xref: /openbmc/linux/arch/powerpc/mm/mem.c (revision c21b37f6)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34 
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/prom.h>
46 #include <asm/lmb.h>
47 #include <asm/sections.h>
48 #include <asm/vdso.h>
49 
50 #include "mmu_decl.h"
51 
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
54 #define CPU_FTR_NOEXECUTE	0
55 #endif
56 
57 int init_bootmem_done;
58 int mem_init_done;
59 unsigned long memory_limit;
60 
61 int page_is_ram(unsigned long pfn)
62 {
63 	unsigned long paddr = (pfn << PAGE_SHIFT);
64 
65 #ifndef CONFIG_PPC64	/* XXX for now */
66 	return paddr < __pa(high_memory);
67 #else
68 	int i;
69 	for (i=0; i < lmb.memory.cnt; i++) {
70 		unsigned long base;
71 
72 		base = lmb.memory.region[i].base;
73 
74 		if ((paddr >= base) &&
75 			(paddr < (base + lmb.memory.region[i].size))) {
76 			return 1;
77 		}
78 	}
79 
80 	return 0;
81 #endif
82 }
83 
84 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
85 			      unsigned long size, pgprot_t vma_prot)
86 {
87 	if (ppc_md.phys_mem_access_prot)
88 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
89 
90 	if (!page_is_ram(pfn))
91 		vma_prot = __pgprot(pgprot_val(vma_prot)
92 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
93 	return vma_prot;
94 }
95 EXPORT_SYMBOL(phys_mem_access_prot);
96 
97 #ifdef CONFIG_MEMORY_HOTPLUG
98 
99 void online_page(struct page *page)
100 {
101 	ClearPageReserved(page);
102 	init_page_count(page);
103 	__free_page(page);
104 	totalram_pages++;
105 	num_physpages++;
106 }
107 
108 #ifdef CONFIG_NUMA
109 int memory_add_physaddr_to_nid(u64 start)
110 {
111 	return hot_add_scn_to_nid(start);
112 }
113 #endif
114 
115 int __devinit arch_add_memory(int nid, u64 start, u64 size)
116 {
117 	struct pglist_data *pgdata;
118 	struct zone *zone;
119 	unsigned long start_pfn = start >> PAGE_SHIFT;
120 	unsigned long nr_pages = size >> PAGE_SHIFT;
121 
122 	pgdata = NODE_DATA(nid);
123 
124 	start = (unsigned long)__va(start);
125 	create_section_mapping(start, start + size);
126 
127 	/* this should work for most non-highmem platforms */
128 	zone = pgdata->node_zones;
129 
130 	return __add_pages(zone, start_pfn, nr_pages);
131 }
132 
133 /*
134  * First pass at this code will check to determine if the remove
135  * request is within the RMO.  Do not allow removal within the RMO.
136  */
137 int __devinit remove_memory(u64 start, u64 size)
138 {
139 	struct zone *zone;
140 	unsigned long start_pfn, end_pfn, nr_pages;
141 
142 	start_pfn = start >> PAGE_SHIFT;
143 	nr_pages = size >> PAGE_SHIFT;
144 	end_pfn = start_pfn + nr_pages;
145 
146 	printk("%s(): Attempting to remove memoy in range "
147 			"%lx to %lx\n", __func__, start, start+size);
148 	/*
149 	 * check for range within RMO
150 	 */
151 	zone = page_zone(pfn_to_page(start_pfn));
152 
153 	printk("%s(): memory will be removed from "
154 			"the %s zone\n", __func__, zone->name);
155 
156 	/*
157 	 * not handling removing memory ranges that
158 	 * overlap multiple zones yet
159 	 */
160 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
161 		goto overlap;
162 
163 	/* make sure it is NOT in RMO */
164 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
165 		printk("%s(): range to be removed must NOT be in RMO!\n",
166 			__func__);
167 		goto in_rmo;
168 	}
169 
170 	return __remove_pages(zone, start_pfn, nr_pages);
171 
172 overlap:
173 	printk("%s(): memory range to be removed overlaps "
174 		"multiple zones!!!\n", __func__);
175 in_rmo:
176 	return -1;
177 }
178 #endif /* CONFIG_MEMORY_HOTPLUG */
179 
180 void show_mem(void)
181 {
182 	unsigned long total = 0, reserved = 0;
183 	unsigned long shared = 0, cached = 0;
184 	unsigned long highmem = 0;
185 	struct page *page;
186 	pg_data_t *pgdat;
187 	unsigned long i;
188 
189 	printk("Mem-info:\n");
190 	show_free_areas();
191 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
192 	for_each_online_pgdat(pgdat) {
193 		unsigned long flags;
194 		pgdat_resize_lock(pgdat, &flags);
195 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
196 			if (!pfn_valid(pgdat->node_start_pfn + i))
197 				continue;
198 			page = pgdat_page_nr(pgdat, i);
199 			total++;
200 			if (PageHighMem(page))
201 				highmem++;
202 			if (PageReserved(page))
203 				reserved++;
204 			else if (PageSwapCache(page))
205 				cached++;
206 			else if (page_count(page))
207 				shared += page_count(page) - 1;
208 		}
209 		pgdat_resize_unlock(pgdat, &flags);
210 	}
211 	printk("%ld pages of RAM\n", total);
212 #ifdef CONFIG_HIGHMEM
213 	printk("%ld pages of HIGHMEM\n", highmem);
214 #endif
215 	printk("%ld reserved pages\n", reserved);
216 	printk("%ld pages shared\n", shared);
217 	printk("%ld pages swap cached\n", cached);
218 }
219 
220 /*
221  * Initialize the bootmem system and give it all the memory we
222  * have available.  If we are using highmem, we only put the
223  * lowmem into the bootmem system.
224  */
225 #ifndef CONFIG_NEED_MULTIPLE_NODES
226 void __init do_init_bootmem(void)
227 {
228 	unsigned long i;
229 	unsigned long start, bootmap_pages;
230 	unsigned long total_pages;
231 	int boot_mapsize;
232 
233 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
234 #ifdef CONFIG_HIGHMEM
235 	total_pages = total_lowmem >> PAGE_SHIFT;
236 #endif
237 
238 	/*
239 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
240 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
241 	 * Add 1 additional page in case the address isn't page-aligned.
242 	 */
243 	bootmap_pages = bootmem_bootmap_pages(total_pages);
244 
245 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
246 
247 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
248 
249 	/* Add active regions with valid PFNs */
250 	for (i = 0; i < lmb.memory.cnt; i++) {
251 		unsigned long start_pfn, end_pfn;
252 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
253 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
254 		add_active_range(0, start_pfn, end_pfn);
255 	}
256 
257 	/* Add all physical memory to the bootmem map, mark each area
258 	 * present.
259 	 */
260 #ifdef CONFIG_HIGHMEM
261 	free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
262 #else
263 	free_bootmem_with_active_regions(0, max_pfn);
264 #endif
265 
266 	/* reserve the sections we're already using */
267 	for (i = 0; i < lmb.reserved.cnt; i++)
268 		reserve_bootmem(lmb.reserved.region[i].base,
269 				lmb_size_bytes(&lmb.reserved, i));
270 
271 	/* XXX need to clip this if using highmem? */
272 	sparse_memory_present_with_active_regions(0);
273 
274 	init_bootmem_done = 1;
275 }
276 
277 /* mark pages that don't exist as nosave */
278 static int __init mark_nonram_nosave(void)
279 {
280 	unsigned long lmb_next_region_start_pfn,
281 		      lmb_region_max_pfn;
282 	int i;
283 
284 	for (i = 0; i < lmb.memory.cnt - 1; i++) {
285 		lmb_region_max_pfn =
286 			(lmb.memory.region[i].base >> PAGE_SHIFT) +
287 			(lmb.memory.region[i].size >> PAGE_SHIFT);
288 		lmb_next_region_start_pfn =
289 			lmb.memory.region[i+1].base >> PAGE_SHIFT;
290 
291 		if (lmb_region_max_pfn < lmb_next_region_start_pfn)
292 			register_nosave_region(lmb_region_max_pfn,
293 					       lmb_next_region_start_pfn);
294 	}
295 
296 	return 0;
297 }
298 
299 /*
300  * paging_init() sets up the page tables - in fact we've already done this.
301  */
302 void __init paging_init(void)
303 {
304 	unsigned long total_ram = lmb_phys_mem_size();
305 	unsigned long top_of_ram = lmb_end_of_DRAM();
306 	unsigned long max_zone_pfns[MAX_NR_ZONES];
307 
308 #ifdef CONFIG_HIGHMEM
309 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
310 	pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
311 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
312 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
313 	kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
314 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
315 			 KMAP_FIX_BEGIN);
316 	kmap_prot = PAGE_KERNEL;
317 #endif /* CONFIG_HIGHMEM */
318 
319 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
320 	       top_of_ram, total_ram);
321 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
322 	       (top_of_ram - total_ram) >> 20);
323 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
324 #ifdef CONFIG_HIGHMEM
325 	max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
326 	max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
327 #else
328 	max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
329 #endif
330 	free_area_init_nodes(max_zone_pfns);
331 
332 	mark_nonram_nosave();
333 }
334 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
335 
336 void __init mem_init(void)
337 {
338 #ifdef CONFIG_NEED_MULTIPLE_NODES
339 	int nid;
340 #endif
341 	pg_data_t *pgdat;
342 	unsigned long i;
343 	struct page *page;
344 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
345 
346 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
347 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
348 
349 #ifdef CONFIG_NEED_MULTIPLE_NODES
350         for_each_online_node(nid) {
351 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
352 			printk("freeing bootmem node %d\n", nid);
353 			totalram_pages +=
354 				free_all_bootmem_node(NODE_DATA(nid));
355 		}
356 	}
357 #else
358 	max_mapnr = max_pfn;
359 	totalram_pages += free_all_bootmem();
360 #endif
361 	for_each_online_pgdat(pgdat) {
362 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
363 			if (!pfn_valid(pgdat->node_start_pfn + i))
364 				continue;
365 			page = pgdat_page_nr(pgdat, i);
366 			if (PageReserved(page))
367 				reservedpages++;
368 		}
369 	}
370 
371 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
372 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
373 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
374 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
375 
376 #ifdef CONFIG_HIGHMEM
377 	{
378 		unsigned long pfn, highmem_mapnr;
379 
380 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
381 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
382 			struct page *page = pfn_to_page(pfn);
383 
384 			ClearPageReserved(page);
385 			init_page_count(page);
386 			__free_page(page);
387 			totalhigh_pages++;
388 		}
389 		totalram_pages += totalhigh_pages;
390 		printk(KERN_DEBUG "High memory: %luk\n",
391 		       totalhigh_pages << (PAGE_SHIFT-10));
392 	}
393 #endif /* CONFIG_HIGHMEM */
394 
395 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
396 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
397 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
398 		num_physpages << (PAGE_SHIFT-10),
399 		codesize >> 10,
400 		reservedpages << (PAGE_SHIFT-10),
401 		datasize >> 10,
402 		bsssize >> 10,
403 		initsize >> 10);
404 
405 	mem_init_done = 1;
406 }
407 
408 /*
409  * This is called when a page has been modified by the kernel.
410  * It just marks the page as not i-cache clean.  We do the i-cache
411  * flush later when the page is given to a user process, if necessary.
412  */
413 void flush_dcache_page(struct page *page)
414 {
415 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
416 		return;
417 	/* avoid an atomic op if possible */
418 	if (test_bit(PG_arch_1, &page->flags))
419 		clear_bit(PG_arch_1, &page->flags);
420 }
421 EXPORT_SYMBOL(flush_dcache_page);
422 
423 void flush_dcache_icache_page(struct page *page)
424 {
425 #ifdef CONFIG_BOOKE
426 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
427 	__flush_dcache_icache(start);
428 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
429 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
430 	/* On 8xx there is no need to kmap since highmem is not supported */
431 	__flush_dcache_icache(page_address(page));
432 #else
433 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
434 #endif
435 
436 }
437 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
438 {
439 	clear_page(page);
440 
441 	/*
442 	 * We shouldnt have to do this, but some versions of glibc
443 	 * require it (ld.so assumes zero filled pages are icache clean)
444 	 * - Anton
445 	 */
446 	flush_dcache_page(pg);
447 }
448 EXPORT_SYMBOL(clear_user_page);
449 
450 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
451 		    struct page *pg)
452 {
453 	copy_page(vto, vfrom);
454 
455 	/*
456 	 * We should be able to use the following optimisation, however
457 	 * there are two problems.
458 	 * Firstly a bug in some versions of binutils meant PLT sections
459 	 * were not marked executable.
460 	 * Secondly the first word in the GOT section is blrl, used
461 	 * to establish the GOT address. Until recently the GOT was
462 	 * not marked executable.
463 	 * - Anton
464 	 */
465 #if 0
466 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
467 		return;
468 #endif
469 
470 	flush_dcache_page(pg);
471 }
472 
473 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
474 			     unsigned long addr, int len)
475 {
476 	unsigned long maddr;
477 
478 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
479 	flush_icache_range(maddr, maddr + len);
480 	kunmap(page);
481 }
482 EXPORT_SYMBOL(flush_icache_user_range);
483 
484 /*
485  * This is called at the end of handling a user page fault, when the
486  * fault has been handled by updating a PTE in the linux page tables.
487  * We use it to preload an HPTE into the hash table corresponding to
488  * the updated linux PTE.
489  *
490  * This must always be called with the pte lock held.
491  */
492 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
493 		      pte_t pte)
494 {
495 #ifdef CONFIG_PPC_STD_MMU
496 	unsigned long access = 0, trap;
497 #endif
498 	unsigned long pfn = pte_pfn(pte);
499 
500 	/* handle i-cache coherency */
501 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
502 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
503 	    pfn_valid(pfn)) {
504 		struct page *page = pfn_to_page(pfn);
505 #ifdef CONFIG_8xx
506 		/* On 8xx, cache control instructions (particularly
507 		 * "dcbst" from flush_dcache_icache) fault as write
508 		 * operation if there is an unpopulated TLB entry
509 		 * for the address in question. To workaround that,
510 		 * we invalidate the TLB here, thus avoiding dcbst
511 		 * misbehaviour.
512 		 */
513 		_tlbie(address);
514 #endif
515 		if (!PageReserved(page)
516 		    && !test_bit(PG_arch_1, &page->flags)) {
517 			if (vma->vm_mm == current->active_mm) {
518 				__flush_dcache_icache((void *) address);
519 			} else
520 				flush_dcache_icache_page(page);
521 			set_bit(PG_arch_1, &page->flags);
522 		}
523 	}
524 
525 #ifdef CONFIG_PPC_STD_MMU
526 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
527 	if (!pte_young(pte) || address >= TASK_SIZE)
528 		return;
529 
530 	/* We try to figure out if we are coming from an instruction
531 	 * access fault and pass that down to __hash_page so we avoid
532 	 * double-faulting on execution of fresh text. We have to test
533 	 * for regs NULL since init will get here first thing at boot
534 	 *
535 	 * We also avoid filling the hash if not coming from a fault
536 	 */
537 	if (current->thread.regs == NULL)
538 		return;
539 	trap = TRAP(current->thread.regs);
540 	if (trap == 0x400)
541 		access |= _PAGE_EXEC;
542 	else if (trap != 0x300)
543 		return;
544 	hash_preload(vma->vm_mm, address, access, trap);
545 #endif /* CONFIG_PPC_STD_MMU */
546 }
547