1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * 9 * Derived from "arch/i386/mm/init.c" 10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 11 * 12 * Dave Engebretsen <engebret@us.ibm.com> 13 * Rework for PPC64 port. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 */ 21 22 #undef DEBUG 23 24 #include <linux/signal.h> 25 #include <linux/sched.h> 26 #include <linux/kernel.h> 27 #include <linux/errno.h> 28 #include <linux/string.h> 29 #include <linux/types.h> 30 #include <linux/mman.h> 31 #include <linux/mm.h> 32 #include <linux/swap.h> 33 #include <linux/stddef.h> 34 #include <linux/vmalloc.h> 35 #include <linux/init.h> 36 #include <linux/delay.h> 37 #include <linux/highmem.h> 38 #include <linux/idr.h> 39 #include <linux/nodemask.h> 40 #include <linux/module.h> 41 #include <linux/poison.h> 42 #include <linux/memblock.h> 43 #include <linux/hugetlb.h> 44 #include <linux/slab.h> 45 #include <linux/of_fdt.h> 46 #include <linux/libfdt.h> 47 48 #include <asm/pgalloc.h> 49 #include <asm/page.h> 50 #include <asm/prom.h> 51 #include <asm/rtas.h> 52 #include <asm/io.h> 53 #include <asm/mmu_context.h> 54 #include <asm/pgtable.h> 55 #include <asm/mmu.h> 56 #include <linux/uaccess.h> 57 #include <asm/smp.h> 58 #include <asm/machdep.h> 59 #include <asm/tlb.h> 60 #include <asm/eeh.h> 61 #include <asm/processor.h> 62 #include <asm/mmzone.h> 63 #include <asm/cputable.h> 64 #include <asm/sections.h> 65 #include <asm/iommu.h> 66 #include <asm/vdso.h> 67 68 #include "mmu_decl.h" 69 70 #ifdef CONFIG_PPC_STD_MMU_64 71 #if H_PGTABLE_RANGE > USER_VSID_RANGE 72 #warning Limited user VSID range means pagetable space is wasted 73 #endif 74 #endif /* CONFIG_PPC_STD_MMU_64 */ 75 76 phys_addr_t memstart_addr = ~0; 77 EXPORT_SYMBOL_GPL(memstart_addr); 78 phys_addr_t kernstart_addr; 79 EXPORT_SYMBOL_GPL(kernstart_addr); 80 81 #ifdef CONFIG_SPARSEMEM_VMEMMAP 82 /* 83 * Given an address within the vmemmap, determine the pfn of the page that 84 * represents the start of the section it is within. Note that we have to 85 * do this by hand as the proffered address may not be correctly aligned. 86 * Subtraction of non-aligned pointers produces undefined results. 87 */ 88 static unsigned long __meminit vmemmap_section_start(unsigned long page) 89 { 90 unsigned long offset = page - ((unsigned long)(vmemmap)); 91 92 /* Return the pfn of the start of the section. */ 93 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; 94 } 95 96 /* 97 * Check if this vmemmap page is already initialised. If any section 98 * which overlaps this vmemmap page is initialised then this page is 99 * initialised already. 100 */ 101 static int __meminit vmemmap_populated(unsigned long start, int page_size) 102 { 103 unsigned long end = start + page_size; 104 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start))); 105 106 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) 107 if (pfn_valid(page_to_pfn((struct page *)start))) 108 return 1; 109 110 return 0; 111 } 112 113 struct vmemmap_backing *vmemmap_list; 114 static struct vmemmap_backing *next; 115 static int num_left; 116 static int num_freed; 117 118 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) 119 { 120 struct vmemmap_backing *vmem_back; 121 /* get from freed entries first */ 122 if (num_freed) { 123 num_freed--; 124 vmem_back = next; 125 next = next->list; 126 127 return vmem_back; 128 } 129 130 /* allocate a page when required and hand out chunks */ 131 if (!num_left) { 132 next = vmemmap_alloc_block(PAGE_SIZE, node); 133 if (unlikely(!next)) { 134 WARN_ON(1); 135 return NULL; 136 } 137 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); 138 } 139 140 num_left--; 141 142 return next++; 143 } 144 145 static __meminit void vmemmap_list_populate(unsigned long phys, 146 unsigned long start, 147 int node) 148 { 149 struct vmemmap_backing *vmem_back; 150 151 vmem_back = vmemmap_list_alloc(node); 152 if (unlikely(!vmem_back)) { 153 WARN_ON(1); 154 return; 155 } 156 157 vmem_back->phys = phys; 158 vmem_back->virt_addr = start; 159 vmem_back->list = vmemmap_list; 160 161 vmemmap_list = vmem_back; 162 } 163 164 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) 165 { 166 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; 167 168 /* Align to the page size of the linear mapping. */ 169 start = _ALIGN_DOWN(start, page_size); 170 171 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); 172 173 for (; start < end; start += page_size) { 174 void *p; 175 int rc; 176 177 if (vmemmap_populated(start, page_size)) 178 continue; 179 180 p = vmemmap_alloc_block(page_size, node); 181 if (!p) 182 return -ENOMEM; 183 184 vmemmap_list_populate(__pa(p), start, node); 185 186 pr_debug(" * %016lx..%016lx allocated at %p\n", 187 start, start + page_size, p); 188 189 rc = vmemmap_create_mapping(start, page_size, __pa(p)); 190 if (rc < 0) { 191 pr_warning( 192 "vmemmap_populate: Unable to create vmemmap mapping: %d\n", 193 rc); 194 return -EFAULT; 195 } 196 } 197 198 return 0; 199 } 200 201 #ifdef CONFIG_MEMORY_HOTPLUG 202 static unsigned long vmemmap_list_free(unsigned long start) 203 { 204 struct vmemmap_backing *vmem_back, *vmem_back_prev; 205 206 vmem_back_prev = vmem_back = vmemmap_list; 207 208 /* look for it with prev pointer recorded */ 209 for (; vmem_back; vmem_back = vmem_back->list) { 210 if (vmem_back->virt_addr == start) 211 break; 212 vmem_back_prev = vmem_back; 213 } 214 215 if (unlikely(!vmem_back)) { 216 WARN_ON(1); 217 return 0; 218 } 219 220 /* remove it from vmemmap_list */ 221 if (vmem_back == vmemmap_list) /* remove head */ 222 vmemmap_list = vmem_back->list; 223 else 224 vmem_back_prev->list = vmem_back->list; 225 226 /* next point to this freed entry */ 227 vmem_back->list = next; 228 next = vmem_back; 229 num_freed++; 230 231 return vmem_back->phys; 232 } 233 234 void __ref vmemmap_free(unsigned long start, unsigned long end) 235 { 236 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; 237 238 start = _ALIGN_DOWN(start, page_size); 239 240 pr_debug("vmemmap_free %lx...%lx\n", start, end); 241 242 for (; start < end; start += page_size) { 243 unsigned long addr; 244 245 /* 246 * the section has already be marked as invalid, so 247 * vmemmap_populated() true means some other sections still 248 * in this page, so skip it. 249 */ 250 if (vmemmap_populated(start, page_size)) 251 continue; 252 253 addr = vmemmap_list_free(start); 254 if (addr) { 255 struct page *page = pfn_to_page(addr >> PAGE_SHIFT); 256 257 if (PageReserved(page)) { 258 /* allocated from bootmem */ 259 if (page_size < PAGE_SIZE) { 260 /* 261 * this shouldn't happen, but if it is 262 * the case, leave the memory there 263 */ 264 WARN_ON_ONCE(1); 265 } else { 266 unsigned int nr_pages = 267 1 << get_order(page_size); 268 while (nr_pages--) 269 free_reserved_page(page++); 270 } 271 } else 272 free_pages((unsigned long)(__va(addr)), 273 get_order(page_size)); 274 275 vmemmap_remove_mapping(start, page_size); 276 } 277 } 278 } 279 #endif 280 void register_page_bootmem_memmap(unsigned long section_nr, 281 struct page *start_page, unsigned long size) 282 { 283 } 284 285 /* 286 * We do not have access to the sparsemem vmemmap, so we fallback to 287 * walking the list of sparsemem blocks which we already maintain for 288 * the sake of crashdump. In the long run, we might want to maintain 289 * a tree if performance of that linear walk becomes a problem. 290 * 291 * realmode_pfn_to_page functions can fail due to: 292 * 1) As real sparsemem blocks do not lay in RAM continously (they 293 * are in virtual address space which is not available in the real mode), 294 * the requested page struct can be split between blocks so get_page/put_page 295 * may fail. 296 * 2) When huge pages are used, the get_page/put_page API will fail 297 * in real mode as the linked addresses in the page struct are virtual 298 * too. 299 */ 300 struct page *realmode_pfn_to_page(unsigned long pfn) 301 { 302 struct vmemmap_backing *vmem_back; 303 struct page *page; 304 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; 305 unsigned long pg_va = (unsigned long) pfn_to_page(pfn); 306 307 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) { 308 if (pg_va < vmem_back->virt_addr) 309 continue; 310 311 /* After vmemmap_list entry free is possible, need check all */ 312 if ((pg_va + sizeof(struct page)) <= 313 (vmem_back->virt_addr + page_size)) { 314 page = (struct page *) (vmem_back->phys + pg_va - 315 vmem_back->virt_addr); 316 return page; 317 } 318 } 319 320 /* Probably that page struct is split between real pages */ 321 return NULL; 322 } 323 EXPORT_SYMBOL_GPL(realmode_pfn_to_page); 324 325 #elif defined(CONFIG_FLATMEM) 326 327 struct page *realmode_pfn_to_page(unsigned long pfn) 328 { 329 struct page *page = pfn_to_page(pfn); 330 return page; 331 } 332 EXPORT_SYMBOL_GPL(realmode_pfn_to_page); 333 334 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */ 335 336 #ifdef CONFIG_PPC_STD_MMU_64 337 static bool disable_radix; 338 static int __init parse_disable_radix(char *p) 339 { 340 disable_radix = true; 341 return 0; 342 } 343 early_param("disable_radix", parse_disable_radix); 344 345 /* 346 * If we're running under a hypervisor, we need to check the contents of 347 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do 348 * radix. If not, we clear the radix feature bit so we fall back to hash. 349 */ 350 static void early_check_vec5(void) 351 { 352 unsigned long root, chosen; 353 int size; 354 const u8 *vec5; 355 u8 mmu_supported; 356 357 root = of_get_flat_dt_root(); 358 chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); 359 if (chosen == -FDT_ERR_NOTFOUND) { 360 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; 361 return; 362 } 363 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); 364 if (!vec5) { 365 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; 366 return; 367 } 368 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { 369 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; 370 return; 371 } 372 373 /* Check for supported configuration */ 374 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & 375 OV5_FEAT(OV5_MMU_SUPPORT); 376 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { 377 /* Hypervisor only supports radix - check enabled && GTSE */ 378 if (!early_radix_enabled()) { 379 pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); 380 } 381 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & 382 OV5_FEAT(OV5_RADIX_GTSE))) { 383 pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n"); 384 } 385 /* Do radix anyway - the hypervisor said we had to */ 386 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; 387 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { 388 /* Hypervisor only supports hash - disable radix */ 389 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; 390 } 391 } 392 393 void __init mmu_early_init_devtree(void) 394 { 395 /* Disable radix mode based on kernel command line. */ 396 if (disable_radix) 397 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; 398 399 /* 400 * Check /chosen/ibm,architecture-vec-5 if running as a guest. 401 * When running bare-metal, we can use radix if we like 402 * even though the ibm,architecture-vec-5 property created by 403 * skiboot doesn't have the necessary bits set. 404 */ 405 if (!(mfmsr() & MSR_HV)) 406 early_check_vec5(); 407 408 if (early_radix_enabled()) 409 radix__early_init_devtree(); 410 else 411 hash__early_init_devtree(); 412 } 413 #endif /* CONFIG_PPC_STD_MMU_64 */ 414