sibling bits not set for associativity "
1410 					"change, cpu%d\n", cpu);
1411 			cpumask_or(&cpu_associativity_changes_mask,
1412 					&cpu_associativity_changes_mask,
1413 					cpu_sibling_mask(cpu));
1414 			cpu = cpu_last_thread_sibling(cpu);
1415 			continue;
1416 		}
1417 
1418 		new_nid = find_and_online_cpu_nid(cpu);
1419 
1420 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1421 			cpumask_andnot(&cpu_associativity_changes_mask,
1422 					&cpu_associativity_changes_mask,
1423 					cpu_sibling_mask(cpu));
1424 			dbg("Assoc chg gives same node %d for cpu%d\n",
1425 					new_nid, cpu);
1426 			cpu = cpu_last_thread_sibling(cpu);
1427 			continue;
1428 		}
1429 
1430 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1431 			ud = &updates[i++];
1432 			ud->next = &updates[i];
1433 			ud->cpu = sibling;
1434 			ud->new_nid = new_nid;
1435 			ud->old_nid = numa_cpu_lookup_table[sibling];
1436 			cpumask_set_cpu(sibling, &updated_cpus);
1437 		}
1438 		cpu = cpu_last_thread_sibling(cpu);
1439 	}
1440 
1441 	/*
1442 	 * Prevent processing of 'updates' from overflowing array
1443 	 * where last entry filled in a 'next' pointer.
1444 	 */
1445 	if (i)
1446 		updates[i-1].next = NULL;
1447 
1448 	pr_debug("Topology update for the following CPUs:\n");
1449 	if (cpumask_weight(&updated_cpus)) {
1450 		for (ud = &updates[0]; ud; ud = ud->next) {
1451 			pr_debug("cpu %d moving from node %d "
1452 					  "to %d\n", ud->cpu,
1453 					  ud->old_nid, ud->new_nid);
1454 		}
1455 	}
1456 
1457 	/*
1458 	 * In cases where we have nothing to update (because the updates list
1459 	 * is too short or because the new topology is same as the old one),
1460 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1461 	 * necessary (and not just a fast-path optimization) since stop-machine
1462 	 * can end up electing a random CPU to run update_cpu_topology(), and
1463 	 * thus trick us into setting up incorrect cpu-node mappings (since
1464 	 * 'updates' is kzalloc()'ed).
1465 	 *
1466 	 * And for the similar reason, we will skip all the following updating.
1467 	 */
1468 	if (!cpumask_weight(&updated_cpus))
1469 		goto out;
1470 
1471 	if (cpus_locked)
1472 		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1473 					&updated_cpus);
1474 	else
1475 		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1476 
1477 	/*
1478 	 * Update the numa-cpu lookup table with the new mappings, even for
1479 	 * offline CPUs. It is best to perform this update from the stop-
1480 	 * machine context.
1481 	 */
1482 	if (cpus_locked)
1483 		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1484 					cpumask_of(raw_smp_processor_id()));
1485 	else
1486 		stop_machine(update_lookup_table, &updates[0],
1487 			     cpumask_of(raw_smp_processor_id()));
1488 
1489 	for (ud = &updates[0]; ud; ud = ud->next) {
1490 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1491 		register_cpu_under_node(ud->cpu, ud->new_nid);
1492 
1493 		dev = get_cpu_device(ud->cpu);
1494 		if (dev)
1495 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1496 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1497 		changed = 1;
1498 	}
1499 
1500 out:
1501 	kfree(updates);
1502 	return changed;
1503 }
1504 
1505 int arch_update_cpu_topology(void)
1506 {
1507 	return numa_update_cpu_topology(true);
1508 }
1509 
1510 static void topology_work_fn(struct work_struct *work)
1511 {
1512 	rebuild_sched_domains();
1513 }
1514 static DECLARE_WORK(topology_work, topology_work_fn);
1515 
1516 static void topology_schedule_update(void)
1517 {
1518 	schedule_work(&topology_work);
1519 }
1520 
1521 static void topology_timer_fn(struct timer_list *unused)
1522 {
1523 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1524 		topology_schedule_update();
1525 	else if (vphn_enabled) {
1526 		if (update_cpu_associativity_changes_mask() > 0)
1527 			topology_schedule_update();
1528 		reset_topology_timer();
1529 	}
1530 }
1531 static struct timer_list topology_timer;
1532 
1533 static void reset_topology_timer(void)
1534 {
1535 	if (vphn_enabled)
1536 		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1537 }
1538 
1539 #ifdef CONFIG_SMP
1540 
1541 static int dt_update_callback(struct notifier_block *nb,
1542 				unsigned long action, void *data)
1543 {
1544 	struct of_reconfig_data *update = data;
1545 	int rc = NOTIFY_DONE;
1546 
1547 	switch (action) {
1548 	case OF_RECONFIG_UPDATE_PROPERTY:
1549 		if (of_node_is_type(update->dn, "cpu") &&
1550 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1551 			u32 core_id;
1552 			of_property_read_u32(update->dn, "reg", &core_id);
1553 			rc = dlpar_cpu_readd(core_id);
1554 			rc = NOTIFY_OK;
1555 		}
1556 		break;
1557 	}
1558 
1559 	return rc;
1560 }
1561 
1562 static struct notifier_block dt_update_nb = {
1563 	.notifier_call = dt_update_callback,
1564 };
1565 
1566 #endif
1567 
1568 /*
1569  * Start polling for associativity changes.
1570  */
1571 int start_topology_update(void)
1572 {
1573 	int rc = 0;
1574 
1575 	if (!topology_updates_enabled)
1576 		return 0;
1577 
1578 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1579 		if (!prrn_enabled) {
1580 			prrn_enabled = 1;
1581 #ifdef CONFIG_SMP
1582 			rc = of_reconfig_notifier_register(&dt_update_nb);
1583 #endif
1584 		}
1585 	}
1586 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1587 		   lppaca_shared_proc(get_lppaca())) {
1588 		if (!vphn_enabled) {
1589 			vphn_enabled = 1;
1590 			setup_cpu_associativity_change_counters();
1591 			timer_setup(&topology_timer, topology_timer_fn,
1592 				    TIMER_DEFERRABLE);
1593 			reset_topology_timer();
1594 		}
1595 	}
1596 
1597 	pr_info("Starting topology update%s%s\n",
1598 		(prrn_enabled ? " prrn_enabled" : ""),
1599 		(vphn_enabled ? " vphn_enabled" : ""));
1600 
1601 	return rc;
1602 }
1603 
1604 /*
1605  * Disable polling for VPHN associativity changes.
1606  */
1607 int stop_topology_update(void)
1608 {
1609 	int rc = 0;
1610 
1611 	if (!topology_updates_enabled)
1612 		return 0;
1613 
1614 	if (prrn_enabled) {
1615 		prrn_enabled = 0;
1616 #ifdef CONFIG_SMP
1617 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1618 #endif
1619 	}
1620 	if (vphn_enabled) {
1621 		vphn_enabled = 0;
1622 		rc = del_timer_sync(&topology_timer);
1623 	}
1624 
1625 	pr_info("Stopping topology update\n");
1626 
1627 	return rc;
1628 }
1629 
1630 int prrn_is_enabled(void)
1631 {
1632 	return prrn_enabled;
1633 }
1634 
1635 static int topology_read(struct seq_file *file, void *v)
1636 {
1637 	if (vphn_enabled || prrn_enabled)
1638 		seq_puts(file, "on\n");
1639 	else
1640 		seq_puts(file, "off\n");
1641 
1642 	return 0;
1643 }
1644 
1645 static int topology_open(struct inode *inode, struct file *file)
1646 {
1647 	return single_open(file, topology_read, NULL);
1648 }
1649 
1650 static ssize_t topology_write(struct file *file, const char __user *buf,
1651 			      size_t count, loff_t *off)
1652 {
1653 	char kbuf[4]; /* "on" or "off" plus null. */
1654 	int read_len;
1655 
1656 	read_len = count < 3 ? count : 3;
1657 	if (copy_from_user(kbuf, buf, read_len))
1658 		return -EINVAL;
1659 
1660 	kbuf[read_len] = '\0';
1661 
1662 	if (!strncmp(kbuf, "on", 2)) {
1663 		topology_updates_enabled = true;
1664 		start_topology_update();
1665 	} else if (!strncmp(kbuf, "off", 3)) {
1666 		stop_topology_update();
1667 		topology_updates_enabled = false;
1668 	} else
1669 		return -EINVAL;
1670 
1671 	return count;
1672 }
1673 
1674 static const struct proc_ops topology_proc_ops = {
1675 	.proc_read	= seq_read,
1676 	.proc_write	= topology_write,
1677 	.proc_open	= topology_open,
1678 	.proc_release	= single_release,
1679 };
1680 
1681 static int topology_update_init(void)
1682 {
1683 	start_topology_update();
1684 
1685 	if (vphn_enabled)
1686 		topology_schedule_update();
1687 
1688 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_proc_ops))
1689 		return -ENOMEM;
1690 
1691 	topology_inited = 1;
1692 	return 0;
1693 }
1694 device_initcall(topology_update_init);
1695 #endif /* CONFIG_PPC_SPLPAR */
1696