xref: /openbmc/linux/arch/powerpc/mm/mem.c (revision 87c2ce3b)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50 
51 #include "mmu_decl.h"
52 
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
55 #define CPU_FTR_NOEXECUTE	0
56 #endif
57 
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61 
62 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 			 unsigned long access, unsigned long trap);
64 
65 /*
66  * This is called by /dev/mem to know if a given address has to
67  * be mapped non-cacheable or not
68  */
69 int page_is_ram(unsigned long pfn)
70 {
71 	unsigned long paddr = (pfn << PAGE_SHIFT);
72 
73 #ifndef CONFIG_PPC64	/* XXX for now */
74 	return paddr < __pa(high_memory);
75 #else
76 	int i;
77 	for (i=0; i < lmb.memory.cnt; i++) {
78 		unsigned long base;
79 
80 		base = lmb.memory.region[i].base;
81 
82 		if ((paddr >= base) &&
83 			(paddr < (base + lmb.memory.region[i].size))) {
84 			return 1;
85 		}
86 	}
87 
88 	return 0;
89 #endif
90 }
91 EXPORT_SYMBOL(page_is_ram);
92 
93 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
94 			      unsigned long size, pgprot_t vma_prot)
95 {
96 	if (ppc_md.phys_mem_access_prot)
97 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 
99 	if (!page_is_ram(pfn))
100 		vma_prot = __pgprot(pgprot_val(vma_prot)
101 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 	return vma_prot;
103 }
104 EXPORT_SYMBOL(phys_mem_access_prot);
105 
106 #ifdef CONFIG_MEMORY_HOTPLUG
107 
108 void online_page(struct page *page)
109 {
110 	ClearPageReserved(page);
111 	set_page_count(page, 0);
112 	free_cold_page(page);
113 	totalram_pages++;
114 	num_physpages++;
115 }
116 
117 int __devinit add_memory(u64 start, u64 size)
118 {
119 	struct pglist_data *pgdata;
120 	struct zone *zone;
121 	int nid;
122 	unsigned long start_pfn = start >> PAGE_SHIFT;
123 	unsigned long nr_pages = size >> PAGE_SHIFT;
124 
125 	nid = hot_add_scn_to_nid(start);
126 	pgdata = NODE_DATA(nid);
127 
128 	start = __va(start);
129 	create_section_mapping(start, start + size);
130 
131 	/* this should work for most non-highmem platforms */
132 	zone = pgdata->node_zones;
133 
134 	return __add_pages(zone, start_pfn, nr_pages);
135 
136 	return 0;
137 }
138 
139 /*
140  * First pass at this code will check to determine if the remove
141  * request is within the RMO.  Do not allow removal within the RMO.
142  */
143 int __devinit remove_memory(u64 start, u64 size)
144 {
145 	struct zone *zone;
146 	unsigned long start_pfn, end_pfn, nr_pages;
147 
148 	start_pfn = start >> PAGE_SHIFT;
149 	nr_pages = size >> PAGE_SHIFT;
150 	end_pfn = start_pfn + nr_pages;
151 
152 	printk("%s(): Attempting to remove memoy in range "
153 			"%lx to %lx\n", __func__, start, start+size);
154 	/*
155 	 * check for range within RMO
156 	 */
157 	zone = page_zone(pfn_to_page(start_pfn));
158 
159 	printk("%s(): memory will be removed from "
160 			"the %s zone\n", __func__, zone->name);
161 
162 	/*
163 	 * not handling removing memory ranges that
164 	 * overlap multiple zones yet
165 	 */
166 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
167 		goto overlap;
168 
169 	/* make sure it is NOT in RMO */
170 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
171 		printk("%s(): range to be removed must NOT be in RMO!\n",
172 			__func__);
173 		goto in_rmo;
174 	}
175 
176 	return __remove_pages(zone, start_pfn, nr_pages);
177 
178 overlap:
179 	printk("%s(): memory range to be removed overlaps "
180 		"multiple zones!!!\n", __func__);
181 in_rmo:
182 	return -1;
183 }
184 #endif /* CONFIG_MEMORY_HOTPLUG */
185 
186 void show_mem(void)
187 {
188 	unsigned long total = 0, reserved = 0;
189 	unsigned long shared = 0, cached = 0;
190 	unsigned long highmem = 0;
191 	struct page *page;
192 	pg_data_t *pgdat;
193 	unsigned long i;
194 
195 	printk("Mem-info:\n");
196 	show_free_areas();
197 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
198 	for_each_pgdat(pgdat) {
199 		unsigned long flags;
200 		pgdat_resize_lock(pgdat, &flags);
201 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
202 			if (!pfn_valid(pgdat->node_start_pfn + i))
203 				continue;
204 			page = pgdat_page_nr(pgdat, i);
205 			total++;
206 			if (PageHighMem(page))
207 				highmem++;
208 			if (PageReserved(page))
209 				reserved++;
210 			else if (PageSwapCache(page))
211 				cached++;
212 			else if (page_count(page))
213 				shared += page_count(page) - 1;
214 		}
215 		pgdat_resize_unlock(pgdat, &flags);
216 	}
217 	printk("%ld pages of RAM\n", total);
218 #ifdef CONFIG_HIGHMEM
219 	printk("%ld pages of HIGHMEM\n", highmem);
220 #endif
221 	printk("%ld reserved pages\n", reserved);
222 	printk("%ld pages shared\n", shared);
223 	printk("%ld pages swap cached\n", cached);
224 }
225 
226 /*
227  * Initialize the bootmem system and give it all the memory we
228  * have available.  If we are using highmem, we only put the
229  * lowmem into the bootmem system.
230  */
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 void __init do_init_bootmem(void)
233 {
234 	unsigned long i;
235 	unsigned long start, bootmap_pages;
236 	unsigned long total_pages;
237 	int boot_mapsize;
238 
239 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
240 #ifdef CONFIG_HIGHMEM
241 	total_pages = total_lowmem >> PAGE_SHIFT;
242 #endif
243 
244 	/*
245 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
246 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
247 	 * Add 1 additional page in case the address isn't page-aligned.
248 	 */
249 	bootmap_pages = bootmem_bootmap_pages(total_pages);
250 
251 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
252 	BUG_ON(!start);
253 
254 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
255 
256 	/* Add all physical memory to the bootmem map, mark each area
257 	 * present.
258 	 */
259 	for (i = 0; i < lmb.memory.cnt; i++) {
260 		unsigned long base = lmb.memory.region[i].base;
261 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
262 #ifdef CONFIG_HIGHMEM
263 		if (base >= total_lowmem)
264 			continue;
265 		if (base + size > total_lowmem)
266 			size = total_lowmem - base;
267 #endif
268 		free_bootmem(base, size);
269 	}
270 
271 	/* reserve the sections we're already using */
272 	for (i = 0; i < lmb.reserved.cnt; i++)
273 		reserve_bootmem(lmb.reserved.region[i].base,
274 				lmb_size_bytes(&lmb.reserved, i));
275 
276 	/* XXX need to clip this if using highmem? */
277 	for (i = 0; i < lmb.memory.cnt; i++)
278 		memory_present(0, lmb_start_pfn(&lmb.memory, i),
279 			       lmb_end_pfn(&lmb.memory, i));
280 	init_bootmem_done = 1;
281 }
282 
283 /*
284  * paging_init() sets up the page tables - in fact we've already done this.
285  */
286 void __init paging_init(void)
287 {
288 	unsigned long zones_size[MAX_NR_ZONES];
289 	unsigned long zholes_size[MAX_NR_ZONES];
290 	unsigned long total_ram = lmb_phys_mem_size();
291 	unsigned long top_of_ram = lmb_end_of_DRAM();
292 
293 #ifdef CONFIG_HIGHMEM
294 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
295 	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
296 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
297 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
298 	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
299 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
300 	kmap_prot = PAGE_KERNEL;
301 #endif /* CONFIG_HIGHMEM */
302 
303 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
304 	       top_of_ram, total_ram);
305 	printk(KERN_INFO "Memory hole size: %ldMB\n",
306 	       (top_of_ram - total_ram) >> 20);
307 	/*
308 	 * All pages are DMA-able so we put them all in the DMA zone.
309 	 */
310 	memset(zones_size, 0, sizeof(zones_size));
311 	memset(zholes_size, 0, sizeof(zholes_size));
312 
313 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
314 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
315 
316 #ifdef CONFIG_HIGHMEM
317 	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
318 	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
319 	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
320 #else
321 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
322 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
323 #endif /* CONFIG_HIGHMEM */
324 
325 	free_area_init_node(0, NODE_DATA(0), zones_size,
326 			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
327 }
328 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
329 
330 void __init mem_init(void)
331 {
332 #ifdef CONFIG_NEED_MULTIPLE_NODES
333 	int nid;
334 #endif
335 	pg_data_t *pgdat;
336 	unsigned long i;
337 	struct page *page;
338 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
339 
340 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
341 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
342 
343 #ifdef CONFIG_NEED_MULTIPLE_NODES
344         for_each_online_node(nid) {
345 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
346 			printk("freeing bootmem node %x\n", nid);
347 			totalram_pages +=
348 				free_all_bootmem_node(NODE_DATA(nid));
349 		}
350 	}
351 #else
352 	max_mapnr = max_pfn;
353 	totalram_pages += free_all_bootmem();
354 #endif
355 	for_each_pgdat(pgdat) {
356 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
357 			if (!pfn_valid(pgdat->node_start_pfn + i))
358 				continue;
359 			page = pgdat_page_nr(pgdat, i);
360 			if (PageReserved(page))
361 				reservedpages++;
362 		}
363 	}
364 
365 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
366 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
367 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
368 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
369 
370 #ifdef CONFIG_HIGHMEM
371 	{
372 		unsigned long pfn, highmem_mapnr;
373 
374 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
375 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
376 			struct page *page = pfn_to_page(pfn);
377 
378 			ClearPageReserved(page);
379 			set_page_count(page, 1);
380 			__free_page(page);
381 			totalhigh_pages++;
382 		}
383 		totalram_pages += totalhigh_pages;
384 		printk(KERN_INFO "High memory: %luk\n",
385 		       totalhigh_pages << (PAGE_SHIFT-10));
386 	}
387 #endif /* CONFIG_HIGHMEM */
388 
389 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
390 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
391 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
392 		num_physpages << (PAGE_SHIFT-10),
393 		codesize >> 10,
394 		reservedpages << (PAGE_SHIFT-10),
395 		datasize >> 10,
396 		bsssize >> 10,
397 		initsize >> 10);
398 
399 	mem_init_done = 1;
400 
401 	/* Initialize the vDSO */
402 	vdso_init();
403 }
404 
405 /*
406  * This is called when a page has been modified by the kernel.
407  * It just marks the page as not i-cache clean.  We do the i-cache
408  * flush later when the page is given to a user process, if necessary.
409  */
410 void flush_dcache_page(struct page *page)
411 {
412 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
413 		return;
414 	/* avoid an atomic op if possible */
415 	if (test_bit(PG_arch_1, &page->flags))
416 		clear_bit(PG_arch_1, &page->flags);
417 }
418 EXPORT_SYMBOL(flush_dcache_page);
419 
420 void flush_dcache_icache_page(struct page *page)
421 {
422 #ifdef CONFIG_BOOKE
423 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
424 	__flush_dcache_icache(start);
425 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
426 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
427 	/* On 8xx there is no need to kmap since highmem is not supported */
428 	__flush_dcache_icache(page_address(page));
429 #else
430 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
431 #endif
432 
433 }
434 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
435 {
436 	clear_page(page);
437 
438 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
439 		return;
440 	/*
441 	 * We shouldnt have to do this, but some versions of glibc
442 	 * require it (ld.so assumes zero filled pages are icache clean)
443 	 * - Anton
444 	 */
445 
446 	/* avoid an atomic op if possible */
447 	if (test_bit(PG_arch_1, &pg->flags))
448 		clear_bit(PG_arch_1, &pg->flags);
449 }
450 EXPORT_SYMBOL(clear_user_page);
451 
452 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
453 		    struct page *pg)
454 {
455 	copy_page(vto, vfrom);
456 
457 	/*
458 	 * We should be able to use the following optimisation, however
459 	 * there are two problems.
460 	 * Firstly a bug in some versions of binutils meant PLT sections
461 	 * were not marked executable.
462 	 * Secondly the first word in the GOT section is blrl, used
463 	 * to establish the GOT address. Until recently the GOT was
464 	 * not marked executable.
465 	 * - Anton
466 	 */
467 #if 0
468 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
469 		return;
470 #endif
471 
472 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
473 		return;
474 
475 	/* avoid an atomic op if possible */
476 	if (test_bit(PG_arch_1, &pg->flags))
477 		clear_bit(PG_arch_1, &pg->flags);
478 }
479 
480 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
481 			     unsigned long addr, int len)
482 {
483 	unsigned long maddr;
484 
485 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
486 	flush_icache_range(maddr, maddr + len);
487 	kunmap(page);
488 }
489 EXPORT_SYMBOL(flush_icache_user_range);
490 
491 /*
492  * This is called at the end of handling a user page fault, when the
493  * fault has been handled by updating a PTE in the linux page tables.
494  * We use it to preload an HPTE into the hash table corresponding to
495  * the updated linux PTE.
496  *
497  * This must always be called with the pte lock held.
498  */
499 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
500 		      pte_t pte)
501 {
502 #ifdef CONFIG_PPC_STD_MMU
503 	unsigned long access = 0, trap;
504 #endif
505 	unsigned long pfn = pte_pfn(pte);
506 
507 	/* handle i-cache coherency */
508 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
509 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
510 	    pfn_valid(pfn)) {
511 		struct page *page = pfn_to_page(pfn);
512 		if (!PageReserved(page)
513 		    && !test_bit(PG_arch_1, &page->flags)) {
514 			if (vma->vm_mm == current->active_mm) {
515 #ifdef CONFIG_8xx
516 			/* On 8xx, cache control instructions (particularly
517 		 	 * "dcbst" from flush_dcache_icache) fault as write
518 			 * operation if there is an unpopulated TLB entry
519 			 * for the address in question. To workaround that,
520 			 * we invalidate the TLB here, thus avoiding dcbst
521 			 * misbehaviour.
522 			 */
523 				_tlbie(address);
524 #endif
525 				__flush_dcache_icache((void *) address);
526 			} else
527 				flush_dcache_icache_page(page);
528 			set_bit(PG_arch_1, &page->flags);
529 		}
530 	}
531 
532 #ifdef CONFIG_PPC_STD_MMU
533 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
534 	if (!pte_young(pte) || address >= TASK_SIZE)
535 		return;
536 
537 	/* We try to figure out if we are coming from an instruction
538 	 * access fault and pass that down to __hash_page so we avoid
539 	 * double-faulting on execution of fresh text. We have to test
540 	 * for regs NULL since init will get here first thing at boot
541 	 *
542 	 * We also avoid filling the hash if not coming from a fault
543 	 */
544 	if (current->thread.regs == NULL)
545 		return;
546 	trap = TRAP(current->thread.regs);
547 	if (trap == 0x400)
548 		access |= _PAGE_EXEC;
549 	else if (trap != 0x300)
550 		return;
551 	hash_preload(vma->vm_mm, address, access, trap);
552 #endif /* CONFIG_PPC_STD_MMU */
553 }
554