xref: /openbmc/linux/arch/powerpc/mm/mem.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  */
14 
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/gfp.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/memblock.h>
26 #include <linux/highmem.h>
27 #include <linux/initrd.h>
28 #include <linux/pagemap.h>
29 #include <linux/suspend.h>
30 #include <linux/hugetlb.h>
31 #include <linux/slab.h>
32 #include <linux/vmalloc.h>
33 #include <linux/memremap.h>
34 #include <linux/dma-direct.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/sections.h>
47 #include <asm/sparsemem.h>
48 #include <asm/vdso.h>
49 #include <asm/fixmap.h>
50 #include <asm/swiotlb.h>
51 #include <asm/rtas.h>
52 
53 #include <mm/mmu_decl.h>
54 
55 #ifndef CPU_FTR_COHERENT_ICACHE
56 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
57 #define CPU_FTR_NOEXECUTE	0
58 #endif
59 
60 unsigned long long memory_limit;
61 bool init_mem_is_free;
62 
63 #ifdef CONFIG_HIGHMEM
64 pte_t *kmap_pte;
65 EXPORT_SYMBOL(kmap_pte);
66 pgprot_t kmap_prot;
67 EXPORT_SYMBOL(kmap_prot);
68 
69 static inline pte_t *virt_to_kpte(unsigned long vaddr)
70 {
71 	return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
72 			vaddr), vaddr), vaddr);
73 }
74 #endif
75 
76 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
77 			      unsigned long size, pgprot_t vma_prot)
78 {
79 	if (ppc_md.phys_mem_access_prot)
80 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
81 
82 	if (!page_is_ram(pfn))
83 		vma_prot = pgprot_noncached(vma_prot);
84 
85 	return vma_prot;
86 }
87 EXPORT_SYMBOL(phys_mem_access_prot);
88 
89 #ifdef CONFIG_MEMORY_HOTPLUG
90 
91 #ifdef CONFIG_NUMA
92 int memory_add_physaddr_to_nid(u64 start)
93 {
94 	return hot_add_scn_to_nid(start);
95 }
96 #endif
97 
98 int __weak create_section_mapping(unsigned long start, unsigned long end, int nid)
99 {
100 	return -ENODEV;
101 }
102 
103 int __weak remove_section_mapping(unsigned long start, unsigned long end)
104 {
105 	return -ENODEV;
106 }
107 
108 #define FLUSH_CHUNK_SIZE SZ_1G
109 /**
110  * flush_dcache_range_chunked(): Write any modified data cache blocks out to
111  * memory and invalidate them, in chunks of up to FLUSH_CHUNK_SIZE
112  * Does not invalidate the corresponding instruction cache blocks.
113  *
114  * @start: the start address
115  * @stop: the stop address (exclusive)
116  * @chunk: the max size of the chunks
117  */
118 static void flush_dcache_range_chunked(unsigned long start, unsigned long stop,
119 				       unsigned long chunk)
120 {
121 	unsigned long i;
122 
123 	for (i = start; i < stop; i += chunk) {
124 		flush_dcache_range(i, min(stop, i + chunk));
125 		cond_resched();
126 	}
127 }
128 
129 int __ref arch_add_memory(int nid, u64 start, u64 size,
130 			struct mhp_restrictions *restrictions)
131 {
132 	unsigned long start_pfn = start >> PAGE_SHIFT;
133 	unsigned long nr_pages = size >> PAGE_SHIFT;
134 	int rc;
135 
136 	resize_hpt_for_hotplug(memblock_phys_mem_size());
137 
138 	start = (unsigned long)__va(start);
139 	rc = create_section_mapping(start, start + size, nid);
140 	if (rc) {
141 		pr_warn("Unable to create mapping for hot added memory 0x%llx..0x%llx: %d\n",
142 			start, start + size, rc);
143 		return -EFAULT;
144 	}
145 
146 	return __add_pages(nid, start_pfn, nr_pages, restrictions);
147 }
148 
149 void __ref arch_remove_memory(int nid, u64 start, u64 size,
150 			     struct vmem_altmap *altmap)
151 {
152 	unsigned long start_pfn = start >> PAGE_SHIFT;
153 	unsigned long nr_pages = size >> PAGE_SHIFT;
154 	int ret;
155 
156 	__remove_pages(start_pfn, nr_pages, altmap);
157 
158 	/* Remove htab bolted mappings for this section of memory */
159 	start = (unsigned long)__va(start);
160 	flush_dcache_range_chunked(start, start + size, FLUSH_CHUNK_SIZE);
161 
162 	ret = remove_section_mapping(start, start + size);
163 	WARN_ON_ONCE(ret);
164 
165 	/* Ensure all vmalloc mappings are flushed in case they also
166 	 * hit that section of memory
167 	 */
168 	vm_unmap_aliases();
169 
170 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
171 		pr_warn("Hash collision while resizing HPT\n");
172 }
173 #endif
174 
175 #ifndef CONFIG_NEED_MULTIPLE_NODES
176 void __init mem_topology_setup(void)
177 {
178 	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
179 	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
180 #ifdef CONFIG_HIGHMEM
181 	max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
182 #endif
183 
184 	/* Place all memblock_regions in the same node and merge contiguous
185 	 * memblock_regions
186 	 */
187 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
188 }
189 
190 void __init initmem_init(void)
191 {
192 	/* XXX need to clip this if using highmem? */
193 	sparse_memory_present_with_active_regions(0);
194 	sparse_init();
195 }
196 
197 /* mark pages that don't exist as nosave */
198 static int __init mark_nonram_nosave(void)
199 {
200 	struct memblock_region *reg, *prev = NULL;
201 
202 	for_each_memblock(memory, reg) {
203 		if (prev &&
204 		    memblock_region_memory_end_pfn(prev) < memblock_region_memory_base_pfn(reg))
205 			register_nosave_region(memblock_region_memory_end_pfn(prev),
206 					       memblock_region_memory_base_pfn(reg));
207 		prev = reg;
208 	}
209 	return 0;
210 }
211 #else /* CONFIG_NEED_MULTIPLE_NODES */
212 static int __init mark_nonram_nosave(void)
213 {
214 	return 0;
215 }
216 #endif
217 
218 /*
219  * Zones usage:
220  *
221  * We setup ZONE_DMA to be 31-bits on all platforms and ZONE_NORMAL to be
222  * everything else. GFP_DMA32 page allocations automatically fall back to
223  * ZONE_DMA.
224  *
225  * By using 31-bit unconditionally, we can exploit zone_dma_bits to inform the
226  * generic DMA mapping code.  32-bit only devices (if not handled by an IOMMU
227  * anyway) will take a first dip into ZONE_NORMAL and get otherwise served by
228  * ZONE_DMA.
229  */
230 static unsigned long max_zone_pfns[MAX_NR_ZONES];
231 
232 /*
233  * paging_init() sets up the page tables - in fact we've already done this.
234  */
235 void __init paging_init(void)
236 {
237 	unsigned long long total_ram = memblock_phys_mem_size();
238 	phys_addr_t top_of_ram = memblock_end_of_DRAM();
239 
240 #ifdef CONFIG_HIGHMEM
241 	unsigned long v = __fix_to_virt(FIX_KMAP_END);
242 	unsigned long end = __fix_to_virt(FIX_KMAP_BEGIN);
243 
244 	for (; v < end; v += PAGE_SIZE)
245 		map_kernel_page(v, 0, __pgprot(0)); /* XXX gross */
246 
247 	map_kernel_page(PKMAP_BASE, 0, __pgprot(0));	/* XXX gross */
248 	pkmap_page_table = virt_to_kpte(PKMAP_BASE);
249 
250 	kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
251 	kmap_prot = PAGE_KERNEL;
252 #endif /* CONFIG_HIGHMEM */
253 
254 	printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%llx\n",
255 	       (unsigned long long)top_of_ram, total_ram);
256 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
257 	       (long int)((top_of_ram - total_ram) >> 20));
258 
259 	/*
260 	 * Allow 30-bit DMA for very limited Broadcom wifi chips on many
261 	 * powerbooks.
262 	 */
263 	if (IS_ENABLED(CONFIG_PPC32))
264 		zone_dma_bits = 30;
265 	else
266 		zone_dma_bits = 31;
267 
268 #ifdef CONFIG_ZONE_DMA
269 	max_zone_pfns[ZONE_DMA]	= min(max_low_pfn,
270 				      1UL << (zone_dma_bits - PAGE_SHIFT));
271 #endif
272 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
273 #ifdef CONFIG_HIGHMEM
274 	max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
275 #endif
276 
277 	free_area_init_nodes(max_zone_pfns);
278 
279 	mark_nonram_nosave();
280 }
281 
282 void __init mem_init(void)
283 {
284 	/*
285 	 * book3s is limited to 16 page sizes due to encoding this in
286 	 * a 4-bit field for slices.
287 	 */
288 	BUILD_BUG_ON(MMU_PAGE_COUNT > 16);
289 
290 #ifdef CONFIG_SWIOTLB
291 	/*
292 	 * Some platforms (e.g. 85xx) limit DMA-able memory way below
293 	 * 4G. We force memblock to bottom-up mode to ensure that the
294 	 * memory allocated in swiotlb_init() is DMA-able.
295 	 * As it's the last memblock allocation, no need to reset it
296 	 * back to to-down.
297 	 */
298 	memblock_set_bottom_up(true);
299 	swiotlb_init(0);
300 #endif
301 
302 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
303 	set_max_mapnr(max_pfn);
304 	memblock_free_all();
305 
306 #ifdef CONFIG_HIGHMEM
307 	{
308 		unsigned long pfn, highmem_mapnr;
309 
310 		highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
311 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
312 			phys_addr_t paddr = (phys_addr_t)pfn << PAGE_SHIFT;
313 			struct page *page = pfn_to_page(pfn);
314 			if (!memblock_is_reserved(paddr))
315 				free_highmem_page(page);
316 		}
317 	}
318 #endif /* CONFIG_HIGHMEM */
319 
320 #if defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_SMP)
321 	/*
322 	 * If smp is enabled, next_tlbcam_idx is initialized in the cpu up
323 	 * functions.... do it here for the non-smp case.
324 	 */
325 	per_cpu(next_tlbcam_idx, smp_processor_id()) =
326 		(mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
327 #endif
328 
329 	mem_init_print_info(NULL);
330 #ifdef CONFIG_PPC32
331 	pr_info("Kernel virtual memory layout:\n");
332 #ifdef CONFIG_KASAN
333 	pr_info("  * 0x%08lx..0x%08lx  : kasan shadow mem\n",
334 		KASAN_SHADOW_START, KASAN_SHADOW_END);
335 #endif
336 	pr_info("  * 0x%08lx..0x%08lx  : fixmap\n", FIXADDR_START, FIXADDR_TOP);
337 #ifdef CONFIG_HIGHMEM
338 	pr_info("  * 0x%08lx..0x%08lx  : highmem PTEs\n",
339 		PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP));
340 #endif /* CONFIG_HIGHMEM */
341 	if (ioremap_bot != IOREMAP_TOP)
342 		pr_info("  * 0x%08lx..0x%08lx  : early ioremap\n",
343 			ioremap_bot, IOREMAP_TOP);
344 	pr_info("  * 0x%08lx..0x%08lx  : vmalloc & ioremap\n",
345 		VMALLOC_START, VMALLOC_END);
346 #endif /* CONFIG_PPC32 */
347 }
348 
349 void free_initmem(void)
350 {
351 	ppc_md.progress = ppc_printk_progress;
352 	mark_initmem_nx();
353 	init_mem_is_free = true;
354 	free_initmem_default(POISON_FREE_INITMEM);
355 }
356 
357 /**
358  * flush_coherent_icache() - if a CPU has a coherent icache, flush it
359  * @addr: The base address to use (can be any valid address, the whole cache will be flushed)
360  * Return true if the cache was flushed, false otherwise
361  */
362 static inline bool flush_coherent_icache(unsigned long addr)
363 {
364 	/*
365 	 * For a snooping icache, we still need a dummy icbi to purge all the
366 	 * prefetched instructions from the ifetch buffers. We also need a sync
367 	 * before the icbi to order the the actual stores to memory that might
368 	 * have modified instructions with the icbi.
369 	 */
370 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) {
371 		mb(); /* sync */
372 		icbi((void *)addr);
373 		mb(); /* sync */
374 		isync();
375 		return true;
376 	}
377 
378 	return false;
379 }
380 
381 /**
382  * invalidate_icache_range() - Flush the icache by issuing icbi across an address range
383  * @start: the start address
384  * @stop: the stop address (exclusive)
385  */
386 static void invalidate_icache_range(unsigned long start, unsigned long stop)
387 {
388 	unsigned long shift = l1_icache_shift();
389 	unsigned long bytes = l1_icache_bytes();
390 	char *addr = (char *)(start & ~(bytes - 1));
391 	unsigned long size = stop - (unsigned long)addr + (bytes - 1);
392 	unsigned long i;
393 
394 	for (i = 0; i < size >> shift; i++, addr += bytes)
395 		icbi(addr);
396 
397 	mb(); /* sync */
398 	isync();
399 }
400 
401 /**
402  * flush_icache_range: Write any modified data cache blocks out to memory
403  * and invalidate the corresponding blocks in the instruction cache
404  *
405  * Generic code will call this after writing memory, before executing from it.
406  *
407  * @start: the start address
408  * @stop: the stop address (exclusive)
409  */
410 void flush_icache_range(unsigned long start, unsigned long stop)
411 {
412 	if (flush_coherent_icache(start))
413 		return;
414 
415 	clean_dcache_range(start, stop);
416 
417 	if (IS_ENABLED(CONFIG_44x)) {
418 		/*
419 		 * Flash invalidate on 44x because we are passed kmapped
420 		 * addresses and this doesn't work for userspace pages due to
421 		 * the virtually tagged icache.
422 		 */
423 		iccci((void *)start);
424 		mb(); /* sync */
425 		isync();
426 	} else
427 		invalidate_icache_range(start, stop);
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430 
431 #if !defined(CONFIG_PPC_8xx) && !defined(CONFIG_PPC64)
432 /**
433  * flush_dcache_icache_phys() - Flush a page by it's physical address
434  * @physaddr: the physical address of the page
435  */
436 static void flush_dcache_icache_phys(unsigned long physaddr)
437 {
438 	unsigned long bytes = l1_dcache_bytes();
439 	unsigned long nb = PAGE_SIZE / bytes;
440 	unsigned long addr = physaddr & PAGE_MASK;
441 	unsigned long msr, msr0;
442 	unsigned long loop1 = addr, loop2 = addr;
443 
444 	msr0 = mfmsr();
445 	msr = msr0 & ~MSR_DR;
446 	/*
447 	 * This must remain as ASM to prevent potential memory accesses
448 	 * while the data MMU is disabled
449 	 */
450 	asm volatile(
451 		"   mtctr %2;\n"
452 		"   mtmsr %3;\n"
453 		"   isync;\n"
454 		"0: dcbst   0, %0;\n"
455 		"   addi    %0, %0, %4;\n"
456 		"   bdnz    0b;\n"
457 		"   sync;\n"
458 		"   mtctr %2;\n"
459 		"1: icbi    0, %1;\n"
460 		"   addi    %1, %1, %4;\n"
461 		"   bdnz    1b;\n"
462 		"   sync;\n"
463 		"   mtmsr %5;\n"
464 		"   isync;\n"
465 		: "+&r" (loop1), "+&r" (loop2)
466 		: "r" (nb), "r" (msr), "i" (bytes), "r" (msr0)
467 		: "ctr", "memory");
468 }
469 #endif // !defined(CONFIG_PPC_8xx) && !defined(CONFIG_PPC64)
470 
471 /*
472  * This is called when a page has been modified by the kernel.
473  * It just marks the page as not i-cache clean.  We do the i-cache
474  * flush later when the page is given to a user process, if necessary.
475  */
476 void flush_dcache_page(struct page *page)
477 {
478 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
479 		return;
480 	/* avoid an atomic op if possible */
481 	if (test_bit(PG_arch_1, &page->flags))
482 		clear_bit(PG_arch_1, &page->flags);
483 }
484 EXPORT_SYMBOL(flush_dcache_page);
485 
486 void flush_dcache_icache_page(struct page *page)
487 {
488 #ifdef CONFIG_HUGETLB_PAGE
489 	if (PageCompound(page)) {
490 		flush_dcache_icache_hugepage(page);
491 		return;
492 	}
493 #endif
494 #if defined(CONFIG_PPC_8xx) || defined(CONFIG_PPC64)
495 	/* On 8xx there is no need to kmap since highmem is not supported */
496 	__flush_dcache_icache(page_address(page));
497 #else
498 	if (IS_ENABLED(CONFIG_BOOKE) || sizeof(phys_addr_t) > sizeof(void *)) {
499 		void *start = kmap_atomic(page);
500 		__flush_dcache_icache(start);
501 		kunmap_atomic(start);
502 	} else {
503 		unsigned long addr = page_to_pfn(page) << PAGE_SHIFT;
504 
505 		if (flush_coherent_icache(addr))
506 			return;
507 		flush_dcache_icache_phys(addr);
508 	}
509 #endif
510 }
511 EXPORT_SYMBOL(flush_dcache_icache_page);
512 
513 /**
514  * __flush_dcache_icache(): Flush a particular page from the data cache to RAM.
515  * Note: this is necessary because the instruction cache does *not*
516  * snoop from the data cache.
517  *
518  * @page: the address of the page to flush
519  */
520 void __flush_dcache_icache(void *p)
521 {
522 	unsigned long addr = (unsigned long)p;
523 
524 	if (flush_coherent_icache(addr))
525 		return;
526 
527 	clean_dcache_range(addr, addr + PAGE_SIZE);
528 
529 	/*
530 	 * We don't flush the icache on 44x. Those have a virtual icache and we
531 	 * don't have access to the virtual address here (it's not the page
532 	 * vaddr but where it's mapped in user space). The flushing of the
533 	 * icache on these is handled elsewhere, when a change in the address
534 	 * space occurs, before returning to user space.
535 	 */
536 
537 	if (cpu_has_feature(MMU_FTR_TYPE_44x))
538 		return;
539 
540 	invalidate_icache_range(addr, addr + PAGE_SIZE);
541 }
542 
543 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
544 {
545 	clear_page(page);
546 
547 	/*
548 	 * We shouldn't have to do this, but some versions of glibc
549 	 * require it (ld.so assumes zero filled pages are icache clean)
550 	 * - Anton
551 	 */
552 	flush_dcache_page(pg);
553 }
554 EXPORT_SYMBOL(clear_user_page);
555 
556 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
557 		    struct page *pg)
558 {
559 	copy_page(vto, vfrom);
560 
561 	/*
562 	 * We should be able to use the following optimisation, however
563 	 * there are two problems.
564 	 * Firstly a bug in some versions of binutils meant PLT sections
565 	 * were not marked executable.
566 	 * Secondly the first word in the GOT section is blrl, used
567 	 * to establish the GOT address. Until recently the GOT was
568 	 * not marked executable.
569 	 * - Anton
570 	 */
571 #if 0
572 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
573 		return;
574 #endif
575 
576 	flush_dcache_page(pg);
577 }
578 
579 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
580 			     unsigned long addr, int len)
581 {
582 	unsigned long maddr;
583 
584 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
585 	flush_icache_range(maddr, maddr + len);
586 	kunmap(page);
587 }
588 EXPORT_SYMBOL(flush_icache_user_range);
589 
590 /*
591  * System memory should not be in /proc/iomem but various tools expect it
592  * (eg kdump).
593  */
594 static int __init add_system_ram_resources(void)
595 {
596 	struct memblock_region *reg;
597 
598 	for_each_memblock(memory, reg) {
599 		struct resource *res;
600 		unsigned long base = reg->base;
601 		unsigned long size = reg->size;
602 
603 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
604 		WARN_ON(!res);
605 
606 		if (res) {
607 			res->name = "System RAM";
608 			res->start = base;
609 			res->end = base + size - 1;
610 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
611 			WARN_ON(request_resource(&iomem_resource, res) < 0);
612 		}
613 	}
614 
615 	return 0;
616 }
617 subsys_initcall(add_system_ram_resources);
618 
619 #ifdef CONFIG_STRICT_DEVMEM
620 /*
621  * devmem_is_allowed(): check to see if /dev/mem access to a certain address
622  * is valid. The argument is a physical page number.
623  *
624  * Access has to be given to non-kernel-ram areas as well, these contain the
625  * PCI mmio resources as well as potential bios/acpi data regions.
626  */
627 int devmem_is_allowed(unsigned long pfn)
628 {
629 	if (page_is_rtas_user_buf(pfn))
630 		return 1;
631 	if (iomem_is_exclusive(PFN_PHYS(pfn)))
632 		return 0;
633 	if (!page_is_ram(pfn))
634 		return 1;
635 	return 0;
636 }
637 #endif /* CONFIG_STRICT_DEVMEM */
638 
639 /*
640  * This is defined in kernel/resource.c but only powerpc needs to export it, for
641  * the EHEA driver. Drop this when drivers/net/ethernet/ibm/ehea is removed.
642  */
643 EXPORT_SYMBOL_GPL(walk_system_ram_range);
644