xref: /openbmc/linux/arch/powerpc/mm/mem.c (revision 64c70b1c)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/init.h>
30 #include <linux/bootmem.h>
31 #include <linux/highmem.h>
32 #include <linux/initrd.h>
33 #include <linux/pagemap.h>
34 #include <linux/suspend.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50 
51 #include "mmu_decl.h"
52 
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
55 #define CPU_FTR_NOEXECUTE	0
56 #endif
57 
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61 
62 int page_is_ram(unsigned long pfn)
63 {
64 	unsigned long paddr = (pfn << PAGE_SHIFT);
65 
66 #ifndef CONFIG_PPC64	/* XXX for now */
67 	return paddr < __pa(high_memory);
68 #else
69 	int i;
70 	for (i=0; i < lmb.memory.cnt; i++) {
71 		unsigned long base;
72 
73 		base = lmb.memory.region[i].base;
74 
75 		if ((paddr >= base) &&
76 			(paddr < (base + lmb.memory.region[i].size))) {
77 			return 1;
78 		}
79 	}
80 
81 	return 0;
82 #endif
83 }
84 
85 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
86 			      unsigned long size, pgprot_t vma_prot)
87 {
88 	if (ppc_md.phys_mem_access_prot)
89 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
90 
91 	if (!page_is_ram(pfn))
92 		vma_prot = __pgprot(pgprot_val(vma_prot)
93 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
94 	return vma_prot;
95 }
96 EXPORT_SYMBOL(phys_mem_access_prot);
97 
98 #ifdef CONFIG_MEMORY_HOTPLUG
99 
100 void online_page(struct page *page)
101 {
102 	ClearPageReserved(page);
103 	init_page_count(page);
104 	__free_page(page);
105 	totalram_pages++;
106 	num_physpages++;
107 }
108 
109 #ifdef CONFIG_NUMA
110 int memory_add_physaddr_to_nid(u64 start)
111 {
112 	return hot_add_scn_to_nid(start);
113 }
114 #endif
115 
116 int __devinit arch_add_memory(int nid, u64 start, u64 size)
117 {
118 	struct pglist_data *pgdata;
119 	struct zone *zone;
120 	unsigned long start_pfn = start >> PAGE_SHIFT;
121 	unsigned long nr_pages = size >> PAGE_SHIFT;
122 
123 	pgdata = NODE_DATA(nid);
124 
125 	start = (unsigned long)__va(start);
126 	create_section_mapping(start, start + size);
127 
128 	/* this should work for most non-highmem platforms */
129 	zone = pgdata->node_zones;
130 
131 	return __add_pages(zone, start_pfn, nr_pages);
132 
133 	return 0;
134 }
135 
136 /*
137  * First pass at this code will check to determine if the remove
138  * request is within the RMO.  Do not allow removal within the RMO.
139  */
140 int __devinit remove_memory(u64 start, u64 size)
141 {
142 	struct zone *zone;
143 	unsigned long start_pfn, end_pfn, nr_pages;
144 
145 	start_pfn = start >> PAGE_SHIFT;
146 	nr_pages = size >> PAGE_SHIFT;
147 	end_pfn = start_pfn + nr_pages;
148 
149 	printk("%s(): Attempting to remove memoy in range "
150 			"%lx to %lx\n", __func__, start, start+size);
151 	/*
152 	 * check for range within RMO
153 	 */
154 	zone = page_zone(pfn_to_page(start_pfn));
155 
156 	printk("%s(): memory will be removed from "
157 			"the %s zone\n", __func__, zone->name);
158 
159 	/*
160 	 * not handling removing memory ranges that
161 	 * overlap multiple zones yet
162 	 */
163 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
164 		goto overlap;
165 
166 	/* make sure it is NOT in RMO */
167 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
168 		printk("%s(): range to be removed must NOT be in RMO!\n",
169 			__func__);
170 		goto in_rmo;
171 	}
172 
173 	return __remove_pages(zone, start_pfn, nr_pages);
174 
175 overlap:
176 	printk("%s(): memory range to be removed overlaps "
177 		"multiple zones!!!\n", __func__);
178 in_rmo:
179 	return -1;
180 }
181 #endif /* CONFIG_MEMORY_HOTPLUG */
182 
183 void show_mem(void)
184 {
185 	unsigned long total = 0, reserved = 0;
186 	unsigned long shared = 0, cached = 0;
187 	unsigned long highmem = 0;
188 	struct page *page;
189 	pg_data_t *pgdat;
190 	unsigned long i;
191 
192 	printk("Mem-info:\n");
193 	show_free_areas();
194 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
195 	for_each_online_pgdat(pgdat) {
196 		unsigned long flags;
197 		pgdat_resize_lock(pgdat, &flags);
198 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
199 			if (!pfn_valid(pgdat->node_start_pfn + i))
200 				continue;
201 			page = pgdat_page_nr(pgdat, i);
202 			total++;
203 			if (PageHighMem(page))
204 				highmem++;
205 			if (PageReserved(page))
206 				reserved++;
207 			else if (PageSwapCache(page))
208 				cached++;
209 			else if (page_count(page))
210 				shared += page_count(page) - 1;
211 		}
212 		pgdat_resize_unlock(pgdat, &flags);
213 	}
214 	printk("%ld pages of RAM\n", total);
215 #ifdef CONFIG_HIGHMEM
216 	printk("%ld pages of HIGHMEM\n", highmem);
217 #endif
218 	printk("%ld reserved pages\n", reserved);
219 	printk("%ld pages shared\n", shared);
220 	printk("%ld pages swap cached\n", cached);
221 }
222 
223 /*
224  * Initialize the bootmem system and give it all the memory we
225  * have available.  If we are using highmem, we only put the
226  * lowmem into the bootmem system.
227  */
228 #ifndef CONFIG_NEED_MULTIPLE_NODES
229 void __init do_init_bootmem(void)
230 {
231 	unsigned long i;
232 	unsigned long start, bootmap_pages;
233 	unsigned long total_pages;
234 	int boot_mapsize;
235 
236 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
237 #ifdef CONFIG_HIGHMEM
238 	total_pages = total_lowmem >> PAGE_SHIFT;
239 #endif
240 
241 	/*
242 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
243 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
244 	 * Add 1 additional page in case the address isn't page-aligned.
245 	 */
246 	bootmap_pages = bootmem_bootmap_pages(total_pages);
247 
248 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
249 
250 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
251 
252 	/* Add active regions with valid PFNs */
253 	for (i = 0; i < lmb.memory.cnt; i++) {
254 		unsigned long start_pfn, end_pfn;
255 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
256 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
257 		add_active_range(0, start_pfn, end_pfn);
258 	}
259 
260 	/* Add all physical memory to the bootmem map, mark each area
261 	 * present.
262 	 */
263 #ifdef CONFIG_HIGHMEM
264 	free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
265 #else
266 	free_bootmem_with_active_regions(0, max_pfn);
267 #endif
268 
269 	/* reserve the sections we're already using */
270 	for (i = 0; i < lmb.reserved.cnt; i++)
271 		reserve_bootmem(lmb.reserved.region[i].base,
272 				lmb_size_bytes(&lmb.reserved, i));
273 
274 	/* XXX need to clip this if using highmem? */
275 	sparse_memory_present_with_active_regions(0);
276 
277 	init_bootmem_done = 1;
278 }
279 
280 /* mark pages that don't exist as nosave */
281 static int __init mark_nonram_nosave(void)
282 {
283 	unsigned long lmb_next_region_start_pfn,
284 		      lmb_region_max_pfn;
285 	int i;
286 
287 	for (i = 0; i < lmb.memory.cnt - 1; i++) {
288 		lmb_region_max_pfn =
289 			(lmb.memory.region[i].base >> PAGE_SHIFT) +
290 			(lmb.memory.region[i].size >> PAGE_SHIFT);
291 		lmb_next_region_start_pfn =
292 			lmb.memory.region[i+1].base >> PAGE_SHIFT;
293 
294 		if (lmb_region_max_pfn < lmb_next_region_start_pfn)
295 			register_nosave_region(lmb_region_max_pfn,
296 					       lmb_next_region_start_pfn);
297 	}
298 
299 	return 0;
300 }
301 
302 /*
303  * paging_init() sets up the page tables - in fact we've already done this.
304  */
305 void __init paging_init(void)
306 {
307 	unsigned long total_ram = lmb_phys_mem_size();
308 	unsigned long top_of_ram = lmb_end_of_DRAM();
309 	unsigned long max_zone_pfns[MAX_NR_ZONES];
310 
311 #ifdef CONFIG_HIGHMEM
312 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
313 	pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
314 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
315 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
316 	kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
317 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
318 			 KMAP_FIX_BEGIN);
319 	kmap_prot = PAGE_KERNEL;
320 #endif /* CONFIG_HIGHMEM */
321 
322 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
323 	       top_of_ram, total_ram);
324 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
325 	       (top_of_ram - total_ram) >> 20);
326 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
327 #ifdef CONFIG_HIGHMEM
328 	max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
329 	max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
330 #else
331 	max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
332 #endif
333 	free_area_init_nodes(max_zone_pfns);
334 
335 	mark_nonram_nosave();
336 }
337 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
338 
339 void __init mem_init(void)
340 {
341 #ifdef CONFIG_NEED_MULTIPLE_NODES
342 	int nid;
343 #endif
344 	pg_data_t *pgdat;
345 	unsigned long i;
346 	struct page *page;
347 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
348 
349 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
350 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
351 
352 #ifdef CONFIG_NEED_MULTIPLE_NODES
353         for_each_online_node(nid) {
354 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
355 			printk("freeing bootmem node %d\n", nid);
356 			totalram_pages +=
357 				free_all_bootmem_node(NODE_DATA(nid));
358 		}
359 	}
360 #else
361 	max_mapnr = max_pfn;
362 	totalram_pages += free_all_bootmem();
363 #endif
364 	for_each_online_pgdat(pgdat) {
365 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
366 			if (!pfn_valid(pgdat->node_start_pfn + i))
367 				continue;
368 			page = pgdat_page_nr(pgdat, i);
369 			if (PageReserved(page))
370 				reservedpages++;
371 		}
372 	}
373 
374 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
375 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
376 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
377 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
378 
379 #ifdef CONFIG_HIGHMEM
380 	{
381 		unsigned long pfn, highmem_mapnr;
382 
383 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
384 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
385 			struct page *page = pfn_to_page(pfn);
386 
387 			ClearPageReserved(page);
388 			init_page_count(page);
389 			__free_page(page);
390 			totalhigh_pages++;
391 		}
392 		totalram_pages += totalhigh_pages;
393 		printk(KERN_DEBUG "High memory: %luk\n",
394 		       totalhigh_pages << (PAGE_SHIFT-10));
395 	}
396 #endif /* CONFIG_HIGHMEM */
397 
398 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
399 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
400 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
401 		num_physpages << (PAGE_SHIFT-10),
402 		codesize >> 10,
403 		reservedpages << (PAGE_SHIFT-10),
404 		datasize >> 10,
405 		bsssize >> 10,
406 		initsize >> 10);
407 
408 	mem_init_done = 1;
409 }
410 
411 /*
412  * This is called when a page has been modified by the kernel.
413  * It just marks the page as not i-cache clean.  We do the i-cache
414  * flush later when the page is given to a user process, if necessary.
415  */
416 void flush_dcache_page(struct page *page)
417 {
418 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
419 		return;
420 	/* avoid an atomic op if possible */
421 	if (test_bit(PG_arch_1, &page->flags))
422 		clear_bit(PG_arch_1, &page->flags);
423 }
424 EXPORT_SYMBOL(flush_dcache_page);
425 
426 void flush_dcache_icache_page(struct page *page)
427 {
428 #ifdef CONFIG_BOOKE
429 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
430 	__flush_dcache_icache(start);
431 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
432 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
433 	/* On 8xx there is no need to kmap since highmem is not supported */
434 	__flush_dcache_icache(page_address(page));
435 #else
436 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
437 #endif
438 
439 }
440 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
441 {
442 	clear_page(page);
443 
444 	/*
445 	 * We shouldnt have to do this, but some versions of glibc
446 	 * require it (ld.so assumes zero filled pages are icache clean)
447 	 * - Anton
448 	 */
449 	flush_dcache_page(pg);
450 }
451 EXPORT_SYMBOL(clear_user_page);
452 
453 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
454 		    struct page *pg)
455 {
456 	copy_page(vto, vfrom);
457 
458 	/*
459 	 * We should be able to use the following optimisation, however
460 	 * there are two problems.
461 	 * Firstly a bug in some versions of binutils meant PLT sections
462 	 * were not marked executable.
463 	 * Secondly the first word in the GOT section is blrl, used
464 	 * to establish the GOT address. Until recently the GOT was
465 	 * not marked executable.
466 	 * - Anton
467 	 */
468 #if 0
469 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
470 		return;
471 #endif
472 
473 	flush_dcache_page(pg);
474 }
475 
476 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
477 			     unsigned long addr, int len)
478 {
479 	unsigned long maddr;
480 
481 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
482 	flush_icache_range(maddr, maddr + len);
483 	kunmap(page);
484 }
485 EXPORT_SYMBOL(flush_icache_user_range);
486 
487 /*
488  * This is called at the end of handling a user page fault, when the
489  * fault has been handled by updating a PTE in the linux page tables.
490  * We use it to preload an HPTE into the hash table corresponding to
491  * the updated linux PTE.
492  *
493  * This must always be called with the pte lock held.
494  */
495 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
496 		      pte_t pte)
497 {
498 #ifdef CONFIG_PPC_STD_MMU
499 	unsigned long access = 0, trap;
500 #endif
501 	unsigned long pfn = pte_pfn(pte);
502 
503 	/* handle i-cache coherency */
504 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
505 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
506 	    pfn_valid(pfn)) {
507 		struct page *page = pfn_to_page(pfn);
508 #ifdef CONFIG_8xx
509 		/* On 8xx, cache control instructions (particularly
510 		 * "dcbst" from flush_dcache_icache) fault as write
511 		 * operation if there is an unpopulated TLB entry
512 		 * for the address in question. To workaround that,
513 		 * we invalidate the TLB here, thus avoiding dcbst
514 		 * misbehaviour.
515 		 */
516 		_tlbie(address);
517 #endif
518 		if (!PageReserved(page)
519 		    && !test_bit(PG_arch_1, &page->flags)) {
520 			if (vma->vm_mm == current->active_mm) {
521 				__flush_dcache_icache((void *) address);
522 			} else
523 				flush_dcache_icache_page(page);
524 			set_bit(PG_arch_1, &page->flags);
525 		}
526 	}
527 
528 #ifdef CONFIG_PPC_STD_MMU
529 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
530 	if (!pte_young(pte) || address >= TASK_SIZE)
531 		return;
532 
533 	/* We try to figure out if we are coming from an instruction
534 	 * access fault and pass that down to __hash_page so we avoid
535 	 * double-faulting on execution of fresh text. We have to test
536 	 * for regs NULL since init will get here first thing at boot
537 	 *
538 	 * We also avoid filling the hash if not coming from a fault
539 	 */
540 	if (current->thread.regs == NULL)
541 		return;
542 	trap = TRAP(current->thread.regs);
543 	if (trap == 0x400)
544 		access |= _PAGE_EXEC;
545 	else if (trap != 0x300)
546 		return;
547 	hash_preload(vma->vm_mm, address, access, trap);
548 #endif /* CONFIG_PPC_STD_MMU */
549 }
550