xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision 8c749ce9)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
65 
66 #include "mmu_decl.h"
67 
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
72 
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
77 
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
82 
83 static void pgd_ctor(void *addr)
84 {
85 	memset(addr, 0, PGD_TABLE_SIZE);
86 }
87 
88 static void pmd_ctor(void *addr)
89 {
90 	memset(addr, 0, PMD_TABLE_SIZE);
91 }
92 
93 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
94 
95 /*
96  * Create a kmem_cache() for pagetables.  This is not used for PTE
97  * pages - they're linked to struct page, come from the normal free
98  * pages pool and have a different entry size (see real_pte_t) to
99  * everything else.  Caches created by this function are used for all
100  * the higher level pagetables, and for hugepage pagetables.
101  */
102 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
103 {
104 	char *name;
105 	unsigned long table_size = sizeof(void *) << shift;
106 	unsigned long align = table_size;
107 
108 	/* When batching pgtable pointers for RCU freeing, we store
109 	 * the index size in the low bits.  Table alignment must be
110 	 * big enough to fit it.
111 	 *
112 	 * Likewise, hugeapge pagetable pointers contain a (different)
113 	 * shift value in the low bits.  All tables must be aligned so
114 	 * as to leave enough 0 bits in the address to contain it. */
115 	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
116 				     HUGEPD_SHIFT_MASK + 1);
117 	struct kmem_cache *new;
118 
119 	/* It would be nice if this was a BUILD_BUG_ON(), but at the
120 	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
121 	 * constant expression, so so much for that. */
122 	BUG_ON(!is_power_of_2(minalign));
123 	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
124 
125 	if (PGT_CACHE(shift))
126 		return; /* Already have a cache of this size */
127 
128 	align = max_t(unsigned long, align, minalign);
129 	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
130 	new = kmem_cache_create(name, table_size, align, 0, ctor);
131 	kfree(name);
132 	pgtable_cache[shift - 1] = new;
133 	pr_debug("Allocated pgtable cache for order %d\n", shift);
134 }
135 
136 
137 void pgtable_cache_init(void)
138 {
139 	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
140 	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
141 	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
142 		panic("Couldn't allocate pgtable caches");
143 	/* In all current configs, when the PUD index exists it's the
144 	 * same size as either the pgd or pmd index.  Verify that the
145 	 * initialization above has also created a PUD cache.  This
146 	 * will need re-examiniation if we add new possibilities for
147 	 * the pagetable layout. */
148 	BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
149 }
150 
151 #ifdef CONFIG_SPARSEMEM_VMEMMAP
152 /*
153  * Given an address within the vmemmap, determine the pfn of the page that
154  * represents the start of the section it is within.  Note that we have to
155  * do this by hand as the proffered address may not be correctly aligned.
156  * Subtraction of non-aligned pointers produces undefined results.
157  */
158 static unsigned long __meminit vmemmap_section_start(unsigned long page)
159 {
160 	unsigned long offset = page - ((unsigned long)(vmemmap));
161 
162 	/* Return the pfn of the start of the section. */
163 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
164 }
165 
166 /*
167  * Check if this vmemmap page is already initialised.  If any section
168  * which overlaps this vmemmap page is initialised then this page is
169  * initialised already.
170  */
171 static int __meminit vmemmap_populated(unsigned long start, int page_size)
172 {
173 	unsigned long end = start + page_size;
174 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
175 
176 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
177 		if (pfn_valid(page_to_pfn((struct page *)start)))
178 			return 1;
179 
180 	return 0;
181 }
182 
183 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
184  *
185  * On Book3E CPUs, the vmemmap is currently mapped in the top half of
186  * the vmalloc space using normal page tables, though the size of
187  * pages encoded in the PTEs can be different
188  */
189 
190 #ifdef CONFIG_PPC_BOOK3E
191 static void __meminit vmemmap_create_mapping(unsigned long start,
192 					     unsigned long page_size,
193 					     unsigned long phys)
194 {
195 	/* Create a PTE encoding without page size */
196 	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
197 		_PAGE_KERNEL_RW;
198 
199 	/* PTEs only contain page size encodings up to 32M */
200 	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
201 
202 	/* Encode the size in the PTE */
203 	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
204 
205 	/* For each PTE for that area, map things. Note that we don't
206 	 * increment phys because all PTEs are of the large size and
207 	 * thus must have the low bits clear
208 	 */
209 	for (i = 0; i < page_size; i += PAGE_SIZE)
210 		BUG_ON(map_kernel_page(start + i, phys, flags));
211 }
212 
213 #ifdef CONFIG_MEMORY_HOTPLUG
214 static void vmemmap_remove_mapping(unsigned long start,
215 				   unsigned long page_size)
216 {
217 }
218 #endif
219 #else /* CONFIG_PPC_BOOK3E */
220 static void __meminit vmemmap_create_mapping(unsigned long start,
221 					     unsigned long page_size,
222 					     unsigned long phys)
223 {
224 	int  mapped = htab_bolt_mapping(start, start + page_size, phys,
225 					pgprot_val(PAGE_KERNEL),
226 					mmu_vmemmap_psize,
227 					mmu_kernel_ssize);
228 	BUG_ON(mapped < 0);
229 }
230 
231 #ifdef CONFIG_MEMORY_HOTPLUG
232 static void vmemmap_remove_mapping(unsigned long start,
233 				   unsigned long page_size)
234 {
235 	int mapped = htab_remove_mapping(start, start + page_size,
236 					 mmu_vmemmap_psize,
237 					 mmu_kernel_ssize);
238 	BUG_ON(mapped < 0);
239 }
240 #endif
241 
242 #endif /* CONFIG_PPC_BOOK3E */
243 
244 struct vmemmap_backing *vmemmap_list;
245 static struct vmemmap_backing *next;
246 static int num_left;
247 static int num_freed;
248 
249 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
250 {
251 	struct vmemmap_backing *vmem_back;
252 	/* get from freed entries first */
253 	if (num_freed) {
254 		num_freed--;
255 		vmem_back = next;
256 		next = next->list;
257 
258 		return vmem_back;
259 	}
260 
261 	/* allocate a page when required and hand out chunks */
262 	if (!num_left) {
263 		next = vmemmap_alloc_block(PAGE_SIZE, node);
264 		if (unlikely(!next)) {
265 			WARN_ON(1);
266 			return NULL;
267 		}
268 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
269 	}
270 
271 	num_left--;
272 
273 	return next++;
274 }
275 
276 static __meminit void vmemmap_list_populate(unsigned long phys,
277 					    unsigned long start,
278 					    int node)
279 {
280 	struct vmemmap_backing *vmem_back;
281 
282 	vmem_back = vmemmap_list_alloc(node);
283 	if (unlikely(!vmem_back)) {
284 		WARN_ON(1);
285 		return;
286 	}
287 
288 	vmem_back->phys = phys;
289 	vmem_back->virt_addr = start;
290 	vmem_back->list = vmemmap_list;
291 
292 	vmemmap_list = vmem_back;
293 }
294 
295 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
296 {
297 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
298 
299 	/* Align to the page size of the linear mapping. */
300 	start = _ALIGN_DOWN(start, page_size);
301 
302 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
303 
304 	for (; start < end; start += page_size) {
305 		void *p;
306 
307 		if (vmemmap_populated(start, page_size))
308 			continue;
309 
310 		p = vmemmap_alloc_block(page_size, node);
311 		if (!p)
312 			return -ENOMEM;
313 
314 		vmemmap_list_populate(__pa(p), start, node);
315 
316 		pr_debug("      * %016lx..%016lx allocated at %p\n",
317 			 start, start + page_size, p);
318 
319 		vmemmap_create_mapping(start, page_size, __pa(p));
320 	}
321 
322 	return 0;
323 }
324 
325 #ifdef CONFIG_MEMORY_HOTPLUG
326 static unsigned long vmemmap_list_free(unsigned long start)
327 {
328 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
329 
330 	vmem_back_prev = vmem_back = vmemmap_list;
331 
332 	/* look for it with prev pointer recorded */
333 	for (; vmem_back; vmem_back = vmem_back->list) {
334 		if (vmem_back->virt_addr == start)
335 			break;
336 		vmem_back_prev = vmem_back;
337 	}
338 
339 	if (unlikely(!vmem_back)) {
340 		WARN_ON(1);
341 		return 0;
342 	}
343 
344 	/* remove it from vmemmap_list */
345 	if (vmem_back == vmemmap_list) /* remove head */
346 		vmemmap_list = vmem_back->list;
347 	else
348 		vmem_back_prev->list = vmem_back->list;
349 
350 	/* next point to this freed entry */
351 	vmem_back->list = next;
352 	next = vmem_back;
353 	num_freed++;
354 
355 	return vmem_back->phys;
356 }
357 
358 void __ref vmemmap_free(unsigned long start, unsigned long end)
359 {
360 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
361 
362 	start = _ALIGN_DOWN(start, page_size);
363 
364 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
365 
366 	for (; start < end; start += page_size) {
367 		unsigned long addr;
368 
369 		/*
370 		 * the section has already be marked as invalid, so
371 		 * vmemmap_populated() true means some other sections still
372 		 * in this page, so skip it.
373 		 */
374 		if (vmemmap_populated(start, page_size))
375 			continue;
376 
377 		addr = vmemmap_list_free(start);
378 		if (addr) {
379 			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
380 
381 			if (PageReserved(page)) {
382 				/* allocated from bootmem */
383 				if (page_size < PAGE_SIZE) {
384 					/*
385 					 * this shouldn't happen, but if it is
386 					 * the case, leave the memory there
387 					 */
388 					WARN_ON_ONCE(1);
389 				} else {
390 					unsigned int nr_pages =
391 						1 << get_order(page_size);
392 					while (nr_pages--)
393 						free_reserved_page(page++);
394 				}
395 			} else
396 				free_pages((unsigned long)(__va(addr)),
397 							get_order(page_size));
398 
399 			vmemmap_remove_mapping(start, page_size);
400 		}
401 	}
402 }
403 #endif
404 void register_page_bootmem_memmap(unsigned long section_nr,
405 				  struct page *start_page, unsigned long size)
406 {
407 }
408 
409 /*
410  * We do not have access to the sparsemem vmemmap, so we fallback to
411  * walking the list of sparsemem blocks which we already maintain for
412  * the sake of crashdump. In the long run, we might want to maintain
413  * a tree if performance of that linear walk becomes a problem.
414  *
415  * realmode_pfn_to_page functions can fail due to:
416  * 1) As real sparsemem blocks do not lay in RAM continously (they
417  * are in virtual address space which is not available in the real mode),
418  * the requested page struct can be split between blocks so get_page/put_page
419  * may fail.
420  * 2) When huge pages are used, the get_page/put_page API will fail
421  * in real mode as the linked addresses in the page struct are virtual
422  * too.
423  */
424 struct page *realmode_pfn_to_page(unsigned long pfn)
425 {
426 	struct vmemmap_backing *vmem_back;
427 	struct page *page;
428 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
429 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
430 
431 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
432 		if (pg_va < vmem_back->virt_addr)
433 			continue;
434 
435 		/* After vmemmap_list entry free is possible, need check all */
436 		if ((pg_va + sizeof(struct page)) <=
437 				(vmem_back->virt_addr + page_size)) {
438 			page = (struct page *) (vmem_back->phys + pg_va -
439 				vmem_back->virt_addr);
440 			return page;
441 		}
442 	}
443 
444 	/* Probably that page struct is split between real pages */
445 	return NULL;
446 }
447 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
448 
449 #elif defined(CONFIG_FLATMEM)
450 
451 struct page *realmode_pfn_to_page(unsigned long pfn)
452 {
453 	struct page *page = pfn_to_page(pfn);
454 	return page;
455 }
456 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
457 
458 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
459