xref: /openbmc/linux/arch/powerpc/mm/mem.c (revision 643d1f7f)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34 
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/lmb.h>
46 #include <asm/sections.h>
47 #include <asm/vdso.h>
48 
49 #include "mmu_decl.h"
50 
51 #ifndef CPU_FTR_COHERENT_ICACHE
52 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
53 #define CPU_FTR_NOEXECUTE	0
54 #endif
55 
56 int init_bootmem_done;
57 int mem_init_done;
58 unsigned long memory_limit;
59 
60 int page_is_ram(unsigned long pfn)
61 {
62 	unsigned long paddr = (pfn << PAGE_SHIFT);
63 
64 #ifndef CONFIG_PPC64	/* XXX for now */
65 	return paddr < __pa(high_memory);
66 #else
67 	int i;
68 	for (i=0; i < lmb.memory.cnt; i++) {
69 		unsigned long base;
70 
71 		base = lmb.memory.region[i].base;
72 
73 		if ((paddr >= base) &&
74 			(paddr < (base + lmb.memory.region[i].size))) {
75 			return 1;
76 		}
77 	}
78 
79 	return 0;
80 #endif
81 }
82 
83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 			      unsigned long size, pgprot_t vma_prot)
85 {
86 	if (ppc_md.phys_mem_access_prot)
87 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
88 
89 	if (!page_is_ram(pfn))
90 		vma_prot = __pgprot(pgprot_val(vma_prot)
91 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
92 	return vma_prot;
93 }
94 EXPORT_SYMBOL(phys_mem_access_prot);
95 
96 #ifdef CONFIG_MEMORY_HOTPLUG
97 
98 void online_page(struct page *page)
99 {
100 	ClearPageReserved(page);
101 	init_page_count(page);
102 	__free_page(page);
103 	totalram_pages++;
104 	num_physpages++;
105 }
106 
107 #ifdef CONFIG_NUMA
108 int memory_add_physaddr_to_nid(u64 start)
109 {
110 	return hot_add_scn_to_nid(start);
111 }
112 #endif
113 
114 int __devinit arch_add_memory(int nid, u64 start, u64 size)
115 {
116 	struct pglist_data *pgdata;
117 	struct zone *zone;
118 	unsigned long start_pfn = start >> PAGE_SHIFT;
119 	unsigned long nr_pages = size >> PAGE_SHIFT;
120 
121 	pgdata = NODE_DATA(nid);
122 
123 	start = (unsigned long)__va(start);
124 	create_section_mapping(start, start + size);
125 
126 	/* this should work for most non-highmem platforms */
127 	zone = pgdata->node_zones;
128 
129 	return __add_pages(zone, start_pfn, nr_pages);
130 }
131 
132 #endif /* CONFIG_MEMORY_HOTPLUG */
133 
134 void show_mem(void)
135 {
136 	unsigned long total = 0, reserved = 0;
137 	unsigned long shared = 0, cached = 0;
138 	unsigned long highmem = 0;
139 	struct page *page;
140 	pg_data_t *pgdat;
141 	unsigned long i;
142 
143 	printk("Mem-info:\n");
144 	show_free_areas();
145 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
146 	for_each_online_pgdat(pgdat) {
147 		unsigned long flags;
148 		pgdat_resize_lock(pgdat, &flags);
149 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
150 			if (!pfn_valid(pgdat->node_start_pfn + i))
151 				continue;
152 			page = pgdat_page_nr(pgdat, i);
153 			total++;
154 			if (PageHighMem(page))
155 				highmem++;
156 			if (PageReserved(page))
157 				reserved++;
158 			else if (PageSwapCache(page))
159 				cached++;
160 			else if (page_count(page))
161 				shared += page_count(page) - 1;
162 		}
163 		pgdat_resize_unlock(pgdat, &flags);
164 	}
165 	printk("%ld pages of RAM\n", total);
166 #ifdef CONFIG_HIGHMEM
167 	printk("%ld pages of HIGHMEM\n", highmem);
168 #endif
169 	printk("%ld reserved pages\n", reserved);
170 	printk("%ld pages shared\n", shared);
171 	printk("%ld pages swap cached\n", cached);
172 }
173 
174 /*
175  * Initialize the bootmem system and give it all the memory we
176  * have available.  If we are using highmem, we only put the
177  * lowmem into the bootmem system.
178  */
179 #ifndef CONFIG_NEED_MULTIPLE_NODES
180 void __init do_init_bootmem(void)
181 {
182 	unsigned long i;
183 	unsigned long start, bootmap_pages;
184 	unsigned long total_pages;
185 	int boot_mapsize;
186 
187 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
188 #ifdef CONFIG_HIGHMEM
189 	total_pages = total_lowmem >> PAGE_SHIFT;
190 #endif
191 
192 	/*
193 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
194 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
195 	 * Add 1 additional page in case the address isn't page-aligned.
196 	 */
197 	bootmap_pages = bootmem_bootmap_pages(total_pages);
198 
199 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
200 
201 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
202 
203 	/* Add active regions with valid PFNs */
204 	for (i = 0; i < lmb.memory.cnt; i++) {
205 		unsigned long start_pfn, end_pfn;
206 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
207 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
208 		add_active_range(0, start_pfn, end_pfn);
209 	}
210 
211 	/* Add all physical memory to the bootmem map, mark each area
212 	 * present.
213 	 */
214 #ifdef CONFIG_HIGHMEM
215 	free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
216 
217 	/* reserve the sections we're already using */
218 	for (i = 0; i < lmb.reserved.cnt; i++) {
219 		unsigned long addr = lmb.reserved.region[i].base +
220 				     lmb_size_bytes(&lmb.reserved, i) - 1;
221 		if (addr < total_lowmem)
222 			reserve_bootmem(lmb.reserved.region[i].base,
223 					lmb_size_bytes(&lmb.reserved, i));
224 		else if (lmb.reserved.region[i].base < total_lowmem) {
225 			unsigned long adjusted_size = total_lowmem -
226 				      lmb.reserved.region[i].base;
227 			reserve_bootmem(lmb.reserved.region[i].base,
228 					adjusted_size);
229 		}
230 	}
231 #else
232 	free_bootmem_with_active_regions(0, max_pfn);
233 
234 	/* reserve the sections we're already using */
235 	for (i = 0; i < lmb.reserved.cnt; i++)
236 		reserve_bootmem(lmb.reserved.region[i].base,
237 				lmb_size_bytes(&lmb.reserved, i));
238 
239 #endif
240 	/* XXX need to clip this if using highmem? */
241 	sparse_memory_present_with_active_regions(0);
242 
243 	init_bootmem_done = 1;
244 }
245 
246 /* mark pages that don't exist as nosave */
247 static int __init mark_nonram_nosave(void)
248 {
249 	unsigned long lmb_next_region_start_pfn,
250 		      lmb_region_max_pfn;
251 	int i;
252 
253 	for (i = 0; i < lmb.memory.cnt - 1; i++) {
254 		lmb_region_max_pfn =
255 			(lmb.memory.region[i].base >> PAGE_SHIFT) +
256 			(lmb.memory.region[i].size >> PAGE_SHIFT);
257 		lmb_next_region_start_pfn =
258 			lmb.memory.region[i+1].base >> PAGE_SHIFT;
259 
260 		if (lmb_region_max_pfn < lmb_next_region_start_pfn)
261 			register_nosave_region(lmb_region_max_pfn,
262 					       lmb_next_region_start_pfn);
263 	}
264 
265 	return 0;
266 }
267 
268 /*
269  * paging_init() sets up the page tables - in fact we've already done this.
270  */
271 void __init paging_init(void)
272 {
273 	unsigned long total_ram = lmb_phys_mem_size();
274 	unsigned long top_of_ram = lmb_end_of_DRAM();
275 	unsigned long max_zone_pfns[MAX_NR_ZONES];
276 
277 #ifdef CONFIG_HIGHMEM
278 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
279 	pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
280 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
281 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
282 	kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
283 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
284 			 KMAP_FIX_BEGIN);
285 	kmap_prot = PAGE_KERNEL;
286 #endif /* CONFIG_HIGHMEM */
287 
288 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
289 	       top_of_ram, total_ram);
290 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
291 	       (top_of_ram - total_ram) >> 20);
292 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
293 #ifdef CONFIG_HIGHMEM
294 	max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
295 	max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
296 #else
297 	max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
298 #endif
299 	free_area_init_nodes(max_zone_pfns);
300 
301 	mark_nonram_nosave();
302 }
303 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
304 
305 void __init mem_init(void)
306 {
307 #ifdef CONFIG_NEED_MULTIPLE_NODES
308 	int nid;
309 #endif
310 	pg_data_t *pgdat;
311 	unsigned long i;
312 	struct page *page;
313 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
314 
315 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
316 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
317 
318 #ifdef CONFIG_NEED_MULTIPLE_NODES
319         for_each_online_node(nid) {
320 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
321 			printk("freeing bootmem node %d\n", nid);
322 			totalram_pages +=
323 				free_all_bootmem_node(NODE_DATA(nid));
324 		}
325 	}
326 #else
327 	max_mapnr = max_pfn;
328 	totalram_pages += free_all_bootmem();
329 #endif
330 	for_each_online_pgdat(pgdat) {
331 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
332 			if (!pfn_valid(pgdat->node_start_pfn + i))
333 				continue;
334 			page = pgdat_page_nr(pgdat, i);
335 			if (PageReserved(page))
336 				reservedpages++;
337 		}
338 	}
339 
340 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
341 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
342 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
343 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
344 
345 #ifdef CONFIG_HIGHMEM
346 	{
347 		unsigned long pfn, highmem_mapnr;
348 
349 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
350 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
351 			struct page *page = pfn_to_page(pfn);
352 			if (lmb_is_reserved(pfn << PAGE_SHIFT))
353 				continue;
354 			ClearPageReserved(page);
355 			init_page_count(page);
356 			__free_page(page);
357 			totalhigh_pages++;
358 			reservedpages--;
359 		}
360 		totalram_pages += totalhigh_pages;
361 		printk(KERN_DEBUG "High memory: %luk\n",
362 		       totalhigh_pages << (PAGE_SHIFT-10));
363 	}
364 #endif /* CONFIG_HIGHMEM */
365 
366 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
367 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
368 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
369 		num_physpages << (PAGE_SHIFT-10),
370 		codesize >> 10,
371 		reservedpages << (PAGE_SHIFT-10),
372 		datasize >> 10,
373 		bsssize >> 10,
374 		initsize >> 10);
375 
376 	mem_init_done = 1;
377 }
378 
379 /*
380  * This is called when a page has been modified by the kernel.
381  * It just marks the page as not i-cache clean.  We do the i-cache
382  * flush later when the page is given to a user process, if necessary.
383  */
384 void flush_dcache_page(struct page *page)
385 {
386 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
387 		return;
388 	/* avoid an atomic op if possible */
389 	if (test_bit(PG_arch_1, &page->flags))
390 		clear_bit(PG_arch_1, &page->flags);
391 }
392 EXPORT_SYMBOL(flush_dcache_page);
393 
394 void flush_dcache_icache_page(struct page *page)
395 {
396 #ifdef CONFIG_BOOKE
397 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
398 	__flush_dcache_icache(start);
399 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
400 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
401 	/* On 8xx there is no need to kmap since highmem is not supported */
402 	__flush_dcache_icache(page_address(page));
403 #else
404 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
405 #endif
406 
407 }
408 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
409 {
410 	clear_page(page);
411 
412 	/*
413 	 * We shouldnt have to do this, but some versions of glibc
414 	 * require it (ld.so assumes zero filled pages are icache clean)
415 	 * - Anton
416 	 */
417 	flush_dcache_page(pg);
418 }
419 EXPORT_SYMBOL(clear_user_page);
420 
421 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
422 		    struct page *pg)
423 {
424 	copy_page(vto, vfrom);
425 
426 	/*
427 	 * We should be able to use the following optimisation, however
428 	 * there are two problems.
429 	 * Firstly a bug in some versions of binutils meant PLT sections
430 	 * were not marked executable.
431 	 * Secondly the first word in the GOT section is blrl, used
432 	 * to establish the GOT address. Until recently the GOT was
433 	 * not marked executable.
434 	 * - Anton
435 	 */
436 #if 0
437 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
438 		return;
439 #endif
440 
441 	flush_dcache_page(pg);
442 }
443 
444 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
445 			     unsigned long addr, int len)
446 {
447 	unsigned long maddr;
448 
449 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
450 	flush_icache_range(maddr, maddr + len);
451 	kunmap(page);
452 }
453 EXPORT_SYMBOL(flush_icache_user_range);
454 
455 /*
456  * This is called at the end of handling a user page fault, when the
457  * fault has been handled by updating a PTE in the linux page tables.
458  * We use it to preload an HPTE into the hash table corresponding to
459  * the updated linux PTE.
460  *
461  * This must always be called with the pte lock held.
462  */
463 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
464 		      pte_t pte)
465 {
466 #ifdef CONFIG_PPC_STD_MMU
467 	unsigned long access = 0, trap;
468 #endif
469 	unsigned long pfn = pte_pfn(pte);
470 
471 	/* handle i-cache coherency */
472 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
473 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
474 	    pfn_valid(pfn)) {
475 		struct page *page = pfn_to_page(pfn);
476 #ifdef CONFIG_8xx
477 		/* On 8xx, cache control instructions (particularly
478 		 * "dcbst" from flush_dcache_icache) fault as write
479 		 * operation if there is an unpopulated TLB entry
480 		 * for the address in question. To workaround that,
481 		 * we invalidate the TLB here, thus avoiding dcbst
482 		 * misbehaviour.
483 		 */
484 		_tlbie(address, 0 /* 8xx doesn't care about PID */);
485 #endif
486 		if (!PageReserved(page)
487 		    && !test_bit(PG_arch_1, &page->flags)) {
488 			if (vma->vm_mm == current->active_mm) {
489 				__flush_dcache_icache((void *) address);
490 			} else
491 				flush_dcache_icache_page(page);
492 			set_bit(PG_arch_1, &page->flags);
493 		}
494 	}
495 
496 #ifdef CONFIG_PPC_STD_MMU
497 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
498 	if (!pte_young(pte) || address >= TASK_SIZE)
499 		return;
500 
501 	/* We try to figure out if we are coming from an instruction
502 	 * access fault and pass that down to __hash_page so we avoid
503 	 * double-faulting on execution of fresh text. We have to test
504 	 * for regs NULL since init will get here first thing at boot
505 	 *
506 	 * We also avoid filling the hash if not coming from a fault
507 	 */
508 	if (current->thread.regs == NULL)
509 		return;
510 	trap = TRAP(current->thread.regs);
511 	if (trap == 0x400)
512 		access |= _PAGE_EXEC;
513 	else if (trap != 0x300)
514 		return;
515 	hash_preload(vma->vm_mm, address, access, trap);
516 #endif /* CONFIG_PPC_STD_MMU */
517 }
518