1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * 9 * Derived from "arch/i386/mm/init.c" 10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 11 * 12 * Dave Engebretsen <engebret@us.ibm.com> 13 * Rework for PPC64 port. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 */ 21 22 #include <linux/signal.h> 23 #include <linux/sched.h> 24 #include <linux/kernel.h> 25 #include <linux/errno.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/mman.h> 29 #include <linux/mm.h> 30 #include <linux/swap.h> 31 #include <linux/stddef.h> 32 #include <linux/vmalloc.h> 33 #include <linux/init.h> 34 #include <linux/delay.h> 35 #include <linux/bootmem.h> 36 #include <linux/highmem.h> 37 #include <linux/idr.h> 38 #include <linux/nodemask.h> 39 #include <linux/module.h> 40 #include <linux/poison.h> 41 #include <linux/lmb.h> 42 43 #include <asm/pgalloc.h> 44 #include <asm/page.h> 45 #include <asm/prom.h> 46 #include <asm/rtas.h> 47 #include <asm/io.h> 48 #include <asm/mmu_context.h> 49 #include <asm/pgtable.h> 50 #include <asm/mmu.h> 51 #include <asm/uaccess.h> 52 #include <asm/smp.h> 53 #include <asm/machdep.h> 54 #include <asm/tlb.h> 55 #include <asm/eeh.h> 56 #include <asm/processor.h> 57 #include <asm/mmzone.h> 58 #include <asm/cputable.h> 59 #include <asm/sections.h> 60 #include <asm/system.h> 61 #include <asm/iommu.h> 62 #include <asm/abs_addr.h> 63 #include <asm/vdso.h> 64 65 #include "mmu_decl.h" 66 67 #if PGTABLE_RANGE > USER_VSID_RANGE 68 #warning Limited user VSID range means pagetable space is wasted 69 #endif 70 71 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE) 72 #warning TASK_SIZE is smaller than it needs to be. 73 #endif 74 75 phys_addr_t memstart_addr = ~0; 76 phys_addr_t kernstart_addr; 77 78 void free_initmem(void) 79 { 80 unsigned long addr; 81 82 addr = (unsigned long)__init_begin; 83 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { 84 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 85 ClearPageReserved(virt_to_page(addr)); 86 init_page_count(virt_to_page(addr)); 87 free_page(addr); 88 totalram_pages++; 89 } 90 printk ("Freeing unused kernel memory: %luk freed\n", 91 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); 92 } 93 94 #ifdef CONFIG_BLK_DEV_INITRD 95 void free_initrd_mem(unsigned long start, unsigned long end) 96 { 97 if (start < end) 98 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 99 for (; start < end; start += PAGE_SIZE) { 100 ClearPageReserved(virt_to_page(start)); 101 init_page_count(virt_to_page(start)); 102 free_page(start); 103 totalram_pages++; 104 } 105 } 106 #endif 107 108 #ifdef CONFIG_PROC_KCORE 109 static struct kcore_list kcore_vmem; 110 111 static int __init setup_kcore(void) 112 { 113 int i; 114 115 for (i=0; i < lmb.memory.cnt; i++) { 116 unsigned long base, size; 117 struct kcore_list *kcore_mem; 118 119 base = lmb.memory.region[i].base; 120 size = lmb.memory.region[i].size; 121 122 /* GFP_ATOMIC to avoid might_sleep warnings during boot */ 123 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); 124 if (!kcore_mem) 125 panic("%s: kmalloc failed\n", __func__); 126 127 kclist_add(kcore_mem, __va(base), size); 128 } 129 130 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 131 132 return 0; 133 } 134 module_init(setup_kcore); 135 #endif 136 137 static void zero_ctor(struct kmem_cache *cache, void *addr) 138 { 139 memset(addr, 0, kmem_cache_size(cache)); 140 } 141 142 static const unsigned int pgtable_cache_size[2] = { 143 PGD_TABLE_SIZE, PMD_TABLE_SIZE 144 }; 145 static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = { 146 #ifdef CONFIG_PPC_64K_PAGES 147 "pgd_cache", "pmd_cache", 148 #else 149 "pgd_cache", "pud_pmd_cache", 150 #endif /* CONFIG_PPC_64K_PAGES */ 151 }; 152 153 #ifdef CONFIG_HUGETLB_PAGE 154 /* Hugepages need one extra cache, initialized in hugetlbpage.c. We 155 * can't put into the tables above, because HPAGE_SHIFT is not compile 156 * time constant. */ 157 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)+1]; 158 #else 159 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)]; 160 #endif 161 162 void pgtable_cache_init(void) 163 { 164 int i; 165 166 for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) { 167 int size = pgtable_cache_size[i]; 168 const char *name = pgtable_cache_name[i]; 169 170 pr_debug("Allocating page table cache %s (#%d) " 171 "for size: %08x...\n", name, i, size); 172 pgtable_cache[i] = kmem_cache_create(name, 173 size, size, 174 SLAB_PANIC, 175 zero_ctor); 176 } 177 } 178 179 #ifdef CONFIG_SPARSEMEM_VMEMMAP 180 /* 181 * Given an address within the vmemmap, determine the pfn of the page that 182 * represents the start of the section it is within. Note that we have to 183 * do this by hand as the proffered address may not be correctly aligned. 184 * Subtraction of non-aligned pointers produces undefined results. 185 */ 186 unsigned long __meminit vmemmap_section_start(unsigned long page) 187 { 188 unsigned long offset = page - ((unsigned long)(vmemmap)); 189 190 /* Return the pfn of the start of the section. */ 191 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; 192 } 193 194 /* 195 * Check if this vmemmap page is already initialised. If any section 196 * which overlaps this vmemmap page is initialised then this page is 197 * initialised already. 198 */ 199 int __meminit vmemmap_populated(unsigned long start, int page_size) 200 { 201 unsigned long end = start + page_size; 202 203 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) 204 if (pfn_valid(vmemmap_section_start(start))) 205 return 1; 206 207 return 0; 208 } 209 210 int __meminit vmemmap_populate(struct page *start_page, 211 unsigned long nr_pages, int node) 212 { 213 unsigned long mode_rw; 214 unsigned long start = (unsigned long)start_page; 215 unsigned long end = (unsigned long)(start_page + nr_pages); 216 unsigned long page_size = 1 << mmu_psize_defs[mmu_linear_psize].shift; 217 218 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; 219 220 /* Align to the page size of the linear mapping. */ 221 start = _ALIGN_DOWN(start, page_size); 222 223 for (; start < end; start += page_size) { 224 int mapped; 225 void *p; 226 227 if (vmemmap_populated(start, page_size)) 228 continue; 229 230 p = vmemmap_alloc_block(page_size, node); 231 if (!p) 232 return -ENOMEM; 233 234 pr_debug("vmemmap %08lx allocated at %p, physical %08lx.\n", 235 start, p, __pa(p)); 236 237 mapped = htab_bolt_mapping(start, start + page_size, 238 __pa(p), mode_rw, mmu_linear_psize, 239 mmu_kernel_ssize); 240 BUG_ON(mapped < 0); 241 } 242 243 return 0; 244 } 245 #endif 246