xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision 110e6f26)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
65 
66 #include "mmu_decl.h"
67 
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
72 
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
77 
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
82 
83 static void pgd_ctor(void *addr)
84 {
85 	memset(addr, 0, PGD_TABLE_SIZE);
86 }
87 
88 static void pud_ctor(void *addr)
89 {
90 	memset(addr, 0, PUD_TABLE_SIZE);
91 }
92 
93 static void pmd_ctor(void *addr)
94 {
95 	memset(addr, 0, PMD_TABLE_SIZE);
96 }
97 
98 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
99 
100 /*
101  * Create a kmem_cache() for pagetables.  This is not used for PTE
102  * pages - they're linked to struct page, come from the normal free
103  * pages pool and have a different entry size (see real_pte_t) to
104  * everything else.  Caches created by this function are used for all
105  * the higher level pagetables, and for hugepage pagetables.
106  */
107 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
108 {
109 	char *name;
110 	unsigned long table_size = sizeof(void *) << shift;
111 	unsigned long align = table_size;
112 
113 	/* When batching pgtable pointers for RCU freeing, we store
114 	 * the index size in the low bits.  Table alignment must be
115 	 * big enough to fit it.
116 	 *
117 	 * Likewise, hugeapge pagetable pointers contain a (different)
118 	 * shift value in the low bits.  All tables must be aligned so
119 	 * as to leave enough 0 bits in the address to contain it. */
120 	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
121 				     HUGEPD_SHIFT_MASK + 1);
122 	struct kmem_cache *new;
123 
124 	/* It would be nice if this was a BUILD_BUG_ON(), but at the
125 	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
126 	 * constant expression, so so much for that. */
127 	BUG_ON(!is_power_of_2(minalign));
128 	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
129 
130 	if (PGT_CACHE(shift))
131 		return; /* Already have a cache of this size */
132 
133 	align = max_t(unsigned long, align, minalign);
134 	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
135 	new = kmem_cache_create(name, table_size, align, 0, ctor);
136 	kfree(name);
137 	pgtable_cache[shift - 1] = new;
138 	pr_debug("Allocated pgtable cache for order %d\n", shift);
139 }
140 
141 
142 void pgtable_cache_init(void)
143 {
144 	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
145 	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
146 	/*
147 	 * In all current configs, when the PUD index exists it's the
148 	 * same size as either the pgd or pmd index except with THP enabled
149 	 * on book3s 64
150 	 */
151 	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
152 		pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
153 
154 	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
155 		panic("Couldn't allocate pgtable caches");
156 	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
157 		panic("Couldn't allocate pud pgtable caches");
158 }
159 
160 #ifdef CONFIG_SPARSEMEM_VMEMMAP
161 /*
162  * Given an address within the vmemmap, determine the pfn of the page that
163  * represents the start of the section it is within.  Note that we have to
164  * do this by hand as the proffered address may not be correctly aligned.
165  * Subtraction of non-aligned pointers produces undefined results.
166  */
167 static unsigned long __meminit vmemmap_section_start(unsigned long page)
168 {
169 	unsigned long offset = page - ((unsigned long)(vmemmap));
170 
171 	/* Return the pfn of the start of the section. */
172 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
173 }
174 
175 /*
176  * Check if this vmemmap page is already initialised.  If any section
177  * which overlaps this vmemmap page is initialised then this page is
178  * initialised already.
179  */
180 static int __meminit vmemmap_populated(unsigned long start, int page_size)
181 {
182 	unsigned long end = start + page_size;
183 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
184 
185 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
186 		if (pfn_valid(page_to_pfn((struct page *)start)))
187 			return 1;
188 
189 	return 0;
190 }
191 
192 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
193  *
194  * On Book3E CPUs, the vmemmap is currently mapped in the top half of
195  * the vmalloc space using normal page tables, though the size of
196  * pages encoded in the PTEs can be different
197  */
198 
199 #ifdef CONFIG_PPC_BOOK3E
200 static int __meminit vmemmap_create_mapping(unsigned long start,
201 					    unsigned long page_size,
202 					    unsigned long phys)
203 {
204 	/* Create a PTE encoding without page size */
205 	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
206 		_PAGE_KERNEL_RW;
207 
208 	/* PTEs only contain page size encodings up to 32M */
209 	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
210 
211 	/* Encode the size in the PTE */
212 	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
213 
214 	/* For each PTE for that area, map things. Note that we don't
215 	 * increment phys because all PTEs are of the large size and
216 	 * thus must have the low bits clear
217 	 */
218 	for (i = 0; i < page_size; i += PAGE_SIZE)
219 		BUG_ON(map_kernel_page(start + i, phys, flags));
220 
221 	return 0;
222 }
223 
224 #ifdef CONFIG_MEMORY_HOTPLUG
225 static void vmemmap_remove_mapping(unsigned long start,
226 				   unsigned long page_size)
227 {
228 }
229 #endif
230 #else /* CONFIG_PPC_BOOK3E */
231 static int __meminit vmemmap_create_mapping(unsigned long start,
232 					    unsigned long page_size,
233 					    unsigned long phys)
234 {
235 	int rc = htab_bolt_mapping(start, start + page_size, phys,
236 				   pgprot_val(PAGE_KERNEL),
237 				   mmu_vmemmap_psize, mmu_kernel_ssize);
238 	if (rc < 0) {
239 		int rc2 = htab_remove_mapping(start, start + page_size,
240 					      mmu_vmemmap_psize,
241 					      mmu_kernel_ssize);
242 		BUG_ON(rc2 && (rc2 != -ENOENT));
243 	}
244 	return rc;
245 }
246 
247 #ifdef CONFIG_MEMORY_HOTPLUG
248 static void vmemmap_remove_mapping(unsigned long start,
249 				   unsigned long page_size)
250 {
251 	int rc = htab_remove_mapping(start, start + page_size,
252 				     mmu_vmemmap_psize,
253 				     mmu_kernel_ssize);
254 	BUG_ON((rc < 0) && (rc != -ENOENT));
255 	WARN_ON(rc == -ENOENT);
256 }
257 #endif
258 
259 #endif /* CONFIG_PPC_BOOK3E */
260 
261 struct vmemmap_backing *vmemmap_list;
262 static struct vmemmap_backing *next;
263 static int num_left;
264 static int num_freed;
265 
266 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
267 {
268 	struct vmemmap_backing *vmem_back;
269 	/* get from freed entries first */
270 	if (num_freed) {
271 		num_freed--;
272 		vmem_back = next;
273 		next = next->list;
274 
275 		return vmem_back;
276 	}
277 
278 	/* allocate a page when required and hand out chunks */
279 	if (!num_left) {
280 		next = vmemmap_alloc_block(PAGE_SIZE, node);
281 		if (unlikely(!next)) {
282 			WARN_ON(1);
283 			return NULL;
284 		}
285 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
286 	}
287 
288 	num_left--;
289 
290 	return next++;
291 }
292 
293 static __meminit void vmemmap_list_populate(unsigned long phys,
294 					    unsigned long start,
295 					    int node)
296 {
297 	struct vmemmap_backing *vmem_back;
298 
299 	vmem_back = vmemmap_list_alloc(node);
300 	if (unlikely(!vmem_back)) {
301 		WARN_ON(1);
302 		return;
303 	}
304 
305 	vmem_back->phys = phys;
306 	vmem_back->virt_addr = start;
307 	vmem_back->list = vmemmap_list;
308 
309 	vmemmap_list = vmem_back;
310 }
311 
312 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
313 {
314 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
315 
316 	/* Align to the page size of the linear mapping. */
317 	start = _ALIGN_DOWN(start, page_size);
318 
319 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
320 
321 	for (; start < end; start += page_size) {
322 		void *p;
323 		int rc;
324 
325 		if (vmemmap_populated(start, page_size))
326 			continue;
327 
328 		p = vmemmap_alloc_block(page_size, node);
329 		if (!p)
330 			return -ENOMEM;
331 
332 		vmemmap_list_populate(__pa(p), start, node);
333 
334 		pr_debug("      * %016lx..%016lx allocated at %p\n",
335 			 start, start + page_size, p);
336 
337 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
338 		if (rc < 0) {
339 			pr_warning(
340 				"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
341 				rc);
342 			return -EFAULT;
343 		}
344 	}
345 
346 	return 0;
347 }
348 
349 #ifdef CONFIG_MEMORY_HOTPLUG
350 static unsigned long vmemmap_list_free(unsigned long start)
351 {
352 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
353 
354 	vmem_back_prev = vmem_back = vmemmap_list;
355 
356 	/* look for it with prev pointer recorded */
357 	for (; vmem_back; vmem_back = vmem_back->list) {
358 		if (vmem_back->virt_addr == start)
359 			break;
360 		vmem_back_prev = vmem_back;
361 	}
362 
363 	if (unlikely(!vmem_back)) {
364 		WARN_ON(1);
365 		return 0;
366 	}
367 
368 	/* remove it from vmemmap_list */
369 	if (vmem_back == vmemmap_list) /* remove head */
370 		vmemmap_list = vmem_back->list;
371 	else
372 		vmem_back_prev->list = vmem_back->list;
373 
374 	/* next point to this freed entry */
375 	vmem_back->list = next;
376 	next = vmem_back;
377 	num_freed++;
378 
379 	return vmem_back->phys;
380 }
381 
382 void __ref vmemmap_free(unsigned long start, unsigned long end)
383 {
384 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
385 
386 	start = _ALIGN_DOWN(start, page_size);
387 
388 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
389 
390 	for (; start < end; start += page_size) {
391 		unsigned long addr;
392 
393 		/*
394 		 * the section has already be marked as invalid, so
395 		 * vmemmap_populated() true means some other sections still
396 		 * in this page, so skip it.
397 		 */
398 		if (vmemmap_populated(start, page_size))
399 			continue;
400 
401 		addr = vmemmap_list_free(start);
402 		if (addr) {
403 			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
404 
405 			if (PageReserved(page)) {
406 				/* allocated from bootmem */
407 				if (page_size < PAGE_SIZE) {
408 					/*
409 					 * this shouldn't happen, but if it is
410 					 * the case, leave the memory there
411 					 */
412 					WARN_ON_ONCE(1);
413 				} else {
414 					unsigned int nr_pages =
415 						1 << get_order(page_size);
416 					while (nr_pages--)
417 						free_reserved_page(page++);
418 				}
419 			} else
420 				free_pages((unsigned long)(__va(addr)),
421 							get_order(page_size));
422 
423 			vmemmap_remove_mapping(start, page_size);
424 		}
425 	}
426 }
427 #endif
428 void register_page_bootmem_memmap(unsigned long section_nr,
429 				  struct page *start_page, unsigned long size)
430 {
431 }
432 
433 /*
434  * We do not have access to the sparsemem vmemmap, so we fallback to
435  * walking the list of sparsemem blocks which we already maintain for
436  * the sake of crashdump. In the long run, we might want to maintain
437  * a tree if performance of that linear walk becomes a problem.
438  *
439  * realmode_pfn_to_page functions can fail due to:
440  * 1) As real sparsemem blocks do not lay in RAM continously (they
441  * are in virtual address space which is not available in the real mode),
442  * the requested page struct can be split between blocks so get_page/put_page
443  * may fail.
444  * 2) When huge pages are used, the get_page/put_page API will fail
445  * in real mode as the linked addresses in the page struct are virtual
446  * too.
447  */
448 struct page *realmode_pfn_to_page(unsigned long pfn)
449 {
450 	struct vmemmap_backing *vmem_back;
451 	struct page *page;
452 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
453 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
454 
455 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
456 		if (pg_va < vmem_back->virt_addr)
457 			continue;
458 
459 		/* After vmemmap_list entry free is possible, need check all */
460 		if ((pg_va + sizeof(struct page)) <=
461 				(vmem_back->virt_addr + page_size)) {
462 			page = (struct page *) (vmem_back->phys + pg_va -
463 				vmem_back->virt_addr);
464 			return page;
465 		}
466 	}
467 
468 	/* Probably that page struct is split between real pages */
469 	return NULL;
470 }
471 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
472 
473 #elif defined(CONFIG_FLATMEM)
474 
475 struct page *realmode_pfn_to_page(unsigned long pfn)
476 {
477 	struct page *page = pfn_to_page(pfn);
478 	return page;
479 }
480 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
481 
482 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
483