1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). 9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) 10 * 11 * Derived from "arch/i386/mm/init.c" 12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/sched.h> 23 #include <linux/kernel.h> 24 #include <linux/errno.h> 25 #include <linux/string.h> 26 #include <linux/types.h> 27 #include <linux/mm.h> 28 #include <linux/stddef.h> 29 #include <linux/init.h> 30 #include <linux/bootmem.h> 31 #include <linux/highmem.h> 32 #include <linux/initrd.h> 33 #include <linux/pagemap.h> 34 #include <linux/suspend.h> 35 36 #include <asm/pgalloc.h> 37 #include <asm/prom.h> 38 #include <asm/io.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/mmu.h> 42 #include <asm/smp.h> 43 #include <asm/machdep.h> 44 #include <asm/btext.h> 45 #include <asm/tlb.h> 46 #include <asm/prom.h> 47 #include <asm/lmb.h> 48 #include <asm/sections.h> 49 #include <asm/vdso.h> 50 51 #include "mmu_decl.h" 52 53 #ifndef CPU_FTR_COHERENT_ICACHE 54 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ 55 #define CPU_FTR_NOEXECUTE 0 56 #endif 57 58 int init_bootmem_done; 59 int mem_init_done; 60 unsigned long memory_limit; 61 62 int page_is_ram(unsigned long pfn) 63 { 64 unsigned long paddr = (pfn << PAGE_SHIFT); 65 66 #ifndef CONFIG_PPC64 /* XXX for now */ 67 return paddr < __pa(high_memory); 68 #else 69 int i; 70 for (i=0; i < lmb.memory.cnt; i++) { 71 unsigned long base; 72 73 base = lmb.memory.region[i].base; 74 75 if ((paddr >= base) && 76 (paddr < (base + lmb.memory.region[i].size))) { 77 return 1; 78 } 79 } 80 81 return 0; 82 #endif 83 } 84 85 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 86 unsigned long size, pgprot_t vma_prot) 87 { 88 if (ppc_md.phys_mem_access_prot) 89 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); 90 91 if (!page_is_ram(pfn)) 92 vma_prot = __pgprot(pgprot_val(vma_prot) 93 | _PAGE_GUARDED | _PAGE_NO_CACHE); 94 return vma_prot; 95 } 96 EXPORT_SYMBOL(phys_mem_access_prot); 97 98 #ifdef CONFIG_MEMORY_HOTPLUG 99 100 void online_page(struct page *page) 101 { 102 ClearPageReserved(page); 103 init_page_count(page); 104 __free_page(page); 105 totalram_pages++; 106 num_physpages++; 107 } 108 109 #ifdef CONFIG_NUMA 110 int memory_add_physaddr_to_nid(u64 start) 111 { 112 return hot_add_scn_to_nid(start); 113 } 114 #endif 115 116 int __devinit arch_add_memory(int nid, u64 start, u64 size) 117 { 118 struct pglist_data *pgdata; 119 struct zone *zone; 120 unsigned long start_pfn = start >> PAGE_SHIFT; 121 unsigned long nr_pages = size >> PAGE_SHIFT; 122 123 pgdata = NODE_DATA(nid); 124 125 start = (unsigned long)__va(start); 126 create_section_mapping(start, start + size); 127 128 /* this should work for most non-highmem platforms */ 129 zone = pgdata->node_zones; 130 131 return __add_pages(zone, start_pfn, nr_pages); 132 133 return 0; 134 } 135 136 /* 137 * First pass at this code will check to determine if the remove 138 * request is within the RMO. Do not allow removal within the RMO. 139 */ 140 int __devinit remove_memory(u64 start, u64 size) 141 { 142 struct zone *zone; 143 unsigned long start_pfn, end_pfn, nr_pages; 144 145 start_pfn = start >> PAGE_SHIFT; 146 nr_pages = size >> PAGE_SHIFT; 147 end_pfn = start_pfn + nr_pages; 148 149 printk("%s(): Attempting to remove memoy in range " 150 "%lx to %lx\n", __func__, start, start+size); 151 /* 152 * check for range within RMO 153 */ 154 zone = page_zone(pfn_to_page(start_pfn)); 155 156 printk("%s(): memory will be removed from " 157 "the %s zone\n", __func__, zone->name); 158 159 /* 160 * not handling removing memory ranges that 161 * overlap multiple zones yet 162 */ 163 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages)) 164 goto overlap; 165 166 /* make sure it is NOT in RMO */ 167 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) { 168 printk("%s(): range to be removed must NOT be in RMO!\n", 169 __func__); 170 goto in_rmo; 171 } 172 173 return __remove_pages(zone, start_pfn, nr_pages); 174 175 overlap: 176 printk("%s(): memory range to be removed overlaps " 177 "multiple zones!!!\n", __func__); 178 in_rmo: 179 return -1; 180 } 181 #endif /* CONFIG_MEMORY_HOTPLUG */ 182 183 void show_mem(void) 184 { 185 unsigned long total = 0, reserved = 0; 186 unsigned long shared = 0, cached = 0; 187 unsigned long highmem = 0; 188 struct page *page; 189 pg_data_t *pgdat; 190 unsigned long i; 191 192 printk("Mem-info:\n"); 193 show_free_areas(); 194 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 195 for_each_online_pgdat(pgdat) { 196 unsigned long flags; 197 pgdat_resize_lock(pgdat, &flags); 198 for (i = 0; i < pgdat->node_spanned_pages; i++) { 199 if (!pfn_valid(pgdat->node_start_pfn + i)) 200 continue; 201 page = pgdat_page_nr(pgdat, i); 202 total++; 203 if (PageHighMem(page)) 204 highmem++; 205 if (PageReserved(page)) 206 reserved++; 207 else if (PageSwapCache(page)) 208 cached++; 209 else if (page_count(page)) 210 shared += page_count(page) - 1; 211 } 212 pgdat_resize_unlock(pgdat, &flags); 213 } 214 printk("%ld pages of RAM\n", total); 215 #ifdef CONFIG_HIGHMEM 216 printk("%ld pages of HIGHMEM\n", highmem); 217 #endif 218 printk("%ld reserved pages\n", reserved); 219 printk("%ld pages shared\n", shared); 220 printk("%ld pages swap cached\n", cached); 221 } 222 223 /* 224 * Initialize the bootmem system and give it all the memory we 225 * have available. If we are using highmem, we only put the 226 * lowmem into the bootmem system. 227 */ 228 #ifndef CONFIG_NEED_MULTIPLE_NODES 229 void __init do_init_bootmem(void) 230 { 231 unsigned long i; 232 unsigned long start, bootmap_pages; 233 unsigned long total_pages; 234 int boot_mapsize; 235 236 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; 237 #ifdef CONFIG_HIGHMEM 238 total_pages = total_lowmem >> PAGE_SHIFT; 239 #endif 240 241 /* 242 * Find an area to use for the bootmem bitmap. Calculate the size of 243 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. 244 * Add 1 additional page in case the address isn't page-aligned. 245 */ 246 bootmap_pages = bootmem_bootmap_pages(total_pages); 247 248 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 249 250 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); 251 252 /* Add active regions with valid PFNs */ 253 for (i = 0; i < lmb.memory.cnt; i++) { 254 unsigned long start_pfn, end_pfn; 255 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 256 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 257 add_active_range(0, start_pfn, end_pfn); 258 } 259 260 /* Add all physical memory to the bootmem map, mark each area 261 * present. 262 */ 263 #ifdef CONFIG_HIGHMEM 264 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT); 265 #else 266 free_bootmem_with_active_regions(0, max_pfn); 267 #endif 268 269 /* reserve the sections we're already using */ 270 for (i = 0; i < lmb.reserved.cnt; i++) 271 reserve_bootmem(lmb.reserved.region[i].base, 272 lmb_size_bytes(&lmb.reserved, i)); 273 274 /* XXX need to clip this if using highmem? */ 275 sparse_memory_present_with_active_regions(0); 276 277 init_bootmem_done = 1; 278 } 279 280 /* mark pages that don't exist as nosave */ 281 static int __init mark_nonram_nosave(void) 282 { 283 unsigned long lmb_next_region_start_pfn, 284 lmb_region_max_pfn; 285 int i; 286 287 for (i = 0; i < lmb.memory.cnt - 1; i++) { 288 lmb_region_max_pfn = 289 (lmb.memory.region[i].base >> PAGE_SHIFT) + 290 (lmb.memory.region[i].size >> PAGE_SHIFT); 291 lmb_next_region_start_pfn = 292 lmb.memory.region[i+1].base >> PAGE_SHIFT; 293 294 if (lmb_region_max_pfn < lmb_next_region_start_pfn) 295 register_nosave_region(lmb_region_max_pfn, 296 lmb_next_region_start_pfn); 297 } 298 299 return 0; 300 } 301 302 /* 303 * paging_init() sets up the page tables - in fact we've already done this. 304 */ 305 void __init paging_init(void) 306 { 307 unsigned long total_ram = lmb_phys_mem_size(); 308 unsigned long top_of_ram = lmb_end_of_DRAM(); 309 unsigned long max_zone_pfns[MAX_NR_ZONES]; 310 311 #ifdef CONFIG_HIGHMEM 312 map_page(PKMAP_BASE, 0, 0); /* XXX gross */ 313 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 314 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); 315 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ 316 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 317 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), 318 KMAP_FIX_BEGIN); 319 kmap_prot = PAGE_KERNEL; 320 #endif /* CONFIG_HIGHMEM */ 321 322 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 323 top_of_ram, total_ram); 324 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 325 (top_of_ram - total_ram) >> 20); 326 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 327 #ifdef CONFIG_HIGHMEM 328 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; 329 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; 330 #else 331 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; 332 #endif 333 free_area_init_nodes(max_zone_pfns); 334 335 mark_nonram_nosave(); 336 } 337 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ 338 339 void __init mem_init(void) 340 { 341 #ifdef CONFIG_NEED_MULTIPLE_NODES 342 int nid; 343 #endif 344 pg_data_t *pgdat; 345 unsigned long i; 346 struct page *page; 347 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; 348 349 num_physpages = lmb.memory.size >> PAGE_SHIFT; 350 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); 351 352 #ifdef CONFIG_NEED_MULTIPLE_NODES 353 for_each_online_node(nid) { 354 if (NODE_DATA(nid)->node_spanned_pages != 0) { 355 printk("freeing bootmem node %d\n", nid); 356 totalram_pages += 357 free_all_bootmem_node(NODE_DATA(nid)); 358 } 359 } 360 #else 361 max_mapnr = max_pfn; 362 totalram_pages += free_all_bootmem(); 363 #endif 364 for_each_online_pgdat(pgdat) { 365 for (i = 0; i < pgdat->node_spanned_pages; i++) { 366 if (!pfn_valid(pgdat->node_start_pfn + i)) 367 continue; 368 page = pgdat_page_nr(pgdat, i); 369 if (PageReserved(page)) 370 reservedpages++; 371 } 372 } 373 374 codesize = (unsigned long)&_sdata - (unsigned long)&_stext; 375 datasize = (unsigned long)&_edata - (unsigned long)&_sdata; 376 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; 377 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; 378 379 #ifdef CONFIG_HIGHMEM 380 { 381 unsigned long pfn, highmem_mapnr; 382 383 highmem_mapnr = total_lowmem >> PAGE_SHIFT; 384 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { 385 struct page *page = pfn_to_page(pfn); 386 387 ClearPageReserved(page); 388 init_page_count(page); 389 __free_page(page); 390 totalhigh_pages++; 391 } 392 totalram_pages += totalhigh_pages; 393 printk(KERN_DEBUG "High memory: %luk\n", 394 totalhigh_pages << (PAGE_SHIFT-10)); 395 } 396 #endif /* CONFIG_HIGHMEM */ 397 398 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " 399 "%luk reserved, %luk data, %luk bss, %luk init)\n", 400 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 401 num_physpages << (PAGE_SHIFT-10), 402 codesize >> 10, 403 reservedpages << (PAGE_SHIFT-10), 404 datasize >> 10, 405 bsssize >> 10, 406 initsize >> 10); 407 408 mem_init_done = 1; 409 } 410 411 /* 412 * This is called when a page has been modified by the kernel. 413 * It just marks the page as not i-cache clean. We do the i-cache 414 * flush later when the page is given to a user process, if necessary. 415 */ 416 void flush_dcache_page(struct page *page) 417 { 418 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) 419 return; 420 /* avoid an atomic op if possible */ 421 if (test_bit(PG_arch_1, &page->flags)) 422 clear_bit(PG_arch_1, &page->flags); 423 } 424 EXPORT_SYMBOL(flush_dcache_page); 425 426 void flush_dcache_icache_page(struct page *page) 427 { 428 #ifdef CONFIG_BOOKE 429 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); 430 __flush_dcache_icache(start); 431 kunmap_atomic(start, KM_PPC_SYNC_ICACHE); 432 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) 433 /* On 8xx there is no need to kmap since highmem is not supported */ 434 __flush_dcache_icache(page_address(page)); 435 #else 436 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); 437 #endif 438 439 } 440 void clear_user_page(void *page, unsigned long vaddr, struct page *pg) 441 { 442 clear_page(page); 443 444 /* 445 * We shouldnt have to do this, but some versions of glibc 446 * require it (ld.so assumes zero filled pages are icache clean) 447 * - Anton 448 */ 449 flush_dcache_page(pg); 450 } 451 EXPORT_SYMBOL(clear_user_page); 452 453 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, 454 struct page *pg) 455 { 456 copy_page(vto, vfrom); 457 458 /* 459 * We should be able to use the following optimisation, however 460 * there are two problems. 461 * Firstly a bug in some versions of binutils meant PLT sections 462 * were not marked executable. 463 * Secondly the first word in the GOT section is blrl, used 464 * to establish the GOT address. Until recently the GOT was 465 * not marked executable. 466 * - Anton 467 */ 468 #if 0 469 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) 470 return; 471 #endif 472 473 flush_dcache_page(pg); 474 } 475 476 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 477 unsigned long addr, int len) 478 { 479 unsigned long maddr; 480 481 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); 482 flush_icache_range(maddr, maddr + len); 483 kunmap(page); 484 } 485 EXPORT_SYMBOL(flush_icache_user_range); 486 487 /* 488 * This is called at the end of handling a user page fault, when the 489 * fault has been handled by updating a PTE in the linux page tables. 490 * We use it to preload an HPTE into the hash table corresponding to 491 * the updated linux PTE. 492 * 493 * This must always be called with the pte lock held. 494 */ 495 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 496 pte_t pte) 497 { 498 #ifdef CONFIG_PPC_STD_MMU 499 unsigned long access = 0, trap; 500 #endif 501 unsigned long pfn = pte_pfn(pte); 502 503 /* handle i-cache coherency */ 504 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && 505 !cpu_has_feature(CPU_FTR_NOEXECUTE) && 506 pfn_valid(pfn)) { 507 struct page *page = pfn_to_page(pfn); 508 #ifdef CONFIG_8xx 509 /* On 8xx, cache control instructions (particularly 510 * "dcbst" from flush_dcache_icache) fault as write 511 * operation if there is an unpopulated TLB entry 512 * for the address in question. To workaround that, 513 * we invalidate the TLB here, thus avoiding dcbst 514 * misbehaviour. 515 */ 516 _tlbie(address); 517 #endif 518 if (!PageReserved(page) 519 && !test_bit(PG_arch_1, &page->flags)) { 520 if (vma->vm_mm == current->active_mm) { 521 __flush_dcache_icache((void *) address); 522 } else 523 flush_dcache_icache_page(page); 524 set_bit(PG_arch_1, &page->flags); 525 } 526 } 527 528 #ifdef CONFIG_PPC_STD_MMU 529 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 530 if (!pte_young(pte) || address >= TASK_SIZE) 531 return; 532 533 /* We try to figure out if we are coming from an instruction 534 * access fault and pass that down to __hash_page so we avoid 535 * double-faulting on execution of fresh text. We have to test 536 * for regs NULL since init will get here first thing at boot 537 * 538 * We also avoid filling the hash if not coming from a fault 539 */ 540 if (current->thread.regs == NULL) 541 return; 542 trap = TRAP(current->thread.regs); 543 if (trap == 0x400) 544 access |= _PAGE_EXEC; 545 else if (trap != 0x300) 546 return; 547 hash_preload(vma->vm_mm, address, access, trap); 548 #endif /* CONFIG_PPC_STD_MMU */ 549 } 550