xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision bdeeed09)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47 #include <linux/memremap.h>
48 
49 #include <asm/pgalloc.h>
50 #include <asm/page.h>
51 #include <asm/prom.h>
52 #include <asm/rtas.h>
53 #include <asm/io.h>
54 #include <asm/mmu_context.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu.h>
57 #include <linux/uaccess.h>
58 #include <asm/smp.h>
59 #include <asm/machdep.h>
60 #include <asm/tlb.h>
61 #include <asm/eeh.h>
62 #include <asm/processor.h>
63 #include <asm/mmzone.h>
64 #include <asm/cputable.h>
65 #include <asm/sections.h>
66 #include <asm/iommu.h>
67 #include <asm/vdso.h>
68 
69 #include "mmu_decl.h"
70 
71 phys_addr_t memstart_addr = ~0;
72 EXPORT_SYMBOL_GPL(memstart_addr);
73 phys_addr_t kernstart_addr;
74 EXPORT_SYMBOL_GPL(kernstart_addr);
75 
76 #ifdef CONFIG_SPARSEMEM_VMEMMAP
77 /*
78  * Given an address within the vmemmap, determine the pfn of the page that
79  * represents the start of the section it is within.  Note that we have to
80  * do this by hand as the proffered address may not be correctly aligned.
81  * Subtraction of non-aligned pointers produces undefined results.
82  */
83 static unsigned long __meminit vmemmap_section_start(unsigned long page)
84 {
85 	unsigned long offset = page - ((unsigned long)(vmemmap));
86 
87 	/* Return the pfn of the start of the section. */
88 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
89 }
90 
91 /*
92  * Check if this vmemmap page is already initialised.  If any section
93  * which overlaps this vmemmap page is initialised then this page is
94  * initialised already.
95  */
96 static int __meminit vmemmap_populated(unsigned long start, int page_size)
97 {
98 	unsigned long end = start + page_size;
99 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
100 
101 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
102 		if (pfn_valid(page_to_pfn((struct page *)start)))
103 			return 1;
104 
105 	return 0;
106 }
107 
108 /*
109  * vmemmap virtual address space management does not have a traditonal page
110  * table to track which virtual struct pages are backed by physical mapping.
111  * The virtual to physical mappings are tracked in a simple linked list
112  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
113  * all times where as the 'next' list maintains the available
114  * vmemmap_backing structures which have been deleted from the
115  * 'vmemmap_global' list during system runtime (memory hotplug remove
116  * operation). The freed 'vmemmap_backing' structures are reused later when
117  * new requests come in without allocating fresh memory. This pointer also
118  * tracks the allocated 'vmemmap_backing' structures as we allocate one
119  * full page memory at a time when we dont have any.
120  */
121 struct vmemmap_backing *vmemmap_list;
122 static struct vmemmap_backing *next;
123 
124 /*
125  * The same pointer 'next' tracks individual chunks inside the allocated
126  * full page during the boot time and again tracks the freeed nodes during
127  * runtime. It is racy but it does not happen as they are separated by the
128  * boot process. Will create problem if some how we have memory hotplug
129  * operation during boot !!
130  */
131 static int num_left;
132 static int num_freed;
133 
134 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
135 {
136 	struct vmemmap_backing *vmem_back;
137 	/* get from freed entries first */
138 	if (num_freed) {
139 		num_freed--;
140 		vmem_back = next;
141 		next = next->list;
142 
143 		return vmem_back;
144 	}
145 
146 	/* allocate a page when required and hand out chunks */
147 	if (!num_left) {
148 		next = vmemmap_alloc_block(PAGE_SIZE, node);
149 		if (unlikely(!next)) {
150 			WARN_ON(1);
151 			return NULL;
152 		}
153 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
154 	}
155 
156 	num_left--;
157 
158 	return next++;
159 }
160 
161 static __meminit void vmemmap_list_populate(unsigned long phys,
162 					    unsigned long start,
163 					    int node)
164 {
165 	struct vmemmap_backing *vmem_back;
166 
167 	vmem_back = vmemmap_list_alloc(node);
168 	if (unlikely(!vmem_back)) {
169 		WARN_ON(1);
170 		return;
171 	}
172 
173 	vmem_back->phys = phys;
174 	vmem_back->virt_addr = start;
175 	vmem_back->list = vmemmap_list;
176 
177 	vmemmap_list = vmem_back;
178 }
179 
180 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
181 		struct vmem_altmap *altmap)
182 {
183 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
184 
185 	/* Align to the page size of the linear mapping. */
186 	start = _ALIGN_DOWN(start, page_size);
187 
188 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
189 
190 	for (; start < end; start += page_size) {
191 		void *p;
192 		int rc;
193 
194 		if (vmemmap_populated(start, page_size))
195 			continue;
196 
197 		if (altmap)
198 			p = altmap_alloc_block_buf(page_size, altmap);
199 		else
200 			p = vmemmap_alloc_block_buf(page_size, node);
201 		if (!p)
202 			return -ENOMEM;
203 
204 		vmemmap_list_populate(__pa(p), start, node);
205 
206 		pr_debug("      * %016lx..%016lx allocated at %p\n",
207 			 start, start + page_size, p);
208 
209 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
210 		if (rc < 0) {
211 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
212 				__func__, rc);
213 			return -EFAULT;
214 		}
215 	}
216 
217 	return 0;
218 }
219 
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 static unsigned long vmemmap_list_free(unsigned long start)
222 {
223 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
224 
225 	vmem_back_prev = vmem_back = vmemmap_list;
226 
227 	/* look for it with prev pointer recorded */
228 	for (; vmem_back; vmem_back = vmem_back->list) {
229 		if (vmem_back->virt_addr == start)
230 			break;
231 		vmem_back_prev = vmem_back;
232 	}
233 
234 	if (unlikely(!vmem_back)) {
235 		WARN_ON(1);
236 		return 0;
237 	}
238 
239 	/* remove it from vmemmap_list */
240 	if (vmem_back == vmemmap_list) /* remove head */
241 		vmemmap_list = vmem_back->list;
242 	else
243 		vmem_back_prev->list = vmem_back->list;
244 
245 	/* next point to this freed entry */
246 	vmem_back->list = next;
247 	next = vmem_back;
248 	num_freed++;
249 
250 	return vmem_back->phys;
251 }
252 
253 void __ref vmemmap_free(unsigned long start, unsigned long end,
254 		struct vmem_altmap *altmap)
255 {
256 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
257 	unsigned long page_order = get_order(page_size);
258 
259 	start = _ALIGN_DOWN(start, page_size);
260 
261 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
262 
263 	for (; start < end; start += page_size) {
264 		unsigned long nr_pages, addr;
265 		struct page *section_base;
266 		struct page *page;
267 
268 		/*
269 		 * the section has already be marked as invalid, so
270 		 * vmemmap_populated() true means some other sections still
271 		 * in this page, so skip it.
272 		 */
273 		if (vmemmap_populated(start, page_size))
274 			continue;
275 
276 		addr = vmemmap_list_free(start);
277 		if (!addr)
278 			continue;
279 
280 		page = pfn_to_page(addr >> PAGE_SHIFT);
281 		section_base = pfn_to_page(vmemmap_section_start(start));
282 		nr_pages = 1 << page_order;
283 
284 		if (altmap) {
285 			vmem_altmap_free(altmap, nr_pages);
286 		} else if (PageReserved(page)) {
287 			/* allocated from bootmem */
288 			if (page_size < PAGE_SIZE) {
289 				/*
290 				 * this shouldn't happen, but if it is
291 				 * the case, leave the memory there
292 				 */
293 				WARN_ON_ONCE(1);
294 			} else {
295 				while (nr_pages--)
296 					free_reserved_page(page++);
297 			}
298 		} else {
299 			free_pages((unsigned long)(__va(addr)), page_order);
300 		}
301 
302 		vmemmap_remove_mapping(start, page_size);
303 	}
304 }
305 #endif
306 void register_page_bootmem_memmap(unsigned long section_nr,
307 				  struct page *start_page, unsigned long size)
308 {
309 }
310 
311 /*
312  * We do not have access to the sparsemem vmemmap, so we fallback to
313  * walking the list of sparsemem blocks which we already maintain for
314  * the sake of crashdump. In the long run, we might want to maintain
315  * a tree if performance of that linear walk becomes a problem.
316  *
317  * realmode_pfn_to_page functions can fail due to:
318  * 1) As real sparsemem blocks do not lay in RAM continously (they
319  * are in virtual address space which is not available in the real mode),
320  * the requested page struct can be split between blocks so get_page/put_page
321  * may fail.
322  * 2) When huge pages are used, the get_page/put_page API will fail
323  * in real mode as the linked addresses in the page struct are virtual
324  * too.
325  */
326 struct page *realmode_pfn_to_page(unsigned long pfn)
327 {
328 	struct vmemmap_backing *vmem_back;
329 	struct page *page;
330 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
331 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
332 
333 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
334 		if (pg_va < vmem_back->virt_addr)
335 			continue;
336 
337 		/* After vmemmap_list entry free is possible, need check all */
338 		if ((pg_va + sizeof(struct page)) <=
339 				(vmem_back->virt_addr + page_size)) {
340 			page = (struct page *) (vmem_back->phys + pg_va -
341 				vmem_back->virt_addr);
342 			return page;
343 		}
344 	}
345 
346 	/* Probably that page struct is split between real pages */
347 	return NULL;
348 }
349 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
350 
351 #else
352 
353 struct page *realmode_pfn_to_page(unsigned long pfn)
354 {
355 	struct page *page = pfn_to_page(pfn);
356 	return page;
357 }
358 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
359 
360 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
361 
362 #ifdef CONFIG_PPC_BOOK3S_64
363 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
364 
365 static int __init parse_disable_radix(char *p)
366 {
367 	bool val;
368 
369 	if (!p)
370 		val = true;
371 	else if (kstrtobool(p, &val))
372 		return -EINVAL;
373 
374 	disable_radix = val;
375 
376 	return 0;
377 }
378 early_param("disable_radix", parse_disable_radix);
379 
380 /*
381  * If we're running under a hypervisor, we need to check the contents of
382  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
383  * radix.  If not, we clear the radix feature bit so we fall back to hash.
384  */
385 static void __init early_check_vec5(void)
386 {
387 	unsigned long root, chosen;
388 	int size;
389 	const u8 *vec5;
390 	u8 mmu_supported;
391 
392 	root = of_get_flat_dt_root();
393 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
394 	if (chosen == -FDT_ERR_NOTFOUND) {
395 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
396 		return;
397 	}
398 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
399 	if (!vec5) {
400 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
401 		return;
402 	}
403 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
404 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
405 		return;
406 	}
407 
408 	/* Check for supported configuration */
409 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
410 			OV5_FEAT(OV5_MMU_SUPPORT);
411 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
412 		/* Hypervisor only supports radix - check enabled && GTSE */
413 		if (!early_radix_enabled()) {
414 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
415 		}
416 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
417 						OV5_FEAT(OV5_RADIX_GTSE))) {
418 			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
419 		}
420 		/* Do radix anyway - the hypervisor said we had to */
421 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
422 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
423 		/* Hypervisor only supports hash - disable radix */
424 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
425 	}
426 }
427 
428 void __init mmu_early_init_devtree(void)
429 {
430 	/* Disable radix mode based on kernel command line. */
431 	if (disable_radix)
432 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
433 
434 	/*
435 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
436 	 * When running bare-metal, we can use radix if we like
437 	 * even though the ibm,architecture-vec-5 property created by
438 	 * skiboot doesn't have the necessary bits set.
439 	 */
440 	if (!(mfmsr() & MSR_HV))
441 		early_check_vec5();
442 
443 	if (early_radix_enabled())
444 		radix__early_init_devtree();
445 	else
446 		hash__early_init_devtree();
447 }
448 #endif /* CONFIG_PPC_BOOK3S_64 */
449