1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * This file contains the routines for TLB flushing. 4 * On machines where the MMU does not use a hash table to store virtual to 5 * physical translations (ie, SW loaded TLBs or Book3E compilant processors, 6 * this does -not- include 603 however which shares the implementation with 7 * hash based processors) 8 * 9 * -- BenH 10 * 11 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org> 12 * IBM Corp. 13 * 14 * Derived from arch/ppc/mm/init.c: 15 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 16 * 17 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 18 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 19 * Copyright (C) 1996 Paul Mackerras 20 * 21 * Derived from "arch/i386/mm/init.c" 22 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/mm.h> 28 #include <linux/init.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/preempt.h> 32 #include <linux/spinlock.h> 33 #include <linux/memblock.h> 34 #include <linux/of_fdt.h> 35 #include <linux/hugetlb.h> 36 37 #include <asm/pgalloc.h> 38 #include <asm/tlbflush.h> 39 #include <asm/tlb.h> 40 #include <asm/code-patching.h> 41 #include <asm/cputhreads.h> 42 #include <asm/hugetlb.h> 43 #include <asm/paca.h> 44 45 #include <mm/mmu_decl.h> 46 47 /* 48 * This struct lists the sw-supported page sizes. The hardawre MMU may support 49 * other sizes not listed here. The .ind field is only used on MMUs that have 50 * indirect page table entries. 51 */ 52 #ifdef CONFIG_PPC_E500 53 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { 54 [MMU_PAGE_4K] = { 55 .shift = 12, 56 .enc = BOOK3E_PAGESZ_4K, 57 }, 58 [MMU_PAGE_2M] = { 59 .shift = 21, 60 .enc = BOOK3E_PAGESZ_2M, 61 }, 62 [MMU_PAGE_4M] = { 63 .shift = 22, 64 .enc = BOOK3E_PAGESZ_4M, 65 }, 66 [MMU_PAGE_16M] = { 67 .shift = 24, 68 .enc = BOOK3E_PAGESZ_16M, 69 }, 70 [MMU_PAGE_64M] = { 71 .shift = 26, 72 .enc = BOOK3E_PAGESZ_64M, 73 }, 74 [MMU_PAGE_256M] = { 75 .shift = 28, 76 .enc = BOOK3E_PAGESZ_256M, 77 }, 78 [MMU_PAGE_1G] = { 79 .shift = 30, 80 .enc = BOOK3E_PAGESZ_1GB, 81 }, 82 }; 83 84 static inline int mmu_get_tsize(int psize) 85 { 86 return mmu_psize_defs[psize].enc; 87 } 88 #else 89 static inline int mmu_get_tsize(int psize) 90 { 91 /* This isn't used on !Book3E for now */ 92 return 0; 93 } 94 #endif 95 96 #ifdef CONFIG_PPC_8xx 97 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { 98 [MMU_PAGE_4K] = { 99 .shift = 12, 100 }, 101 [MMU_PAGE_16K] = { 102 .shift = 14, 103 }, 104 [MMU_PAGE_512K] = { 105 .shift = 19, 106 }, 107 [MMU_PAGE_8M] = { 108 .shift = 23, 109 }, 110 }; 111 #endif 112 113 /* The variables below are currently only used on 64-bit Book3E 114 * though this will probably be made common with other nohash 115 * implementations at some point 116 */ 117 #ifdef CONFIG_PPC64 118 119 int mmu_pte_psize; /* Page size used for PTE pages */ 120 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */ 121 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */ 122 unsigned long linear_map_top; /* Top of linear mapping */ 123 124 125 /* 126 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug 127 * exceptions. This is used for bolted and e6500 TLB miss handlers which 128 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers, 129 * this is set to zero. 130 */ 131 int extlb_level_exc; 132 133 #endif /* CONFIG_PPC64 */ 134 135 #ifdef CONFIG_PPC_E500 136 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */ 137 DEFINE_PER_CPU(int, next_tlbcam_idx); 138 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx); 139 #endif 140 141 /* 142 * Base TLB flushing operations: 143 * 144 * - flush_tlb_mm(mm) flushes the specified mm context TLB's 145 * - flush_tlb_page(vma, vmaddr) flushes one page 146 * - flush_tlb_range(vma, start, end) flushes a range of pages 147 * - flush_tlb_kernel_range(start, end) flushes kernel pages 148 * 149 * - local_* variants of page and mm only apply to the current 150 * processor 151 */ 152 153 #ifndef CONFIG_PPC_8xx 154 /* 155 * These are the base non-SMP variants of page and mm flushing 156 */ 157 void local_flush_tlb_mm(struct mm_struct *mm) 158 { 159 unsigned int pid; 160 161 preempt_disable(); 162 pid = mm->context.id; 163 if (pid != MMU_NO_CONTEXT) 164 _tlbil_pid(pid); 165 preempt_enable(); 166 } 167 EXPORT_SYMBOL(local_flush_tlb_mm); 168 169 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, 170 int tsize, int ind) 171 { 172 unsigned int pid; 173 174 preempt_disable(); 175 pid = mm ? mm->context.id : 0; 176 if (pid != MMU_NO_CONTEXT) 177 _tlbil_va(vmaddr, pid, tsize, ind); 178 preempt_enable(); 179 } 180 181 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) 182 { 183 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, 184 mmu_get_tsize(mmu_virtual_psize), 0); 185 } 186 EXPORT_SYMBOL(local_flush_tlb_page); 187 188 void local_flush_tlb_page_psize(struct mm_struct *mm, 189 unsigned long vmaddr, int psize) 190 { 191 __local_flush_tlb_page(mm, vmaddr, mmu_get_tsize(psize), 0); 192 } 193 EXPORT_SYMBOL(local_flush_tlb_page_psize); 194 195 #endif 196 197 /* 198 * And here are the SMP non-local implementations 199 */ 200 #ifdef CONFIG_SMP 201 202 static DEFINE_RAW_SPINLOCK(tlbivax_lock); 203 204 struct tlb_flush_param { 205 unsigned long addr; 206 unsigned int pid; 207 unsigned int tsize; 208 unsigned int ind; 209 }; 210 211 static void do_flush_tlb_mm_ipi(void *param) 212 { 213 struct tlb_flush_param *p = param; 214 215 _tlbil_pid(p ? p->pid : 0); 216 } 217 218 static void do_flush_tlb_page_ipi(void *param) 219 { 220 struct tlb_flush_param *p = param; 221 222 _tlbil_va(p->addr, p->pid, p->tsize, p->ind); 223 } 224 225 226 /* Note on invalidations and PID: 227 * 228 * We snapshot the PID with preempt disabled. At this point, it can still 229 * change either because: 230 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU 231 * - we are invaliating some target that isn't currently running here 232 * and is concurrently acquiring a new PID on another CPU 233 * - some other CPU is re-acquiring a lost PID for this mm 234 * etc... 235 * 236 * However, this shouldn't be a problem as we only guarantee 237 * invalidation of TLB entries present prior to this call, so we 238 * don't care about the PID changing, and invalidating a stale PID 239 * is generally harmless. 240 */ 241 242 void flush_tlb_mm(struct mm_struct *mm) 243 { 244 unsigned int pid; 245 246 preempt_disable(); 247 pid = mm->context.id; 248 if (unlikely(pid == MMU_NO_CONTEXT)) 249 goto no_context; 250 if (!mm_is_core_local(mm)) { 251 struct tlb_flush_param p = { .pid = pid }; 252 /* Ignores smp_processor_id() even if set. */ 253 smp_call_function_many(mm_cpumask(mm), 254 do_flush_tlb_mm_ipi, &p, 1); 255 } 256 _tlbil_pid(pid); 257 no_context: 258 preempt_enable(); 259 } 260 EXPORT_SYMBOL(flush_tlb_mm); 261 262 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, 263 int tsize, int ind) 264 { 265 struct cpumask *cpu_mask; 266 unsigned int pid; 267 268 /* 269 * This function as well as __local_flush_tlb_page() must only be called 270 * for user contexts. 271 */ 272 if (WARN_ON(!mm)) 273 return; 274 275 preempt_disable(); 276 pid = mm->context.id; 277 if (unlikely(pid == MMU_NO_CONTEXT)) 278 goto bail; 279 cpu_mask = mm_cpumask(mm); 280 if (!mm_is_core_local(mm)) { 281 /* If broadcast tlbivax is supported, use it */ 282 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) { 283 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL); 284 if (lock) 285 raw_spin_lock(&tlbivax_lock); 286 _tlbivax_bcast(vmaddr, pid, tsize, ind); 287 if (lock) 288 raw_spin_unlock(&tlbivax_lock); 289 goto bail; 290 } else { 291 struct tlb_flush_param p = { 292 .pid = pid, 293 .addr = vmaddr, 294 .tsize = tsize, 295 .ind = ind, 296 }; 297 /* Ignores smp_processor_id() even if set in cpu_mask */ 298 smp_call_function_many(cpu_mask, 299 do_flush_tlb_page_ipi, &p, 1); 300 } 301 } 302 _tlbil_va(vmaddr, pid, tsize, ind); 303 bail: 304 preempt_enable(); 305 } 306 307 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) 308 { 309 #ifdef CONFIG_HUGETLB_PAGE 310 if (vma && is_vm_hugetlb_page(vma)) 311 flush_hugetlb_page(vma, vmaddr); 312 #endif 313 314 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, 315 mmu_get_tsize(mmu_virtual_psize), 0); 316 } 317 EXPORT_SYMBOL(flush_tlb_page); 318 319 #endif /* CONFIG_SMP */ 320 321 #ifdef CONFIG_PPC_47x 322 void __init early_init_mmu_47x(void) 323 { 324 #ifdef CONFIG_SMP 325 unsigned long root = of_get_flat_dt_root(); 326 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL)) 327 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST); 328 #endif /* CONFIG_SMP */ 329 } 330 #endif /* CONFIG_PPC_47x */ 331 332 /* 333 * Flush kernel TLB entries in the given range 334 */ 335 #ifndef CONFIG_PPC_8xx 336 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 337 { 338 #ifdef CONFIG_SMP 339 preempt_disable(); 340 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1); 341 _tlbil_pid(0); 342 preempt_enable(); 343 #else 344 _tlbil_pid(0); 345 #endif 346 } 347 EXPORT_SYMBOL(flush_tlb_kernel_range); 348 #endif 349 350 /* 351 * Currently, for range flushing, we just do a full mm flush. This should 352 * be optimized based on a threshold on the size of the range, since 353 * some implementation can stack multiple tlbivax before a tlbsync but 354 * for now, we keep it that way 355 */ 356 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, 357 unsigned long end) 358 359 { 360 if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK)) 361 flush_tlb_page(vma, start); 362 else 363 flush_tlb_mm(vma->vm_mm); 364 } 365 EXPORT_SYMBOL(flush_tlb_range); 366 367 void tlb_flush(struct mmu_gather *tlb) 368 { 369 flush_tlb_mm(tlb->mm); 370 } 371 372 /* 373 * Below are functions specific to the 64-bit variant of Book3E though that 374 * may change in the future 375 */ 376 377 #ifdef CONFIG_PPC64 378 379 /* 380 * Handling of virtual linear page tables or indirect TLB entries 381 * flushing when PTE pages are freed 382 */ 383 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address) 384 { 385 int tsize = mmu_psize_defs[mmu_pte_psize].enc; 386 387 if (book3e_htw_mode != PPC_HTW_NONE) { 388 unsigned long start = address & PMD_MASK; 389 unsigned long end = address + PMD_SIZE; 390 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift; 391 392 /* This isn't the most optimal, ideally we would factor out the 393 * while preempt & CPU mask mucking around, or even the IPI but 394 * it will do for now 395 */ 396 while (start < end) { 397 __flush_tlb_page(tlb->mm, start, tsize, 1); 398 start += size; 399 } 400 } else { 401 unsigned long rmask = 0xf000000000000000ul; 402 unsigned long rid = (address & rmask) | 0x1000000000000000ul; 403 unsigned long vpte = address & ~rmask; 404 405 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful; 406 vpte |= rid; 407 __flush_tlb_page(tlb->mm, vpte, tsize, 0); 408 } 409 } 410 411 static void __init setup_page_sizes(void) 412 { 413 unsigned int tlb0cfg; 414 unsigned int tlb0ps; 415 unsigned int eptcfg; 416 int i, psize; 417 418 #ifdef CONFIG_PPC_E500 419 unsigned int mmucfg = mfspr(SPRN_MMUCFG); 420 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E); 421 422 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) { 423 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG); 424 unsigned int min_pg, max_pg; 425 426 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; 427 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT; 428 429 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 430 struct mmu_psize_def *def; 431 unsigned int shift; 432 433 def = &mmu_psize_defs[psize]; 434 shift = def->shift; 435 436 if (shift == 0 || shift & 1) 437 continue; 438 439 /* adjust to be in terms of 4^shift Kb */ 440 shift = (shift - 10) >> 1; 441 442 if ((shift >= min_pg) && (shift <= max_pg)) 443 def->flags |= MMU_PAGE_SIZE_DIRECT; 444 } 445 446 goto out; 447 } 448 449 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) { 450 u32 tlb1cfg, tlb1ps; 451 452 tlb0cfg = mfspr(SPRN_TLB0CFG); 453 tlb1cfg = mfspr(SPRN_TLB1CFG); 454 tlb1ps = mfspr(SPRN_TLB1PS); 455 eptcfg = mfspr(SPRN_EPTCFG); 456 457 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT)) 458 book3e_htw_mode = PPC_HTW_E6500; 459 460 /* 461 * We expect 4K subpage size and unrestricted indirect size. 462 * The lack of a restriction on indirect size is a Freescale 463 * extension, indicated by PSn = 0 but SPSn != 0. 464 */ 465 if (eptcfg != 2) 466 book3e_htw_mode = PPC_HTW_NONE; 467 468 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 469 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 470 471 if (!def->shift) 472 continue; 473 474 if (tlb1ps & (1U << (def->shift - 10))) { 475 def->flags |= MMU_PAGE_SIZE_DIRECT; 476 477 if (book3e_htw_mode && psize == MMU_PAGE_2M) 478 def->flags |= MMU_PAGE_SIZE_INDIRECT; 479 } 480 } 481 482 goto out; 483 } 484 #endif 485 486 tlb0cfg = mfspr(SPRN_TLB0CFG); 487 tlb0ps = mfspr(SPRN_TLB0PS); 488 eptcfg = mfspr(SPRN_EPTCFG); 489 490 /* Look for supported direct sizes */ 491 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 492 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 493 494 if (tlb0ps & (1U << (def->shift - 10))) 495 def->flags |= MMU_PAGE_SIZE_DIRECT; 496 } 497 498 /* Indirect page sizes supported ? */ 499 if ((tlb0cfg & TLBnCFG_IND) == 0 || 500 (tlb0cfg & TLBnCFG_PT) == 0) 501 goto out; 502 503 book3e_htw_mode = PPC_HTW_IBM; 504 505 /* Now, we only deal with one IND page size for each 506 * direct size. Hopefully all implementations today are 507 * unambiguous, but we might want to be careful in the 508 * future. 509 */ 510 for (i = 0; i < 3; i++) { 511 unsigned int ps, sps; 512 513 sps = eptcfg & 0x1f; 514 eptcfg >>= 5; 515 ps = eptcfg & 0x1f; 516 eptcfg >>= 5; 517 if (!ps || !sps) 518 continue; 519 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 520 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 521 522 if (ps == (def->shift - 10)) 523 def->flags |= MMU_PAGE_SIZE_INDIRECT; 524 if (sps == (def->shift - 10)) 525 def->ind = ps + 10; 526 } 527 } 528 529 out: 530 /* Cleanup array and print summary */ 531 pr_info("MMU: Supported page sizes\n"); 532 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 533 struct mmu_psize_def *def = &mmu_psize_defs[psize]; 534 const char *__page_type_names[] = { 535 "unsupported", 536 "direct", 537 "indirect", 538 "direct & indirect" 539 }; 540 if (def->flags == 0) { 541 def->shift = 0; 542 continue; 543 } 544 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10), 545 __page_type_names[def->flags & 0x3]); 546 } 547 } 548 549 static void __init setup_mmu_htw(void) 550 { 551 /* 552 * If we want to use HW tablewalk, enable it by patching the TLB miss 553 * handlers to branch to the one dedicated to it. 554 */ 555 556 switch (book3e_htw_mode) { 557 case PPC_HTW_IBM: 558 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e); 559 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e); 560 break; 561 #ifdef CONFIG_PPC_E500 562 case PPC_HTW_E6500: 563 extlb_level_exc = EX_TLB_SIZE; 564 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e); 565 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e); 566 break; 567 #endif 568 } 569 pr_info("MMU: Book3E HW tablewalk %s\n", 570 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported"); 571 } 572 573 /* 574 * Early initialization of the MMU TLB code 575 */ 576 static void early_init_this_mmu(void) 577 { 578 unsigned int mas4; 579 580 /* Set MAS4 based on page table setting */ 581 582 mas4 = 0x4 << MAS4_WIMGED_SHIFT; 583 switch (book3e_htw_mode) { 584 case PPC_HTW_E6500: 585 mas4 |= MAS4_INDD; 586 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT; 587 mas4 |= MAS4_TLBSELD(1); 588 mmu_pte_psize = MMU_PAGE_2M; 589 break; 590 591 case PPC_HTW_IBM: 592 mas4 |= MAS4_INDD; 593 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT; 594 mmu_pte_psize = MMU_PAGE_1M; 595 break; 596 597 case PPC_HTW_NONE: 598 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT; 599 mmu_pte_psize = mmu_virtual_psize; 600 break; 601 } 602 mtspr(SPRN_MAS4, mas4); 603 604 #ifdef CONFIG_PPC_E500 605 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 606 unsigned int num_cams; 607 bool map = true; 608 609 /* use a quarter of the TLBCAM for bolted linear map */ 610 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; 611 612 /* 613 * Only do the mapping once per core, or else the 614 * transient mapping would cause problems. 615 */ 616 #ifdef CONFIG_SMP 617 if (hweight32(get_tensr()) > 1) 618 map = false; 619 #endif 620 621 if (map) 622 linear_map_top = map_mem_in_cams(linear_map_top, 623 num_cams, false, true); 624 } 625 #endif 626 627 /* A sync won't hurt us after mucking around with 628 * the MMU configuration 629 */ 630 mb(); 631 } 632 633 static void __init early_init_mmu_global(void) 634 { 635 /* XXX This should be decided at runtime based on supported 636 * page sizes in the TLB, but for now let's assume 16M is 637 * always there and a good fit (which it probably is) 638 * 639 * Freescale booke only supports 4K pages in TLB0, so use that. 640 */ 641 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 642 mmu_vmemmap_psize = MMU_PAGE_4K; 643 else 644 mmu_vmemmap_psize = MMU_PAGE_16M; 645 646 /* XXX This code only checks for TLB 0 capabilities and doesn't 647 * check what page size combos are supported by the HW. It 648 * also doesn't handle the case where a separate array holds 649 * the IND entries from the array loaded by the PT. 650 */ 651 /* Look for supported page sizes */ 652 setup_page_sizes(); 653 654 /* Look for HW tablewalk support */ 655 setup_mmu_htw(); 656 657 #ifdef CONFIG_PPC_E500 658 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 659 if (book3e_htw_mode == PPC_HTW_NONE) { 660 extlb_level_exc = EX_TLB_SIZE; 661 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e); 662 patch_exception(0x1e0, 663 exc_instruction_tlb_miss_bolted_book3e); 664 } 665 } 666 #endif 667 668 /* Set the global containing the top of the linear mapping 669 * for use by the TLB miss code 670 */ 671 linear_map_top = memblock_end_of_DRAM(); 672 673 ioremap_bot = IOREMAP_BASE; 674 } 675 676 static void __init early_mmu_set_memory_limit(void) 677 { 678 #ifdef CONFIG_PPC_E500 679 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 680 /* 681 * Limit memory so we dont have linear faults. 682 * Unlike memblock_set_current_limit, which limits 683 * memory available during early boot, this permanently 684 * reduces the memory available to Linux. We need to 685 * do this because highmem is not supported on 64-bit. 686 */ 687 memblock_enforce_memory_limit(linear_map_top); 688 } 689 #endif 690 691 memblock_set_current_limit(linear_map_top); 692 } 693 694 /* boot cpu only */ 695 void __init early_init_mmu(void) 696 { 697 early_init_mmu_global(); 698 early_init_this_mmu(); 699 early_mmu_set_memory_limit(); 700 } 701 702 void early_init_mmu_secondary(void) 703 { 704 early_init_this_mmu(); 705 } 706 707 void setup_initial_memory_limit(phys_addr_t first_memblock_base, 708 phys_addr_t first_memblock_size) 709 { 710 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match 711 * the bolted TLB entry. We know for now that only 1G 712 * entries are supported though that may eventually 713 * change. 714 * 715 * on FSL Embedded 64-bit, usually all RAM is bolted, but with 716 * unusual memory sizes it's possible for some RAM to not be mapped 717 * (such RAM is not used at all by Linux, since we don't support 718 * highmem on 64-bit). We limit ppc64_rma_size to what would be 719 * mappable if this memblock is the only one. Additional memblocks 720 * can only increase, not decrease, the amount that ends up getting 721 * mapped. We still limit max to 1G even if we'll eventually map 722 * more. This is due to what the early init code is set up to do. 723 * 724 * We crop it to the size of the first MEMBLOCK to 725 * avoid going over total available memory just in case... 726 */ 727 #ifdef CONFIG_PPC_E500 728 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { 729 unsigned long linear_sz; 730 unsigned int num_cams; 731 732 /* use a quarter of the TLBCAM for bolted linear map */ 733 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; 734 735 linear_sz = map_mem_in_cams(first_memblock_size, num_cams, 736 true, true); 737 738 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000); 739 } else 740 #endif 741 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); 742 743 /* Finally limit subsequent allocations */ 744 memblock_set_current_limit(first_memblock_base + ppc64_rma_size); 745 } 746 #else /* ! CONFIG_PPC64 */ 747 void __init early_init_mmu(void) 748 { 749 #ifdef CONFIG_PPC_47x 750 early_init_mmu_47x(); 751 #endif 752 } 753 #endif /* CONFIG_PPC64 */ 754