1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * This file contains the routines for TLB flushing. 4 * On machines where the MMU does not use a hash table to store virtual to 5 * physical translations (ie, SW loaded TLBs or Book3E compilant processors, 6 * this does -not- include 603 however which shares the implementation with 7 * hash based processors) 8 * 9 * -- BenH 10 * 11 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org> 12 * IBM Corp. 13 * 14 * Derived from arch/ppc/mm/init.c: 15 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 16 * 17 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 18 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 19 * Copyright (C) 1996 Paul Mackerras 20 * 21 * Derived from "arch/i386/mm/init.c" 22 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/mm.h> 28 #include <linux/init.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/preempt.h> 32 #include <linux/spinlock.h> 33 #include <linux/memblock.h> 34 #include <linux/of_fdt.h> 35 #include <linux/hugetlb.h> 36 37 #include <asm/pgalloc.h> 38 #include <asm/tlbflush.h> 39 #include <asm/tlb.h> 40 #include <asm/code-patching.h> 41 #include <asm/cputhreads.h> 42 #include <asm/hugetlb.h> 43 #include <asm/paca.h> 44 45 #include <mm/mmu_decl.h> 46 47 /* 48 * This struct lists the sw-supported page sizes. The hardawre MMU may support 49 * other sizes not listed here. The .ind field is only used on MMUs that have 50 * indirect page table entries. 51 */ 52 #if defined(CONFIG_PPC_BOOK3E_MMU) || defined(CONFIG_PPC_8xx) 53 #ifdef CONFIG_PPC_FSL_BOOK3E 54 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { 55 [MMU_PAGE_4K] = { 56 .shift = 12, 57 .enc = BOOK3E_PAGESZ_4K, 58 }, 59 [MMU_PAGE_2M] = { 60 .shift = 21, 61 .enc = BOOK3E_PAGESZ_2M, 62 }, 63 [MMU_PAGE_4M] = { 64 .shift = 22, 65 .enc = BOOK3E_PAGESZ_4M, 66 }, 67 [MMU_PAGE_16M] = { 68 .shift = 24, 69 .enc = BOOK3E_PAGESZ_16M, 70 }, 71 [MMU_PAGE_64M] = { 72 .shift = 26, 73 .enc = BOOK3E_PAGESZ_64M, 74 }, 75 [MMU_PAGE_256M] = { 76 .shift = 28, 77 .enc = BOOK3E_PAGESZ_256M, 78 }, 79 [MMU_PAGE_1G] = { 80 .shift = 30, 81 .enc = BOOK3E_PAGESZ_1GB, 82 }, 83 }; 84 #elif defined(CONFIG_PPC_8xx) 85 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { 86 /* we only manage 4k and 16k pages as normal pages */ 87 #ifdef CONFIG_PPC_4K_PAGES 88 [MMU_PAGE_4K] = { 89 .shift = 12, 90 }, 91 #else 92 [MMU_PAGE_16K] = { 93 .shift = 14, 94 }, 95 #endif 96 [MMU_PAGE_512K] = { 97 .shift = 19, 98 }, 99 [MMU_PAGE_8M] = { 100 .shift = 23, 101 }, 102 }; 103 #else 104 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { 105 [MMU_PAGE_4K] = { 106 .shift = 12, 107 .ind = 20, 108 .enc = BOOK3E_PAGESZ_4K, 109 }, 110 [MMU_PAGE_16K] = { 111 .shift = 14, 112 .enc = BOOK3E_PAGESZ_16K, 113 }, 114 [MMU_PAGE_64K] = { 115 .shift = 16, 116 .ind = 28, 117 .enc = BOOK3E_PAGESZ_64K, 118 }, 119 [MMU_PAGE_1M] = { 120 .shift = 20, 121 .enc = BOOK3E_PAGESZ_1M, 122 }, 123 [MMU_PAGE_16M] = { 124 .shift = 24, 125 .ind = 36, 126 .enc = BOOK3E_PAGESZ_16M, 127 }, 128 [MMU_PAGE_256M] = { 129 .shift = 28, 130 .enc = BOOK3E_PAGESZ_256M, 131 }, 132 [MMU_PAGE_1G] = { 133 .shift = 30, 134 .enc = BOOK3E_PAGESZ_1GB, 135 }, 136 }; 137 #endif /* CONFIG_FSL_BOOKE */ 138 139 static inline int mmu_get_tsize(int psize) 140 { 141 return mmu_psize_defs[psize].enc; 142 } 143 #else 144 static inline int mmu_get_tsize(int psize) 145 { 146 /* This isn't used on !Book3E for now */ 147 return 0; 148 } 149 #endif /* CONFIG_PPC_BOOK3E_MMU */ 150 151 /* The variables below are currently only used on 64-bit Book3E 152 * though this will probably be made common with other nohash 153 * implementations at some point 154 */ 155 #ifdef CONFIG_PPC64 156 157 int mmu_linear_psize; /* Page size used for the linear mapping */ 158 int mmu_pte_psize; /* Page size used for PTE pages */ 159 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */ 160 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */ 161 unsigned long linear_map_top; /* Top of linear mapping */ 162 163 164 /* 165 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug 166 * exceptions. This is used for bolted and e6500 TLB miss handlers which 167 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers, 168 * this is set to zero. 169 */ 170 int extlb_level_exc; 171 172 #endif /* CONFIG_PPC64 */ 173 174 #ifdef CONFIG_PPC_FSL_BOOK3E 175 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */ 176 DEFINE_PER_CPU(int, next_tlbcam_idx); 177 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx); 178 #endif 179 180 /* 181 * Base TLB flushing operations: 182 * 183 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 184 * - flush_tlb_page(vma, vmaddr) flushes one page 185 * - flush_tlb_range(vma, start, end) flushes a range of pages 186 * - flush_tlb_kernel_range(start, end) flushes kernel pages 187 * 188 * - local_* variants of page and mm only apply to the current 189 * processor 190 */ 191 192 /* 193 * These are the base non-SMP variants of page and mm flushing 194 */ 195 void local_flush_tlb_mm(struct mm_struct *mm) 196 { 197 unsigned int pid; 198 199 preempt_disable(); 200 pid = mm->context.id; 201 if (pid != MMU_NO_CONTEXT) 202 _tlbil_pid(pid); 203 preempt_enable(); 204 } 205 EXPORT_SYMBOL(local_flush_tlb_mm); 206 207 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, 208 int tsize, int ind) 209 { 210 unsigned int pid; 211 212 preempt_disable(); 213 pid = mm ? mm->context.id : 0; 214 if (pid != MMU_NO_CONTEXT) 215 _tlbil_va(vmaddr, pid, tsize, ind); 216 preempt_enable(); 217 } 218 219 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) 220 { 221 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, 222 mmu_get_tsize(mmu_virtual_psize), 0); 223 } 224 EXPORT_SYMBOL(local_flush_tlb_page); 225 226 /* 227 * And here are the SMP non-local implementations 228 */ 229 #ifdef CONFIG_SMP 230 231 static DEFINE_RAW_SPINLOCK(tlbivax_lock); 232 233 struct tlb_flush_param { 234 unsigned long addr; 235 unsigned int pid; 236 unsigned int tsize; 237 unsigned int ind; 238 }; 239 240 static void do_flush_tlb_mm_ipi(void *param) 241 { 242 struct tlb_flush_param *p = param; 243 244 _tlbil_pid(p ? p->pid : 0); 245 } 246 247 static void do_flush_tlb_page_ipi(void *param) 248 { 249 struct tlb_flush_param *p = param; 250 251 _tlbil_va(p->addr, p->pid, p->tsize, p->ind); 252 } 253 254 255 /* Note on invalidations and PID: 256 * 257 * We snapshot the PID with preempt disabled. At this point, it can still 258 * change either because: 259 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU 260 * - we are invaliating some target that isn't currently running here 261 * and is concurrently acquiring a new PID on another CPU 262 * - some other CPU is re-acquiring a lost PID for this mm 263 * etc... 264 * 265 * However, this shouldn't be a problem as we only guarantee 266 * invalidation of TLB entries present prior to this call, so we 267 * don't care about the PID changing, and invalidating a stale PID 268 * is generally harmless. 269 */ 270 271 void flush_tlb_mm(struct mm_struct *mm) 272 { 273 unsigned int pid; 274 275 preempt_disable(); 276 pid = mm->context.id; 277 if (unlikely(pid == MMU_NO_CONTEXT)) 278 goto no_context; 279 if (!mm_is_core_local(mm)) { 280 struct tlb_flush_param p = { .pid = pid }; 281 /* Ignores smp_processor_id() even if set. */ 282 smp_call_function_many(mm_cpumask(mm), 283 do_flush_tlb_mm_ipi, &p, 1); 284 } 285 _tlbil_pid(pid); 286 no_context: 287 preempt_enable(); 288 } 289 EXPORT_SYMBOL(flush_tlb_mm); 290 291 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, 292 int tsize, int ind) 293 { 294 struct cpumask *cpu_mask; 295 unsigned int pid; 296 297 /* 298 * This function as well as __local_flush_tlb_page() must only be called 299 * for user contexts. 300 */ 301 if (WARN_ON(!mm)) 302 return; 303 304 preempt_disable(); 305 pid = mm->context.id; 306 if (unlikely(pid == MMU_NO_CONTEXT)) 307 goto bail; 308 cpu_mask = mm_cpumask(mm); 309 if (!mm_is_core_local(mm)) { 310 /* If broadcast tlbivax is supported, use it */ 311 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) { 312 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL); 313 if (lock) 314 raw_spin_lock(&tlbivax_lock); 315 _tlbivax_bcast(vmaddr, pid, tsize, ind); 316 if (lock) 317 raw_spin_unlock(&tlbivax_lock); 318 goto bail; 319 } else { 320 struct tlb_flush_param p = { 321 .pid = pid, 322 .addr = vmaddr, 323 .tsize = tsize, 324 .ind = ind, 325 }; 326 /* Ignores smp_processor_id() even if set in cpu_mask */ 327 smp_call_function_many(cpu_mask, 328 do_flush_tlb_page_ipi, &p, 1); 329 } 330 } 331 _tlbil_va(vmaddr, pid, tsize, ind); 332 bail: 333 preempt_enable(); 334 } 335 336 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) 337 { 338 #ifdef CONFIG_HUGETLB_PAGE 339 if (vma && is_vm_hugetlb_page(vma)) 340 flush_hugetlb_page(vma, vmaddr); 341 #endif 342 343 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, 344 mmu_get_tsize(mmu_virtual_psize), 0); 345 } 346 EXPORT_SYMBOL(flush_tlb_page); 347 348 #endif /* CONFIG_SMP */ 349 350 #ifdef CONFIG_PPC_47x 351 void __init early_init_mmu_47x(void) 352 { 353 #ifdef CONFIG_SMP 354 unsigned long root = of_get_flat_dt_root(); 355 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL)) 356 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST); 357 #endif /* CONFIG_SMP */ 358 } 359 #endif /* CONFIG_PPC_47x */ 360 361 /* 362 * Flush kernel TLB entries in the given range 363 */ 364 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 365 { 366 #ifdef CONFIG_SMP 367 preempt_disable(); 368 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1); 369 _tlbil_pid(0); 370 preempt_enable(); 371 #else 372 _tlbil_pid(0); 373 #endif 374 } 375 EXPORT_SYMBOL(flush_tlb_kernel_range); 376 377 /* 378 * Currently, for range flushing, we just do a full mm flush. This should 379 * be optimized based on a threshold on the size of the range, since 380 * some implementation can stack multiple tlbivax before a tlbsync but 381 * for now, we keep it that way 382 */ 383 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 384 unsigned long end) 385 386 { 387 if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK)) 388 flush_tlb_page(vma, start); 389 else 390 flush_tlb_mm(vma->vm_mm); 391 } 392 EXPORT_SYMBOL(flush_tlb_range); 393 394 void tlb_flush(struct mmu_gather *tlb) 395 { 396 flush_tlb_mm(tlb->mm); 397 } 398 399 /* 400 * Below are functions specific to the 64-bit variant of Book3E though that 401 * may change in the future 402 */ 403 404 #ifdef CONFIG_PPC64 405 406 /* 407 * Handling of virtual linear page tables or indirect TLB entries 408 * flushing when PTE pages are freed 409 */ 410 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address) 411 { 412 int tsize = mmu_psize_defs[mmu_pte_psize].enc; 413 414 if (book3e_htw_mode != PPC_HTW_NONE) { 415 unsigned long start = address & PMD_MASK; 416 unsigned long end = address + PMD_SIZE; 417 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift; 418 419 /* This isn't the most optimal, ideally we would factor out the 420 * while preempt & CPU mask mucking around, or even the IPI but 421 * it will do for now 422 */ 423 while (start < end) { 424 __flush_tlb_page(tlb->mm, start, tsize, 1); 425 start += size; 426 } 427 } else { 428 unsigned long rmask = 0xf000000000000000ul; 429 unsigned long rid = (address & rmask) | 0x1000000000000000ul; 430 unsigned long vpte = address & ~rmask; 431 432 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful; 433 vpte |= rid; 434 __flush_tlb_page(tlb->mm, vpte, tsize, 0); 435 } 436 } 437 438 static void setup_page_sizes(void) 439 { 440 unsigned int tlb0cfg; 441 unsigned int tlb0ps; 442 unsigned int eptcfg; 443 int i, psize; 444 445 #ifdef CONFIG_PPC_FSL_BOOK3E 446 unsigned int mmucfg = mfspr(SPRN_MMUCFG); 447 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E); 448 449 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) { 450 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG); 451 unsigned int min_pg, max_pg; 452 453 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; 454 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT; 455 456 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 457 struct mmu_psize_def *def; 458 unsigned int shift; 459 460 def = &mmu_psize_defs[psize]; 461 shift = def->shift; 462 463 if (shift == 0 || shift & 1) 464 continue; 465 466 /* adjust to be in terms of 4^shift Kb */ 467 shift = (shift - 10) >> 1; 468 469 if ((shift >= min_pg) && (shift <= max_pg)) 470 def->flags |= MMU_PAGE_SIZE_DIRECT; 471 } 472 473 goto out; 474 } 475 476 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) { 477 u32 tlb1cfg, tlb1ps; 478 479 tlb0cfg = mfspr(SPRN_TLB0CFG); 480 tlb1cfg = mfspr(SPRN_TLB1CFG); 481 tlb1ps = mfspr(SPRN_TLB1PS); 482 eptcfg = mfspr(SPRN_EPTCFG); 483 484 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT)) 485 book3e_htw_mode = PPC_HTW_E6500; 486 487 /* 488 * We expect 4K subpage size and unrestricted indirect size. 489 * The lack of a restriction on indirect size is a Freescale 490 * extension, indicated by PSn = 0 but SPSn != 0. 491 */ 492 if (eptcfg != 2) 493 book3e_htw_mode = PPC_HTW_NONE; 494 495 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 496 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 497 498 if (!def->shift) 499 continue; 500 501 if (tlb1ps & (1U << (def->shift - 10))) { 502 def->flags |= MMU_PAGE_SIZE_DIRECT; 503 504 if (book3e_htw_mode && psize == MMU_PAGE_2M) 505 def->flags |= MMU_PAGE_SIZE_INDIRECT; 506 } 507 } 508 509 goto out; 510 } 511 #endif 512 513 tlb0cfg = mfspr(SPRN_TLB0CFG); 514 tlb0ps = mfspr(SPRN_TLB0PS); 515 eptcfg = mfspr(SPRN_EPTCFG); 516 517 /* Look for supported direct sizes */ 518 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 519 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 520 521 if (tlb0ps & (1U << (def->shift - 10))) 522 def->flags |= MMU_PAGE_SIZE_DIRECT; 523 } 524 525 /* Indirect page sizes supported ? */ 526 if ((tlb0cfg & TLBnCFG_IND) == 0 || 527 (tlb0cfg & TLBnCFG_PT) == 0) 528 goto out; 529 530 book3e_htw_mode = PPC_HTW_IBM; 531 532 /* Now, we only deal with one IND page size for each 533 * direct size. Hopefully all implementations today are 534 * unambiguous, but we might want to be careful in the 535 * future. 536 */ 537 for (i = 0; i < 3; i++) { 538 unsigned int ps, sps; 539 540 sps = eptcfg & 0x1f; 541 eptcfg >>= 5; 542 ps = eptcfg & 0x1f; 543 eptcfg >>= 5; 544 if (!ps || !sps) 545 continue; 546 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 547 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 548 549 if (ps == (def->shift - 10)) 550 def->flags |= MMU_PAGE_SIZE_INDIRECT; 551 if (sps == (def->shift - 10)) 552 def->ind = ps + 10; 553 } 554 } 555 556 out: 557 /* Cleanup array and print summary */ 558 pr_info("MMU: Supported page sizes\n"); 559 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 560 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 561 const char *__page_type_names[] = { 562 "unsupported", 563 "direct", 564 "indirect", 565 "direct & indirect" 566 }; 567 if (def->flags == 0) { 568 def->shift = 0; 569 continue; 570 } 571 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10), 572 __page_type_names[def->flags & 0x3]); 573 } 574 } 575 576 static void setup_mmu_htw(void) 577 { 578 /* 579 * If we want to use HW tablewalk, enable it by patching the TLB miss 580 * handlers to branch to the one dedicated to it. 581 */ 582 583 switch (book3e_htw_mode) { 584 case PPC_HTW_IBM: 585 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e); 586 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e); 587 break; 588 #ifdef CONFIG_PPC_FSL_BOOK3E 589 case PPC_HTW_E6500: 590 extlb_level_exc = EX_TLB_SIZE; 591 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e); 592 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e); 593 break; 594 #endif 595 } 596 pr_info("MMU: Book3E HW tablewalk %s\n", 597 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported"); 598 } 599 600 /* 601 * Early initialization of the MMU TLB code 602 */ 603 static void early_init_this_mmu(void) 604 { 605 unsigned int mas4; 606 607 /* Set MAS4 based on page table setting */ 608 609 mas4 = 0x4 << MAS4_WIMGED_SHIFT; 610 switch (book3e_htw_mode) { 611 case PPC_HTW_E6500: 612 mas4 |= MAS4_INDD; 613 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT; 614 mas4 |= MAS4_TLBSELD(1); 615 mmu_pte_psize = MMU_PAGE_2M; 616 break; 617 618 case PPC_HTW_IBM: 619 mas4 |= MAS4_INDD; 620 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT; 621 mmu_pte_psize = MMU_PAGE_1M; 622 break; 623 624 case PPC_HTW_NONE: 625 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT; 626 mmu_pte_psize = mmu_virtual_psize; 627 break; 628 } 629 mtspr(SPRN_MAS4, mas4); 630 631 #ifdef CONFIG_PPC_FSL_BOOK3E 632 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 633 unsigned int num_cams; 634 bool map = true; 635 636 /* use a quarter of the TLBCAM for bolted linear map */ 637 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; 638 639 /* 640 * Only do the mapping once per core, or else the 641 * transient mapping would cause problems. 642 */ 643 #ifdef CONFIG_SMP 644 if (hweight32(get_tensr()) > 1) 645 map = false; 646 #endif 647 648 if (map) 649 linear_map_top = map_mem_in_cams(linear_map_top, 650 num_cams, false); 651 } 652 #endif 653 654 /* A sync won't hurt us after mucking around with 655 * the MMU configuration 656 */ 657 mb(); 658 } 659 660 static void __init early_init_mmu_global(void) 661 { 662 /* XXX This will have to be decided at runtime, but right 663 * now our boot and TLB miss code hard wires it. Ideally 664 * we should find out a suitable page size and patch the 665 * TLB miss code (either that or use the PACA to store 666 * the value we want) 667 */ 668 mmu_linear_psize = MMU_PAGE_1G; 669 670 /* XXX This should be decided at runtime based on supported 671 * page sizes in the TLB, but for now let's assume 16M is 672 * always there and a good fit (which it probably is) 673 * 674 * Freescale booke only supports 4K pages in TLB0, so use that. 675 */ 676 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 677 mmu_vmemmap_psize = MMU_PAGE_4K; 678 else 679 mmu_vmemmap_psize = MMU_PAGE_16M; 680 681 /* XXX This code only checks for TLB 0 capabilities and doesn't 682 * check what page size combos are supported by the HW. It 683 * also doesn't handle the case where a separate array holds 684 * the IND entries from the array loaded by the PT. 685 */ 686 /* Look for supported page sizes */ 687 setup_page_sizes(); 688 689 /* Look for HW tablewalk support */ 690 setup_mmu_htw(); 691 692 #ifdef CONFIG_PPC_FSL_BOOK3E 693 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 694 if (book3e_htw_mode == PPC_HTW_NONE) { 695 extlb_level_exc = EX_TLB_SIZE; 696 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e); 697 patch_exception(0x1e0, 698 exc_instruction_tlb_miss_bolted_book3e); 699 } 700 } 701 #endif 702 703 /* Set the global containing the top of the linear mapping 704 * for use by the TLB miss code 705 */ 706 linear_map_top = memblock_end_of_DRAM(); 707 708 ioremap_bot = IOREMAP_BASE; 709 } 710 711 static void __init early_mmu_set_memory_limit(void) 712 { 713 #ifdef CONFIG_PPC_FSL_BOOK3E 714 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 715 /* 716 * Limit memory so we dont have linear faults. 717 * Unlike memblock_set_current_limit, which limits 718 * memory available during early boot, this permanently 719 * reduces the memory available to Linux. We need to 720 * do this because highmem is not supported on 64-bit. 721 */ 722 memblock_enforce_memory_limit(linear_map_top); 723 } 724 #endif 725 726 memblock_set_current_limit(linear_map_top); 727 } 728 729 /* boot cpu only */ 730 void __init early_init_mmu(void) 731 { 732 early_init_mmu_global(); 733 early_init_this_mmu(); 734 early_mmu_set_memory_limit(); 735 } 736 737 void early_init_mmu_secondary(void) 738 { 739 early_init_this_mmu(); 740 } 741 742 void setup_initial_memory_limit(phys_addr_t first_memblock_base, 743 phys_addr_t first_memblock_size) 744 { 745 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match 746 * the bolted TLB entry. We know for now that only 1G 747 * entries are supported though that may eventually 748 * change. 749 * 750 * on FSL Embedded 64-bit, usually all RAM is bolted, but with 751 * unusual memory sizes it's possible for some RAM to not be mapped 752 * (such RAM is not used at all by Linux, since we don't support 753 * highmem on 64-bit). We limit ppc64_rma_size to what would be 754 * mappable if this memblock is the only one. Additional memblocks 755 * can only increase, not decrease, the amount that ends up getting 756 * mapped. We still limit max to 1G even if we'll eventually map 757 * more. This is due to what the early init code is set up to do. 758 * 759 * We crop it to the size of the first MEMBLOCK to 760 * avoid going over total available memory just in case... 761 */ 762 #ifdef CONFIG_PPC_FSL_BOOK3E 763 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 764 unsigned long linear_sz; 765 unsigned int num_cams; 766 767 /* use a quarter of the TLBCAM for bolted linear map */ 768 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; 769 770 linear_sz = map_mem_in_cams(first_memblock_size, num_cams, 771 true); 772 773 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000); 774 } else 775 #endif 776 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); 777 778 /* Finally limit subsequent allocations */ 779 memblock_set_current_limit(first_memblock_base + ppc64_rma_size); 780 } 781 #else /* ! CONFIG_PPC64 */ 782 void __init early_init_mmu(void) 783 { 784 #ifdef CONFIG_PPC_47x 785 early_init_mmu_47x(); 786 #endif 787 788 #ifdef CONFIG_PPC_MM_SLICES 789 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); 790 #endif 791 } 792 #endif /* CONFIG_PPC64 */ 793