xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision 133f9794)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47 #include <linux/memremap.h>
48 
49 #include <asm/pgalloc.h>
50 #include <asm/page.h>
51 #include <asm/prom.h>
52 #include <asm/rtas.h>
53 #include <asm/io.h>
54 #include <asm/mmu_context.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu.h>
57 #include <linux/uaccess.h>
58 #include <asm/smp.h>
59 #include <asm/machdep.h>
60 #include <asm/tlb.h>
61 #include <asm/eeh.h>
62 #include <asm/processor.h>
63 #include <asm/mmzone.h>
64 #include <asm/cputable.h>
65 #include <asm/sections.h>
66 #include <asm/iommu.h>
67 #include <asm/vdso.h>
68 
69 #include "mmu_decl.h"
70 
71 #ifdef CONFIG_PPC_BOOK3S_64
72 #if H_PGTABLE_RANGE > USER_VSID_RANGE
73 #warning Limited user VSID range means pagetable space is wasted
74 #endif
75 #endif /* CONFIG_PPC_BOOK3S_64 */
76 
77 phys_addr_t memstart_addr = ~0;
78 EXPORT_SYMBOL_GPL(memstart_addr);
79 phys_addr_t kernstart_addr;
80 EXPORT_SYMBOL_GPL(kernstart_addr);
81 
82 #ifdef CONFIG_SPARSEMEM_VMEMMAP
83 /*
84  * Given an address within the vmemmap, determine the pfn of the page that
85  * represents the start of the section it is within.  Note that we have to
86  * do this by hand as the proffered address may not be correctly aligned.
87  * Subtraction of non-aligned pointers produces undefined results.
88  */
89 static unsigned long __meminit vmemmap_section_start(unsigned long page)
90 {
91 	unsigned long offset = page - ((unsigned long)(vmemmap));
92 
93 	/* Return the pfn of the start of the section. */
94 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
95 }
96 
97 /*
98  * Check if this vmemmap page is already initialised.  If any section
99  * which overlaps this vmemmap page is initialised then this page is
100  * initialised already.
101  */
102 static int __meminit vmemmap_populated(unsigned long start, int page_size)
103 {
104 	unsigned long end = start + page_size;
105 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
106 
107 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
108 		if (pfn_valid(page_to_pfn((struct page *)start)))
109 			return 1;
110 
111 	return 0;
112 }
113 
114 /*
115  * vmemmap virtual address space management does not have a traditonal page
116  * table to track which virtual struct pages are backed by physical mapping.
117  * The virtual to physical mappings are tracked in a simple linked list
118  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
119  * all times where as the 'next' list maintains the available
120  * vmemmap_backing structures which have been deleted from the
121  * 'vmemmap_global' list during system runtime (memory hotplug remove
122  * operation). The freed 'vmemmap_backing' structures are reused later when
123  * new requests come in without allocating fresh memory. This pointer also
124  * tracks the allocated 'vmemmap_backing' structures as we allocate one
125  * full page memory at a time when we dont have any.
126  */
127 struct vmemmap_backing *vmemmap_list;
128 static struct vmemmap_backing *next;
129 
130 /*
131  * The same pointer 'next' tracks individual chunks inside the allocated
132  * full page during the boot time and again tracks the freeed nodes during
133  * runtime. It is racy but it does not happen as they are separated by the
134  * boot process. Will create problem if some how we have memory hotplug
135  * operation during boot !!
136  */
137 static int num_left;
138 static int num_freed;
139 
140 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
141 {
142 	struct vmemmap_backing *vmem_back;
143 	/* get from freed entries first */
144 	if (num_freed) {
145 		num_freed--;
146 		vmem_back = next;
147 		next = next->list;
148 
149 		return vmem_back;
150 	}
151 
152 	/* allocate a page when required and hand out chunks */
153 	if (!num_left) {
154 		next = vmemmap_alloc_block(PAGE_SIZE, node);
155 		if (unlikely(!next)) {
156 			WARN_ON(1);
157 			return NULL;
158 		}
159 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
160 	}
161 
162 	num_left--;
163 
164 	return next++;
165 }
166 
167 static __meminit void vmemmap_list_populate(unsigned long phys,
168 					    unsigned long start,
169 					    int node)
170 {
171 	struct vmemmap_backing *vmem_back;
172 
173 	vmem_back = vmemmap_list_alloc(node);
174 	if (unlikely(!vmem_back)) {
175 		WARN_ON(1);
176 		return;
177 	}
178 
179 	vmem_back->phys = phys;
180 	vmem_back->virt_addr = start;
181 	vmem_back->list = vmemmap_list;
182 
183 	vmemmap_list = vmem_back;
184 }
185 
186 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
187 		struct vmem_altmap *altmap)
188 {
189 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
190 
191 	/* Align to the page size of the linear mapping. */
192 	start = _ALIGN_DOWN(start, page_size);
193 
194 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
195 
196 	for (; start < end; start += page_size) {
197 		void *p;
198 		int rc;
199 
200 		if (vmemmap_populated(start, page_size))
201 			continue;
202 
203 		if (altmap)
204 			p = altmap_alloc_block_buf(page_size, altmap);
205 		else
206 			p = vmemmap_alloc_block_buf(page_size, node);
207 		if (!p)
208 			return -ENOMEM;
209 
210 		vmemmap_list_populate(__pa(p), start, node);
211 
212 		pr_debug("      * %016lx..%016lx allocated at %p\n",
213 			 start, start + page_size, p);
214 
215 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
216 		if (rc < 0) {
217 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
218 				__func__, rc);
219 			return -EFAULT;
220 		}
221 	}
222 
223 	return 0;
224 }
225 
226 #ifdef CONFIG_MEMORY_HOTPLUG
227 static unsigned long vmemmap_list_free(unsigned long start)
228 {
229 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
230 
231 	vmem_back_prev = vmem_back = vmemmap_list;
232 
233 	/* look for it with prev pointer recorded */
234 	for (; vmem_back; vmem_back = vmem_back->list) {
235 		if (vmem_back->virt_addr == start)
236 			break;
237 		vmem_back_prev = vmem_back;
238 	}
239 
240 	if (unlikely(!vmem_back)) {
241 		WARN_ON(1);
242 		return 0;
243 	}
244 
245 	/* remove it from vmemmap_list */
246 	if (vmem_back == vmemmap_list) /* remove head */
247 		vmemmap_list = vmem_back->list;
248 	else
249 		vmem_back_prev->list = vmem_back->list;
250 
251 	/* next point to this freed entry */
252 	vmem_back->list = next;
253 	next = vmem_back;
254 	num_freed++;
255 
256 	return vmem_back->phys;
257 }
258 
259 void __ref vmemmap_free(unsigned long start, unsigned long end,
260 		struct vmem_altmap *altmap)
261 {
262 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
263 	unsigned long page_order = get_order(page_size);
264 
265 	start = _ALIGN_DOWN(start, page_size);
266 
267 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
268 
269 	for (; start < end; start += page_size) {
270 		unsigned long nr_pages, addr;
271 		struct page *section_base;
272 		struct page *page;
273 
274 		/*
275 		 * the section has already be marked as invalid, so
276 		 * vmemmap_populated() true means some other sections still
277 		 * in this page, so skip it.
278 		 */
279 		if (vmemmap_populated(start, page_size))
280 			continue;
281 
282 		addr = vmemmap_list_free(start);
283 		if (!addr)
284 			continue;
285 
286 		page = pfn_to_page(addr >> PAGE_SHIFT);
287 		section_base = pfn_to_page(vmemmap_section_start(start));
288 		nr_pages = 1 << page_order;
289 
290 		if (altmap) {
291 			vmem_altmap_free(altmap, nr_pages);
292 		} else if (PageReserved(page)) {
293 			/* allocated from bootmem */
294 			if (page_size < PAGE_SIZE) {
295 				/*
296 				 * this shouldn't happen, but if it is
297 				 * the case, leave the memory there
298 				 */
299 				WARN_ON_ONCE(1);
300 			} else {
301 				while (nr_pages--)
302 					free_reserved_page(page++);
303 			}
304 		} else {
305 			free_pages((unsigned long)(__va(addr)), page_order);
306 		}
307 
308 		vmemmap_remove_mapping(start, page_size);
309 	}
310 }
311 #endif
312 void register_page_bootmem_memmap(unsigned long section_nr,
313 				  struct page *start_page, unsigned long size)
314 {
315 }
316 
317 /*
318  * We do not have access to the sparsemem vmemmap, so we fallback to
319  * walking the list of sparsemem blocks which we already maintain for
320  * the sake of crashdump. In the long run, we might want to maintain
321  * a tree if performance of that linear walk becomes a problem.
322  *
323  * realmode_pfn_to_page functions can fail due to:
324  * 1) As real sparsemem blocks do not lay in RAM continously (they
325  * are in virtual address space which is not available in the real mode),
326  * the requested page struct can be split between blocks so get_page/put_page
327  * may fail.
328  * 2) When huge pages are used, the get_page/put_page API will fail
329  * in real mode as the linked addresses in the page struct are virtual
330  * too.
331  */
332 struct page *realmode_pfn_to_page(unsigned long pfn)
333 {
334 	struct vmemmap_backing *vmem_back;
335 	struct page *page;
336 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
337 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
338 
339 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
340 		if (pg_va < vmem_back->virt_addr)
341 			continue;
342 
343 		/* After vmemmap_list entry free is possible, need check all */
344 		if ((pg_va + sizeof(struct page)) <=
345 				(vmem_back->virt_addr + page_size)) {
346 			page = (struct page *) (vmem_back->phys + pg_va -
347 				vmem_back->virt_addr);
348 			return page;
349 		}
350 	}
351 
352 	/* Probably that page struct is split between real pages */
353 	return NULL;
354 }
355 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
356 
357 #else
358 
359 struct page *realmode_pfn_to_page(unsigned long pfn)
360 {
361 	struct page *page = pfn_to_page(pfn);
362 	return page;
363 }
364 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
365 
366 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
367 
368 #ifdef CONFIG_PPC_BOOK3S_64
369 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
370 
371 static int __init parse_disable_radix(char *p)
372 {
373 	bool val;
374 
375 	if (strlen(p) == 0)
376 		val = true;
377 	else if (kstrtobool(p, &val))
378 		return -EINVAL;
379 
380 	disable_radix = val;
381 
382 	return 0;
383 }
384 early_param("disable_radix", parse_disable_radix);
385 
386 /*
387  * If we're running under a hypervisor, we need to check the contents of
388  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
389  * radix.  If not, we clear the radix feature bit so we fall back to hash.
390  */
391 static void __init early_check_vec5(void)
392 {
393 	unsigned long root, chosen;
394 	int size;
395 	const u8 *vec5;
396 	u8 mmu_supported;
397 
398 	root = of_get_flat_dt_root();
399 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
400 	if (chosen == -FDT_ERR_NOTFOUND) {
401 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
402 		return;
403 	}
404 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
405 	if (!vec5) {
406 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
407 		return;
408 	}
409 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
410 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
411 		return;
412 	}
413 
414 	/* Check for supported configuration */
415 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
416 			OV5_FEAT(OV5_MMU_SUPPORT);
417 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
418 		/* Hypervisor only supports radix - check enabled && GTSE */
419 		if (!early_radix_enabled()) {
420 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
421 		}
422 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
423 						OV5_FEAT(OV5_RADIX_GTSE))) {
424 			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
425 		}
426 		/* Do radix anyway - the hypervisor said we had to */
427 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
428 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
429 		/* Hypervisor only supports hash - disable radix */
430 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
431 	}
432 }
433 
434 void __init mmu_early_init_devtree(void)
435 {
436 	/* Disable radix mode based on kernel command line. */
437 	if (disable_radix)
438 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
439 
440 	/*
441 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
442 	 * When running bare-metal, we can use radix if we like
443 	 * even though the ibm,architecture-vec-5 property created by
444 	 * skiboot doesn't have the necessary bits set.
445 	 */
446 	if (!(mfmsr() & MSR_HV))
447 		early_check_vec5();
448 
449 	if (early_radix_enabled())
450 		radix__early_init_devtree();
451 	else
452 		hash__early_init_devtree();
453 }
454 #endif /* CONFIG_PPC_BOOK3S_64 */
455