1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * 9 * Derived from "arch/i386/mm/init.c" 10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 11 * 12 * Dave Engebretsen <engebret@us.ibm.com> 13 * Rework for PPC64 port. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 */ 21 22 #undef DEBUG 23 24 #include <linux/signal.h> 25 #include <linux/sched.h> 26 #include <linux/kernel.h> 27 #include <linux/errno.h> 28 #include <linux/string.h> 29 #include <linux/types.h> 30 #include <linux/mman.h> 31 #include <linux/mm.h> 32 #include <linux/swap.h> 33 #include <linux/stddef.h> 34 #include <linux/vmalloc.h> 35 #include <linux/init.h> 36 #include <linux/delay.h> 37 #include <linux/bootmem.h> 38 #include <linux/highmem.h> 39 #include <linux/idr.h> 40 #include <linux/nodemask.h> 41 #include <linux/module.h> 42 #include <linux/poison.h> 43 #include <linux/lmb.h> 44 45 #include <asm/pgalloc.h> 46 #include <asm/page.h> 47 #include <asm/prom.h> 48 #include <asm/rtas.h> 49 #include <asm/io.h> 50 #include <asm/mmu_context.h> 51 #include <asm/pgtable.h> 52 #include <asm/mmu.h> 53 #include <asm/uaccess.h> 54 #include <asm/smp.h> 55 #include <asm/machdep.h> 56 #include <asm/tlb.h> 57 #include <asm/eeh.h> 58 #include <asm/processor.h> 59 #include <asm/mmzone.h> 60 #include <asm/cputable.h> 61 #include <asm/sections.h> 62 #include <asm/system.h> 63 #include <asm/iommu.h> 64 #include <asm/abs_addr.h> 65 #include <asm/vdso.h> 66 67 #include "mmu_decl.h" 68 69 #if PGTABLE_RANGE > USER_VSID_RANGE 70 #warning Limited user VSID range means pagetable space is wasted 71 #endif 72 73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) 74 #warning TASK_SIZE is smaller than it needs to be. 75 #endif 76 77 phys_addr_t memstart_addr = ~0; 78 phys_addr_t kernstart_addr; 79 80 void free_initmem(void) 81 { 82 unsigned long addr; 83 84 addr = (unsigned long)__init_begin; 85 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { 86 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 87 ClearPageReserved(virt_to_page(addr)); 88 init_page_count(virt_to_page(addr)); 89 free_page(addr); 90 totalram_pages++; 91 } 92 printk ("Freeing unused kernel memory: %luk freed\n", 93 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); 94 } 95 96 #ifdef CONFIG_BLK_DEV_INITRD 97 void free_initrd_mem(unsigned long start, unsigned long end) 98 { 99 if (start < end) 100 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 101 for (; start < end; start += PAGE_SIZE) { 102 ClearPageReserved(virt_to_page(start)); 103 init_page_count(virt_to_page(start)); 104 free_page(start); 105 totalram_pages++; 106 } 107 } 108 #endif 109 110 #ifdef CONFIG_PROC_KCORE 111 static struct kcore_list kcore_vmem; 112 113 static int __init setup_kcore(void) 114 { 115 int i; 116 117 for (i=0; i < lmb.memory.cnt; i++) { 118 unsigned long base, size; 119 struct kcore_list *kcore_mem; 120 121 base = lmb.memory.region[i].base; 122 size = lmb.memory.region[i].size; 123 124 /* GFP_ATOMIC to avoid might_sleep warnings during boot */ 125 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); 126 if (!kcore_mem) 127 panic("%s: kmalloc failed\n", __func__); 128 129 kclist_add(kcore_mem, __va(base), size); 130 } 131 132 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 133 134 return 0; 135 } 136 module_init(setup_kcore); 137 #endif 138 139 static void pgd_ctor(void *addr) 140 { 141 memset(addr, 0, PGD_TABLE_SIZE); 142 } 143 144 static void pmd_ctor(void *addr) 145 { 146 memset(addr, 0, PMD_TABLE_SIZE); 147 } 148 149 static const unsigned int pgtable_cache_size[2] = { 150 PGD_TABLE_SIZE, PMD_TABLE_SIZE 151 }; 152 static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = { 153 #ifdef CONFIG_PPC_64K_PAGES 154 "pgd_cache", "pmd_cache", 155 #else 156 "pgd_cache", "pud_pmd_cache", 157 #endif /* CONFIG_PPC_64K_PAGES */ 158 }; 159 160 #ifdef CONFIG_HUGETLB_PAGE 161 /* Hugepages need an extra cache per hugepagesize, initialized in 162 * hugetlbpage.c. We can't put into the tables above, because HPAGE_SHIFT 163 * is not compile time constant. */ 164 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)+MMU_PAGE_COUNT]; 165 #else 166 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)]; 167 #endif 168 169 void pgtable_cache_init(void) 170 { 171 pgtable_cache[0] = kmem_cache_create(pgtable_cache_name[0], PGD_TABLE_SIZE, PGD_TABLE_SIZE, SLAB_PANIC, pgd_ctor); 172 pgtable_cache[1] = kmem_cache_create(pgtable_cache_name[1], PMD_TABLE_SIZE, PMD_TABLE_SIZE, SLAB_PANIC, pmd_ctor); 173 } 174 175 #ifdef CONFIG_SPARSEMEM_VMEMMAP 176 /* 177 * Given an address within the vmemmap, determine the pfn of the page that 178 * represents the start of the section it is within. Note that we have to 179 * do this by hand as the proffered address may not be correctly aligned. 180 * Subtraction of non-aligned pointers produces undefined results. 181 */ 182 static unsigned long __meminit vmemmap_section_start(unsigned long page) 183 { 184 unsigned long offset = page - ((unsigned long)(vmemmap)); 185 186 /* Return the pfn of the start of the section. */ 187 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; 188 } 189 190 /* 191 * Check if this vmemmap page is already initialised. If any section 192 * which overlaps this vmemmap page is initialised then this page is 193 * initialised already. 194 */ 195 static int __meminit vmemmap_populated(unsigned long start, int page_size) 196 { 197 unsigned long end = start + page_size; 198 199 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) 200 if (pfn_valid(vmemmap_section_start(start))) 201 return 1; 202 203 return 0; 204 } 205 206 int __meminit vmemmap_populate(struct page *start_page, 207 unsigned long nr_pages, int node) 208 { 209 unsigned long mode_rw; 210 unsigned long start = (unsigned long)start_page; 211 unsigned long end = (unsigned long)(start_page + nr_pages); 212 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; 213 214 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; 215 216 /* Align to the page size of the linear mapping. */ 217 start = _ALIGN_DOWN(start, page_size); 218 219 for (; start < end; start += page_size) { 220 int mapped; 221 void *p; 222 223 if (vmemmap_populated(start, page_size)) 224 continue; 225 226 p = vmemmap_alloc_block(page_size, node); 227 if (!p) 228 return -ENOMEM; 229 230 pr_debug("vmemmap %08lx allocated at %p, physical %08lx.\n", 231 start, p, __pa(p)); 232 233 mapped = htab_bolt_mapping(start, start + page_size, 234 __pa(p), mode_rw, mmu_vmemmap_psize, 235 mmu_kernel_ssize); 236 BUG_ON(mapped < 0); 237 } 238 239 return 0; 240 } 241 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 242