xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
63 
64 #include <mm/mmu_decl.h>
65 
66 #ifdef CONFIG_SPARSEMEM_VMEMMAP
67 /*
68  * Given an address within the vmemmap, determine the page that
69  * represents the start of the subsection it is within.  Note that we have to
70  * do this by hand as the proffered address may not be correctly aligned.
71  * Subtraction of non-aligned pointers produces undefined results.
72  */
73 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
74 {
75 	unsigned long start_pfn;
76 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
77 
78 	/* Return the pfn of the start of the section. */
79 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
80 	return pfn_to_page(start_pfn);
81 }
82 
83 /*
84  * Since memory is added in sub-section chunks, before creating a new vmemmap
85  * mapping, the kernel should check whether there is an existing memmap mapping
86  * covering the new subsection added. This is needed because kernel can map
87  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
88  * a range covers multiple subsections (2M)
89  *
90  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
91  * vmemmap populated (There is a page table entry already present). We can't do
92  * a page table lookup here because with the hash translation we don't keep
93  * vmemmap details in linux page table.
94  */
95 static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
96 {
97 	struct page *start;
98 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
99 	start = vmemmap_subsection_start(vmemmap_addr);
100 
101 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
102 		/*
103 		 * pfn valid check here is intended to really check
104 		 * whether we have any subsection already initialized
105 		 * in this range.
106 		 */
107 		if (pfn_valid(page_to_pfn(start)))
108 			return 1;
109 
110 	return 0;
111 }
112 
113 /*
114  * vmemmap virtual address space management does not have a traditonal page
115  * table to track which virtual struct pages are backed by physical mapping.
116  * The virtual to physical mappings are tracked in a simple linked list
117  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
118  * all times where as the 'next' list maintains the available
119  * vmemmap_backing structures which have been deleted from the
120  * 'vmemmap_global' list during system runtime (memory hotplug remove
121  * operation). The freed 'vmemmap_backing' structures are reused later when
122  * new requests come in without allocating fresh memory. This pointer also
123  * tracks the allocated 'vmemmap_backing' structures as we allocate one
124  * full page memory at a time when we dont have any.
125  */
126 struct vmemmap_backing *vmemmap_list;
127 static struct vmemmap_backing *next;
128 
129 /*
130  * The same pointer 'next' tracks individual chunks inside the allocated
131  * full page during the boot time and again tracks the freeed nodes during
132  * runtime. It is racy but it does not happen as they are separated by the
133  * boot process. Will create problem if some how we have memory hotplug
134  * operation during boot !!
135  */
136 static int num_left;
137 static int num_freed;
138 
139 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
140 {
141 	struct vmemmap_backing *vmem_back;
142 	/* get from freed entries first */
143 	if (num_freed) {
144 		num_freed--;
145 		vmem_back = next;
146 		next = next->list;
147 
148 		return vmem_back;
149 	}
150 
151 	/* allocate a page when required and hand out chunks */
152 	if (!num_left) {
153 		next = vmemmap_alloc_block(PAGE_SIZE, node);
154 		if (unlikely(!next)) {
155 			WARN_ON(1);
156 			return NULL;
157 		}
158 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
159 	}
160 
161 	num_left--;
162 
163 	return next++;
164 }
165 
166 static __meminit void vmemmap_list_populate(unsigned long phys,
167 					    unsigned long start,
168 					    int node)
169 {
170 	struct vmemmap_backing *vmem_back;
171 
172 	vmem_back = vmemmap_list_alloc(node);
173 	if (unlikely(!vmem_back)) {
174 		WARN_ON(1);
175 		return;
176 	}
177 
178 	vmem_back->phys = phys;
179 	vmem_back->virt_addr = start;
180 	vmem_back->list = vmemmap_list;
181 
182 	vmemmap_list = vmem_back;
183 }
184 
185 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
186 				unsigned long page_size)
187 {
188 	unsigned long nr_pfn = page_size / sizeof(struct page);
189 	unsigned long start_pfn = page_to_pfn((struct page *)start);
190 
191 	if ((start_pfn + nr_pfn) > altmap->end_pfn)
192 		return true;
193 
194 	if (start_pfn < altmap->base_pfn)
195 		return true;
196 
197 	return false;
198 }
199 
200 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
201 		struct vmem_altmap *altmap)
202 {
203 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
204 
205 	/* Align to the page size of the linear mapping. */
206 	start = _ALIGN_DOWN(start, page_size);
207 
208 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
209 
210 	for (; start < end; start += page_size) {
211 		void *p = NULL;
212 		int rc;
213 
214 		/*
215 		 * This vmemmap range is backing different subsections. If any
216 		 * of that subsection is marked valid, that means we already
217 		 * have initialized a page table covering this range and hence
218 		 * the vmemmap range is populated.
219 		 */
220 		if (vmemmap_populated(start, page_size))
221 			continue;
222 
223 		/*
224 		 * Allocate from the altmap first if we have one. This may
225 		 * fail due to alignment issues when using 16MB hugepages, so
226 		 * fall back to system memory if the altmap allocation fail.
227 		 */
228 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
229 			p = altmap_alloc_block_buf(page_size, altmap);
230 			if (!p)
231 				pr_debug("altmap block allocation failed, falling back to system memory");
232 		}
233 		if (!p)
234 			p = vmemmap_alloc_block_buf(page_size, node);
235 		if (!p)
236 			return -ENOMEM;
237 
238 		vmemmap_list_populate(__pa(p), start, node);
239 
240 		pr_debug("      * %016lx..%016lx allocated at %p\n",
241 			 start, start + page_size, p);
242 
243 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
244 		if (rc < 0) {
245 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
246 				__func__, rc);
247 			return -EFAULT;
248 		}
249 	}
250 
251 	return 0;
252 }
253 
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long vmemmap_list_free(unsigned long start)
256 {
257 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
258 
259 	vmem_back_prev = vmem_back = vmemmap_list;
260 
261 	/* look for it with prev pointer recorded */
262 	for (; vmem_back; vmem_back = vmem_back->list) {
263 		if (vmem_back->virt_addr == start)
264 			break;
265 		vmem_back_prev = vmem_back;
266 	}
267 
268 	if (unlikely(!vmem_back)) {
269 		WARN_ON(1);
270 		return 0;
271 	}
272 
273 	/* remove it from vmemmap_list */
274 	if (vmem_back == vmemmap_list) /* remove head */
275 		vmemmap_list = vmem_back->list;
276 	else
277 		vmem_back_prev->list = vmem_back->list;
278 
279 	/* next point to this freed entry */
280 	vmem_back->list = next;
281 	next = vmem_back;
282 	num_freed++;
283 
284 	return vmem_back->phys;
285 }
286 
287 void __ref vmemmap_free(unsigned long start, unsigned long end,
288 		struct vmem_altmap *altmap)
289 {
290 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
291 	unsigned long page_order = get_order(page_size);
292 	unsigned long alt_start = ~0, alt_end = ~0;
293 	unsigned long base_pfn;
294 
295 	start = _ALIGN_DOWN(start, page_size);
296 	if (altmap) {
297 		alt_start = altmap->base_pfn;
298 		alt_end = altmap->base_pfn + altmap->reserve +
299 			  altmap->free + altmap->alloc + altmap->align;
300 	}
301 
302 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
303 
304 	for (; start < end; start += page_size) {
305 		unsigned long nr_pages, addr;
306 		struct page *page;
307 
308 		/*
309 		 * We have already marked the subsection we are trying to remove
310 		 * invalid. So if we want to remove the vmemmap range, we
311 		 * need to make sure there is no subsection marked valid
312 		 * in this range.
313 		 */
314 		if (vmemmap_populated(start, page_size))
315 			continue;
316 
317 		addr = vmemmap_list_free(start);
318 		if (!addr)
319 			continue;
320 
321 		page = pfn_to_page(addr >> PAGE_SHIFT);
322 		nr_pages = 1 << page_order;
323 		base_pfn = PHYS_PFN(addr);
324 
325 		if (base_pfn >= alt_start && base_pfn < alt_end) {
326 			vmem_altmap_free(altmap, nr_pages);
327 		} else if (PageReserved(page)) {
328 			/* allocated from bootmem */
329 			if (page_size < PAGE_SIZE) {
330 				/*
331 				 * this shouldn't happen, but if it is
332 				 * the case, leave the memory there
333 				 */
334 				WARN_ON_ONCE(1);
335 			} else {
336 				while (nr_pages--)
337 					free_reserved_page(page++);
338 			}
339 		} else {
340 			free_pages((unsigned long)(__va(addr)), page_order);
341 		}
342 
343 		vmemmap_remove_mapping(start, page_size);
344 	}
345 }
346 #endif
347 void register_page_bootmem_memmap(unsigned long section_nr,
348 				  struct page *start_page, unsigned long size)
349 {
350 }
351 
352 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
353 
354 #ifdef CONFIG_PPC_BOOK3S_64
355 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
356 
357 static int __init parse_disable_radix(char *p)
358 {
359 	bool val;
360 
361 	if (!p)
362 		val = true;
363 	else if (kstrtobool(p, &val))
364 		return -EINVAL;
365 
366 	disable_radix = val;
367 
368 	return 0;
369 }
370 early_param("disable_radix", parse_disable_radix);
371 
372 /*
373  * If we're running under a hypervisor, we need to check the contents of
374  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
375  * radix.  If not, we clear the radix feature bit so we fall back to hash.
376  */
377 static void __init early_check_vec5(void)
378 {
379 	unsigned long root, chosen;
380 	int size;
381 	const u8 *vec5;
382 	u8 mmu_supported;
383 
384 	root = of_get_flat_dt_root();
385 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
386 	if (chosen == -FDT_ERR_NOTFOUND) {
387 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
388 		return;
389 	}
390 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
391 	if (!vec5) {
392 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
393 		return;
394 	}
395 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
396 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
397 		return;
398 	}
399 
400 	/* Check for supported configuration */
401 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
402 			OV5_FEAT(OV5_MMU_SUPPORT);
403 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
404 		/* Hypervisor only supports radix - check enabled && GTSE */
405 		if (!early_radix_enabled()) {
406 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
407 		}
408 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
409 						OV5_FEAT(OV5_RADIX_GTSE))) {
410 			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
411 		}
412 		/* Do radix anyway - the hypervisor said we had to */
413 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
414 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
415 		/* Hypervisor only supports hash - disable radix */
416 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
417 	}
418 }
419 
420 void __init mmu_early_init_devtree(void)
421 {
422 	/* Disable radix mode based on kernel command line. */
423 	if (disable_radix)
424 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
425 
426 	/*
427 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
428 	 * When running bare-metal, we can use radix if we like
429 	 * even though the ibm,architecture-vec-5 property created by
430 	 * skiboot doesn't have the necessary bits set.
431 	 */
432 	if (!(mfmsr() & MSR_HV))
433 		early_check_vec5();
434 
435 	if (early_radix_enabled())
436 		radix__early_init_devtree();
437 	else
438 		hash__early_init_devtree();
439 }
440 #endif /* CONFIG_PPC_BOOK3S_64 */
441