1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) 9 * 10 * Derived from "arch/i386/mm/init.c" 11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 * 18 */ 19 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/stddef.h> 28 #include <linux/init.h> 29 #include <linux/bootmem.h> 30 #include <linux/highmem.h> 31 #include <linux/initrd.h> 32 #include <linux/pagemap.h> 33 #include <linux/suspend.h> 34 35 #include <asm/pgalloc.h> 36 #include <asm/prom.h> 37 #include <asm/io.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/mmu.h> 41 #include <asm/smp.h> 42 #include <asm/machdep.h> 43 #include <asm/btext.h> 44 #include <asm/tlb.h> 45 #include <asm/prom.h> 46 #include <asm/lmb.h> 47 #include <asm/sections.h> 48 #include <asm/vdso.h> 49 50 #include "mmu_decl.h" 51 52 #ifndef CPU_FTR_COHERENT_ICACHE 53 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ 54 #define CPU_FTR_NOEXECUTE 0 55 #endif 56 57 int init_bootmem_done; 58 int mem_init_done; 59 unsigned long memory_limit; 60 61 int page_is_ram(unsigned long pfn) 62 { 63 unsigned long paddr = (pfn << PAGE_SHIFT); 64 65 #ifndef CONFIG_PPC64 /* XXX for now */ 66 return paddr < __pa(high_memory); 67 #else 68 int i; 69 for (i=0; i < lmb.memory.cnt; i++) { 70 unsigned long base; 71 72 base = lmb.memory.region[i].base; 73 74 if ((paddr >= base) && 75 (paddr < (base + lmb.memory.region[i].size))) { 76 return 1; 77 } 78 } 79 80 return 0; 81 #endif 82 } 83 84 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 85 unsigned long size, pgprot_t vma_prot) 86 { 87 if (ppc_md.phys_mem_access_prot) 88 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); 89 90 if (!page_is_ram(pfn)) 91 vma_prot = __pgprot(pgprot_val(vma_prot) 92 | _PAGE_GUARDED | _PAGE_NO_CACHE); 93 return vma_prot; 94 } 95 EXPORT_SYMBOL(phys_mem_access_prot); 96 97 #ifdef CONFIG_MEMORY_HOTPLUG 98 99 void online_page(struct page *page) 100 { 101 ClearPageReserved(page); 102 init_page_count(page); 103 __free_page(page); 104 totalram_pages++; 105 num_physpages++; 106 } 107 108 #ifdef CONFIG_NUMA 109 int memory_add_physaddr_to_nid(u64 start) 110 { 111 return hot_add_scn_to_nid(start); 112 } 113 #endif 114 115 int __devinit arch_add_memory(int nid, u64 start, u64 size) 116 { 117 struct pglist_data *pgdata; 118 struct zone *zone; 119 unsigned long start_pfn = start >> PAGE_SHIFT; 120 unsigned long nr_pages = size >> PAGE_SHIFT; 121 122 pgdata = NODE_DATA(nid); 123 124 start = (unsigned long)__va(start); 125 create_section_mapping(start, start + size); 126 127 /* this should work for most non-highmem platforms */ 128 zone = pgdata->node_zones; 129 130 return __add_pages(zone, start_pfn, nr_pages); 131 } 132 133 /* 134 * First pass at this code will check to determine if the remove 135 * request is within the RMO. Do not allow removal within the RMO. 136 */ 137 int __devinit remove_memory(u64 start, u64 size) 138 { 139 struct zone *zone; 140 unsigned long start_pfn, end_pfn, nr_pages; 141 142 start_pfn = start >> PAGE_SHIFT; 143 nr_pages = size >> PAGE_SHIFT; 144 end_pfn = start_pfn + nr_pages; 145 146 printk("%s(): Attempting to remove memoy in range " 147 "%lx to %lx\n", __func__, start, start+size); 148 /* 149 * check for range within RMO 150 */ 151 zone = page_zone(pfn_to_page(start_pfn)); 152 153 printk("%s(): memory will be removed from " 154 "the %s zone\n", __func__, zone->name); 155 156 /* 157 * not handling removing memory ranges that 158 * overlap multiple zones yet 159 */ 160 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages)) 161 goto overlap; 162 163 /* make sure it is NOT in RMO */ 164 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) { 165 printk("%s(): range to be removed must NOT be in RMO!\n", 166 __func__); 167 goto in_rmo; 168 } 169 170 return __remove_pages(zone, start_pfn, nr_pages); 171 172 overlap: 173 printk("%s(): memory range to be removed overlaps " 174 "multiple zones!!!\n", __func__); 175 in_rmo: 176 return -1; 177 } 178 #endif /* CONFIG_MEMORY_HOTPLUG */ 179 180 void show_mem(void) 181 { 182 unsigned long total = 0, reserved = 0; 183 unsigned long shared = 0, cached = 0; 184 unsigned long highmem = 0; 185 struct page *page; 186 pg_data_t *pgdat; 187 unsigned long i; 188 189 printk("Mem-info:\n"); 190 show_free_areas(); 191 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 192 for_each_online_pgdat(pgdat) { 193 unsigned long flags; 194 pgdat_resize_lock(pgdat, &flags); 195 for (i = 0; i < pgdat->node_spanned_pages; i++) { 196 if (!pfn_valid(pgdat->node_start_pfn + i)) 197 continue; 198 page = pgdat_page_nr(pgdat, i); 199 total++; 200 if (PageHighMem(page)) 201 highmem++; 202 if (PageReserved(page)) 203 reserved++; 204 else if (PageSwapCache(page)) 205 cached++; 206 else if (page_count(page)) 207 shared += page_count(page) - 1; 208 } 209 pgdat_resize_unlock(pgdat, &flags); 210 } 211 printk("%ld pages of RAM\n", total); 212 #ifdef CONFIG_HIGHMEM 213 printk("%ld pages of HIGHMEM\n", highmem); 214 #endif 215 printk("%ld reserved pages\n", reserved); 216 printk("%ld pages shared\n", shared); 217 printk("%ld pages swap cached\n", cached); 218 } 219 220 /* 221 * Initialize the bootmem system and give it all the memory we 222 * have available. If we are using highmem, we only put the 223 * lowmem into the bootmem system. 224 */ 225 #ifndef CONFIG_NEED_MULTIPLE_NODES 226 void __init do_init_bootmem(void) 227 { 228 unsigned long i; 229 unsigned long start, bootmap_pages; 230 unsigned long total_pages; 231 int boot_mapsize; 232 233 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; 234 #ifdef CONFIG_HIGHMEM 235 total_pages = total_lowmem >> PAGE_SHIFT; 236 #endif 237 238 /* 239 * Find an area to use for the bootmem bitmap. Calculate the size of 240 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. 241 * Add 1 additional page in case the address isn't page-aligned. 242 */ 243 bootmap_pages = bootmem_bootmap_pages(total_pages); 244 245 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 246 247 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); 248 249 /* Add active regions with valid PFNs */ 250 for (i = 0; i < lmb.memory.cnt; i++) { 251 unsigned long start_pfn, end_pfn; 252 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 253 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 254 add_active_range(0, start_pfn, end_pfn); 255 } 256 257 /* Add all physical memory to the bootmem map, mark each area 258 * present. 259 */ 260 #ifdef CONFIG_HIGHMEM 261 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT); 262 #else 263 free_bootmem_with_active_regions(0, max_pfn); 264 #endif 265 266 /* reserve the sections we're already using */ 267 for (i = 0; i < lmb.reserved.cnt; i++) 268 reserve_bootmem(lmb.reserved.region[i].base, 269 lmb_size_bytes(&lmb.reserved, i)); 270 271 /* XXX need to clip this if using highmem? */ 272 sparse_memory_present_with_active_regions(0); 273 274 init_bootmem_done = 1; 275 } 276 277 /* mark pages that don't exist as nosave */ 278 static int __init mark_nonram_nosave(void) 279 { 280 unsigned long lmb_next_region_start_pfn, 281 lmb_region_max_pfn; 282 int i; 283 284 for (i = 0; i < lmb.memory.cnt - 1; i++) { 285 lmb_region_max_pfn = 286 (lmb.memory.region[i].base >> PAGE_SHIFT) + 287 (lmb.memory.region[i].size >> PAGE_SHIFT); 288 lmb_next_region_start_pfn = 289 lmb.memory.region[i+1].base >> PAGE_SHIFT; 290 291 if (lmb_region_max_pfn < lmb_next_region_start_pfn) 292 register_nosave_region(lmb_region_max_pfn, 293 lmb_next_region_start_pfn); 294 } 295 296 return 0; 297 } 298 299 /* 300 * paging_init() sets up the page tables - in fact we've already done this. 301 */ 302 void __init paging_init(void) 303 { 304 unsigned long total_ram = lmb_phys_mem_size(); 305 unsigned long top_of_ram = lmb_end_of_DRAM(); 306 unsigned long max_zone_pfns[MAX_NR_ZONES]; 307 308 #ifdef CONFIG_HIGHMEM 309 map_page(PKMAP_BASE, 0, 0); /* XXX gross */ 310 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 311 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); 312 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ 313 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 314 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), 315 KMAP_FIX_BEGIN); 316 kmap_prot = PAGE_KERNEL; 317 #endif /* CONFIG_HIGHMEM */ 318 319 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 320 top_of_ram, total_ram); 321 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 322 (top_of_ram - total_ram) >> 20); 323 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 324 #ifdef CONFIG_HIGHMEM 325 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; 326 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; 327 #else 328 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; 329 #endif 330 free_area_init_nodes(max_zone_pfns); 331 332 mark_nonram_nosave(); 333 } 334 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ 335 336 void __init mem_init(void) 337 { 338 #ifdef CONFIG_NEED_MULTIPLE_NODES 339 int nid; 340 #endif 341 pg_data_t *pgdat; 342 unsigned long i; 343 struct page *page; 344 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; 345 346 num_physpages = lmb.memory.size >> PAGE_SHIFT; 347 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); 348 349 #ifdef CONFIG_NEED_MULTIPLE_NODES 350 for_each_online_node(nid) { 351 if (NODE_DATA(nid)->node_spanned_pages != 0) { 352 printk("freeing bootmem node %d\n", nid); 353 totalram_pages += 354 free_all_bootmem_node(NODE_DATA(nid)); 355 } 356 } 357 #else 358 max_mapnr = max_pfn; 359 totalram_pages += free_all_bootmem(); 360 #endif 361 for_each_online_pgdat(pgdat) { 362 for (i = 0; i < pgdat->node_spanned_pages; i++) { 363 if (!pfn_valid(pgdat->node_start_pfn + i)) 364 continue; 365 page = pgdat_page_nr(pgdat, i); 366 if (PageReserved(page)) 367 reservedpages++; 368 } 369 } 370 371 codesize = (unsigned long)&_sdata - (unsigned long)&_stext; 372 datasize = (unsigned long)&_edata - (unsigned long)&_sdata; 373 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; 374 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; 375 376 #ifdef CONFIG_HIGHMEM 377 { 378 unsigned long pfn, highmem_mapnr; 379 380 highmem_mapnr = total_lowmem >> PAGE_SHIFT; 381 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { 382 struct page *page = pfn_to_page(pfn); 383 384 ClearPageReserved(page); 385 init_page_count(page); 386 __free_page(page); 387 totalhigh_pages++; 388 } 389 totalram_pages += totalhigh_pages; 390 printk(KERN_DEBUG "High memory: %luk\n", 391 totalhigh_pages << (PAGE_SHIFT-10)); 392 } 393 #endif /* CONFIG_HIGHMEM */ 394 395 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " 396 "%luk reserved, %luk data, %luk bss, %luk init)\n", 397 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 398 num_physpages << (PAGE_SHIFT-10), 399 codesize >> 10, 400 reservedpages << (PAGE_SHIFT-10), 401 datasize >> 10, 402 bsssize >> 10, 403 initsize >> 10); 404 405 mem_init_done = 1; 406 } 407 408 /* 409 * This is called when a page has been modified by the kernel. 410 * It just marks the page as not i-cache clean. We do the i-cache 411 * flush later when the page is given to a user process, if necessary. 412 */ 413 void flush_dcache_page(struct page *page) 414 { 415 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) 416 return; 417 /* avoid an atomic op if possible */ 418 if (test_bit(PG_arch_1, &page->flags)) 419 clear_bit(PG_arch_1, &page->flags); 420 } 421 EXPORT_SYMBOL(flush_dcache_page); 422 423 void flush_dcache_icache_page(struct page *page) 424 { 425 #ifdef CONFIG_BOOKE 426 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); 427 __flush_dcache_icache(start); 428 kunmap_atomic(start, KM_PPC_SYNC_ICACHE); 429 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) 430 /* On 8xx there is no need to kmap since highmem is not supported */ 431 __flush_dcache_icache(page_address(page)); 432 #else 433 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); 434 #endif 435 436 } 437 void clear_user_page(void *page, unsigned long vaddr, struct page *pg) 438 { 439 clear_page(page); 440 441 /* 442 * We shouldnt have to do this, but some versions of glibc 443 * require it (ld.so assumes zero filled pages are icache clean) 444 * - Anton 445 */ 446 flush_dcache_page(pg); 447 } 448 EXPORT_SYMBOL(clear_user_page); 449 450 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, 451 struct page *pg) 452 { 453 copy_page(vto, vfrom); 454 455 /* 456 * We should be able to use the following optimisation, however 457 * there are two problems. 458 * Firstly a bug in some versions of binutils meant PLT sections 459 * were not marked executable. 460 * Secondly the first word in the GOT section is blrl, used 461 * to establish the GOT address. Until recently the GOT was 462 * not marked executable. 463 * - Anton 464 */ 465 #if 0 466 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) 467 return; 468 #endif 469 470 flush_dcache_page(pg); 471 } 472 473 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 474 unsigned long addr, int len) 475 { 476 unsigned long maddr; 477 478 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); 479 flush_icache_range(maddr, maddr + len); 480 kunmap(page); 481 } 482 EXPORT_SYMBOL(flush_icache_user_range); 483 484 /* 485 * This is called at the end of handling a user page fault, when the 486 * fault has been handled by updating a PTE in the linux page tables. 487 * We use it to preload an HPTE into the hash table corresponding to 488 * the updated linux PTE. 489 * 490 * This must always be called with the pte lock held. 491 */ 492 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 493 pte_t pte) 494 { 495 #ifdef CONFIG_PPC_STD_MMU 496 unsigned long access = 0, trap; 497 #endif 498 unsigned long pfn = pte_pfn(pte); 499 500 /* handle i-cache coherency */ 501 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && 502 !cpu_has_feature(CPU_FTR_NOEXECUTE) && 503 pfn_valid(pfn)) { 504 struct page *page = pfn_to_page(pfn); 505 #ifdef CONFIG_8xx 506 /* On 8xx, cache control instructions (particularly 507 * "dcbst" from flush_dcache_icache) fault as write 508 * operation if there is an unpopulated TLB entry 509 * for the address in question. To workaround that, 510 * we invalidate the TLB here, thus avoiding dcbst 511 * misbehaviour. 512 */ 513 _tlbie(address); 514 #endif 515 if (!PageReserved(page) 516 && !test_bit(PG_arch_1, &page->flags)) { 517 if (vma->vm_mm == current->active_mm) { 518 __flush_dcache_icache((void *) address); 519 } else 520 flush_dcache_icache_page(page); 521 set_bit(PG_arch_1, &page->flags); 522 } 523 } 524 525 #ifdef CONFIG_PPC_STD_MMU 526 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 527 if (!pte_young(pte) || address >= TASK_SIZE) 528 return; 529 530 /* We try to figure out if we are coming from an instruction 531 * access fault and pass that down to __hash_page so we avoid 532 * double-faulting on execution of fresh text. We have to test 533 * for regs NULL since init will get here first thing at boot 534 * 535 * We also avoid filling the hash if not coming from a fault 536 */ 537 if (current->thread.regs == NULL) 538 return; 539 trap = TRAP(current->thread.regs); 540 if (trap == 0x400) 541 access |= _PAGE_EXEC; 542 else if (trap != 0x300) 543 return; 544 hash_preload(vma->vm_mm, address, access, trap); 545 #endif /* CONFIG_PPC_STD_MMU */ 546 } 547