1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <linux/swap.h> 21 #include <linux/swapops.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 bool hugetlb_disabled = false; 39 40 unsigned int HPAGE_SHIFT; 41 EXPORT_SYMBOL(HPAGE_SHIFT); 42 43 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 44 45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 46 { 47 /* 48 * Only called for hugetlbfs pages, hence can ignore THP and the 49 * irq disabled walk. 50 */ 51 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 52 } 53 54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 55 unsigned long address, unsigned int pdshift, 56 unsigned int pshift, spinlock_t *ptl) 57 { 58 struct kmem_cache *cachep; 59 pte_t *new; 60 int i; 61 int num_hugepd; 62 63 if (pshift >= pdshift) { 64 cachep = hugepte_cache; 65 num_hugepd = 1 << (pshift - pdshift); 66 } else { 67 cachep = PGT_CACHE(pdshift - pshift); 68 num_hugepd = 1; 69 } 70 71 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 72 73 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 74 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 75 76 if (! new) 77 return -ENOMEM; 78 79 /* 80 * Make sure other cpus find the hugepd set only after a 81 * properly initialized page table is visible to them. 82 * For more details look for comment in __pte_alloc(). 83 */ 84 smp_wmb(); 85 86 spin_lock(ptl); 87 /* 88 * We have multiple higher-level entries that point to the same 89 * actual pte location. Fill in each as we go and backtrack on error. 90 * We need all of these so the DTLB pgtable walk code can find the 91 * right higher-level entry without knowing if it's a hugepage or not. 92 */ 93 for (i = 0; i < num_hugepd; i++, hpdp++) { 94 if (unlikely(!hugepd_none(*hpdp))) 95 break; 96 else { 97 #ifdef CONFIG_PPC_BOOK3S_64 98 *hpdp = __hugepd(__pa(new) | 99 (shift_to_mmu_psize(pshift) << 2)); 100 #elif defined(CONFIG_PPC_8xx) 101 *hpdp = __hugepd(__pa(new) | _PMD_USER | 102 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 103 _PMD_PAGE_512K) | _PMD_PRESENT); 104 #else 105 /* We use the old format for PPC_FSL_BOOK3E */ 106 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 107 #endif 108 } 109 } 110 /* If we bailed from the for loop early, an error occurred, clean up */ 111 if (i < num_hugepd) { 112 for (i = i - 1 ; i >= 0; i--, hpdp--) 113 *hpdp = __hugepd(0); 114 kmem_cache_free(cachep, new); 115 } 116 spin_unlock(ptl); 117 return 0; 118 } 119 120 /* 121 * These macros define how to determine which level of the page table holds 122 * the hpdp. 123 */ 124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 125 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 126 #define HUGEPD_PUD_SHIFT PUD_SHIFT 127 #endif 128 129 /* 130 * At this point we do the placement change only for BOOK3S 64. This would 131 * possibly work on other subarchs. 132 */ 133 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 134 { 135 pgd_t *pg; 136 pud_t *pu; 137 pmd_t *pm; 138 hugepd_t *hpdp = NULL; 139 unsigned pshift = __ffs(sz); 140 unsigned pdshift = PGDIR_SHIFT; 141 spinlock_t *ptl; 142 143 addr &= ~(sz-1); 144 pg = pgd_offset(mm, addr); 145 146 #ifdef CONFIG_PPC_BOOK3S_64 147 if (pshift == PGDIR_SHIFT) 148 /* 16GB huge page */ 149 return (pte_t *) pg; 150 else if (pshift > PUD_SHIFT) { 151 /* 152 * We need to use hugepd table 153 */ 154 ptl = &mm->page_table_lock; 155 hpdp = (hugepd_t *)pg; 156 } else { 157 pdshift = PUD_SHIFT; 158 pu = pud_alloc(mm, pg, addr); 159 if (pshift == PUD_SHIFT) 160 return (pte_t *)pu; 161 else if (pshift > PMD_SHIFT) { 162 ptl = pud_lockptr(mm, pu); 163 hpdp = (hugepd_t *)pu; 164 } else { 165 pdshift = PMD_SHIFT; 166 pm = pmd_alloc(mm, pu, addr); 167 if (pshift == PMD_SHIFT) 168 /* 16MB hugepage */ 169 return (pte_t *)pm; 170 else { 171 ptl = pmd_lockptr(mm, pm); 172 hpdp = (hugepd_t *)pm; 173 } 174 } 175 } 176 #else 177 if (pshift >= HUGEPD_PGD_SHIFT) { 178 ptl = &mm->page_table_lock; 179 hpdp = (hugepd_t *)pg; 180 } else { 181 pdshift = PUD_SHIFT; 182 pu = pud_alloc(mm, pg, addr); 183 if (pshift >= HUGEPD_PUD_SHIFT) { 184 ptl = pud_lockptr(mm, pu); 185 hpdp = (hugepd_t *)pu; 186 } else { 187 pdshift = PMD_SHIFT; 188 pm = pmd_alloc(mm, pu, addr); 189 ptl = pmd_lockptr(mm, pm); 190 hpdp = (hugepd_t *)pm; 191 } 192 } 193 #endif 194 if (!hpdp) 195 return NULL; 196 197 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 198 199 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 200 pdshift, pshift, ptl)) 201 return NULL; 202 203 return hugepte_offset(*hpdp, addr, pdshift); 204 } 205 206 #ifdef CONFIG_PPC_BOOK3S_64 207 /* 208 * Tracks gpages after the device tree is scanned and before the 209 * huge_boot_pages list is ready on pseries. 210 */ 211 #define MAX_NUMBER_GPAGES 1024 212 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 213 __initdata static unsigned nr_gpages; 214 215 /* 216 * Build list of addresses of gigantic pages. This function is used in early 217 * boot before the buddy allocator is setup. 218 */ 219 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 220 { 221 if (!addr) 222 return; 223 while (number_of_pages > 0) { 224 gpage_freearray[nr_gpages] = addr; 225 nr_gpages++; 226 number_of_pages--; 227 addr += page_size; 228 } 229 } 230 231 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 232 { 233 struct huge_bootmem_page *m; 234 if (nr_gpages == 0) 235 return 0; 236 m = phys_to_virt(gpage_freearray[--nr_gpages]); 237 gpage_freearray[nr_gpages] = 0; 238 list_add(&m->list, &huge_boot_pages); 239 m->hstate = hstate; 240 return 1; 241 } 242 #endif 243 244 245 int __init alloc_bootmem_huge_page(struct hstate *h) 246 { 247 248 #ifdef CONFIG_PPC_BOOK3S_64 249 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 250 return pseries_alloc_bootmem_huge_page(h); 251 #endif 252 return __alloc_bootmem_huge_page(h); 253 } 254 255 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 256 #define HUGEPD_FREELIST_SIZE \ 257 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 258 259 struct hugepd_freelist { 260 struct rcu_head rcu; 261 unsigned int index; 262 void *ptes[0]; 263 }; 264 265 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 266 267 static void hugepd_free_rcu_callback(struct rcu_head *head) 268 { 269 struct hugepd_freelist *batch = 270 container_of(head, struct hugepd_freelist, rcu); 271 unsigned int i; 272 273 for (i = 0; i < batch->index; i++) 274 kmem_cache_free(hugepte_cache, batch->ptes[i]); 275 276 free_page((unsigned long)batch); 277 } 278 279 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 280 { 281 struct hugepd_freelist **batchp; 282 283 batchp = &get_cpu_var(hugepd_freelist_cur); 284 285 if (atomic_read(&tlb->mm->mm_users) < 2 || 286 mm_is_thread_local(tlb->mm)) { 287 kmem_cache_free(hugepte_cache, hugepte); 288 put_cpu_var(hugepd_freelist_cur); 289 return; 290 } 291 292 if (*batchp == NULL) { 293 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 294 (*batchp)->index = 0; 295 } 296 297 (*batchp)->ptes[(*batchp)->index++] = hugepte; 298 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 299 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 300 *batchp = NULL; 301 } 302 put_cpu_var(hugepd_freelist_cur); 303 } 304 #else 305 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 306 #endif 307 308 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 309 unsigned long start, unsigned long end, 310 unsigned long floor, unsigned long ceiling) 311 { 312 pte_t *hugepte = hugepd_page(*hpdp); 313 int i; 314 315 unsigned long pdmask = ~((1UL << pdshift) - 1); 316 unsigned int num_hugepd = 1; 317 unsigned int shift = hugepd_shift(*hpdp); 318 319 /* Note: On fsl the hpdp may be the first of several */ 320 if (shift > pdshift) 321 num_hugepd = 1 << (shift - pdshift); 322 323 start &= pdmask; 324 if (start < floor) 325 return; 326 if (ceiling) { 327 ceiling &= pdmask; 328 if (! ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 return; 333 334 for (i = 0; i < num_hugepd; i++, hpdp++) 335 *hpdp = __hugepd(0); 336 337 if (shift >= pdshift) 338 hugepd_free(tlb, hugepte); 339 else 340 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 341 } 342 343 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 344 unsigned long addr, unsigned long end, 345 unsigned long floor, unsigned long ceiling) 346 { 347 pmd_t *pmd; 348 unsigned long next; 349 unsigned long start; 350 351 start = addr; 352 do { 353 unsigned long more; 354 355 pmd = pmd_offset(pud, addr); 356 next = pmd_addr_end(addr, end); 357 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 358 /* 359 * if it is not hugepd pointer, we should already find 360 * it cleared. 361 */ 362 WARN_ON(!pmd_none_or_clear_bad(pmd)); 363 continue; 364 } 365 /* 366 * Increment next by the size of the huge mapping since 367 * there may be more than one entry at this level for a 368 * single hugepage, but all of them point to 369 * the same kmem cache that holds the hugepte. 370 */ 371 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 372 if (more > next) 373 next = more; 374 375 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 376 addr, next, floor, ceiling); 377 } while (addr = next, addr != end); 378 379 start &= PUD_MASK; 380 if (start < floor) 381 return; 382 if (ceiling) { 383 ceiling &= PUD_MASK; 384 if (!ceiling) 385 return; 386 } 387 if (end - 1 > ceiling - 1) 388 return; 389 390 pmd = pmd_offset(pud, start); 391 pud_clear(pud); 392 pmd_free_tlb(tlb, pmd, start); 393 mm_dec_nr_pmds(tlb->mm); 394 } 395 396 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 397 unsigned long addr, unsigned long end, 398 unsigned long floor, unsigned long ceiling) 399 { 400 pud_t *pud; 401 unsigned long next; 402 unsigned long start; 403 404 start = addr; 405 do { 406 pud = pud_offset(pgd, addr); 407 next = pud_addr_end(addr, end); 408 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 409 if (pud_none_or_clear_bad(pud)) 410 continue; 411 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 412 ceiling); 413 } else { 414 unsigned long more; 415 /* 416 * Increment next by the size of the huge mapping since 417 * there may be more than one entry at this level for a 418 * single hugepage, but all of them point to 419 * the same kmem cache that holds the hugepte. 420 */ 421 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 422 if (more > next) 423 next = more; 424 425 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 426 addr, next, floor, ceiling); 427 } 428 } while (addr = next, addr != end); 429 430 start &= PGDIR_MASK; 431 if (start < floor) 432 return; 433 if (ceiling) { 434 ceiling &= PGDIR_MASK; 435 if (!ceiling) 436 return; 437 } 438 if (end - 1 > ceiling - 1) 439 return; 440 441 pud = pud_offset(pgd, start); 442 pgd_clear(pgd); 443 pud_free_tlb(tlb, pud, start); 444 mm_dec_nr_puds(tlb->mm); 445 } 446 447 /* 448 * This function frees user-level page tables of a process. 449 */ 450 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 451 unsigned long addr, unsigned long end, 452 unsigned long floor, unsigned long ceiling) 453 { 454 pgd_t *pgd; 455 unsigned long next; 456 457 /* 458 * Because there are a number of different possible pagetable 459 * layouts for hugepage ranges, we limit knowledge of how 460 * things should be laid out to the allocation path 461 * (huge_pte_alloc(), above). Everything else works out the 462 * structure as it goes from information in the hugepd 463 * pointers. That means that we can't here use the 464 * optimization used in the normal page free_pgd_range(), of 465 * checking whether we're actually covering a large enough 466 * range to have to do anything at the top level of the walk 467 * instead of at the bottom. 468 * 469 * To make sense of this, you should probably go read the big 470 * block comment at the top of the normal free_pgd_range(), 471 * too. 472 */ 473 474 do { 475 next = pgd_addr_end(addr, end); 476 pgd = pgd_offset(tlb->mm, addr); 477 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 478 if (pgd_none_or_clear_bad(pgd)) 479 continue; 480 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 481 } else { 482 unsigned long more; 483 /* 484 * Increment next by the size of the huge mapping since 485 * there may be more than one entry at the pgd level 486 * for a single hugepage, but all of them point to the 487 * same kmem cache that holds the hugepte. 488 */ 489 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 490 if (more > next) 491 next = more; 492 493 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 494 addr, next, floor, ceiling); 495 } 496 } while (addr = next, addr != end); 497 } 498 499 struct page *follow_huge_pd(struct vm_area_struct *vma, 500 unsigned long address, hugepd_t hpd, 501 int flags, int pdshift) 502 { 503 pte_t *ptep; 504 spinlock_t *ptl; 505 struct page *page = NULL; 506 unsigned long mask; 507 int shift = hugepd_shift(hpd); 508 struct mm_struct *mm = vma->vm_mm; 509 510 retry: 511 /* 512 * hugepage directory entries are protected by mm->page_table_lock 513 * Use this instead of huge_pte_lockptr 514 */ 515 ptl = &mm->page_table_lock; 516 spin_lock(ptl); 517 518 ptep = hugepte_offset(hpd, address, pdshift); 519 if (pte_present(*ptep)) { 520 mask = (1UL << shift) - 1; 521 page = pte_page(*ptep); 522 page += ((address & mask) >> PAGE_SHIFT); 523 if (flags & FOLL_GET) 524 get_page(page); 525 } else { 526 if (is_hugetlb_entry_migration(*ptep)) { 527 spin_unlock(ptl); 528 __migration_entry_wait(mm, ptep, ptl); 529 goto retry; 530 } 531 } 532 spin_unlock(ptl); 533 return page; 534 } 535 536 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 537 unsigned long sz) 538 { 539 unsigned long __boundary = (addr + sz) & ~(sz-1); 540 return (__boundary - 1 < end - 1) ? __boundary : end; 541 } 542 543 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 544 unsigned long end, int write, struct page **pages, int *nr) 545 { 546 pte_t *ptep; 547 unsigned long sz = 1UL << hugepd_shift(hugepd); 548 unsigned long next; 549 550 ptep = hugepte_offset(hugepd, addr, pdshift); 551 do { 552 next = hugepte_addr_end(addr, end, sz); 553 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 554 return 0; 555 } while (ptep++, addr = next, addr != end); 556 557 return 1; 558 } 559 560 #ifdef CONFIG_PPC_MM_SLICES 561 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 562 unsigned long len, unsigned long pgoff, 563 unsigned long flags) 564 { 565 struct hstate *hstate = hstate_file(file); 566 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 567 568 #ifdef CONFIG_PPC_RADIX_MMU 569 if (radix_enabled()) 570 return radix__hugetlb_get_unmapped_area(file, addr, len, 571 pgoff, flags); 572 #endif 573 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 574 } 575 #endif 576 577 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 578 { 579 #ifdef CONFIG_PPC_MM_SLICES 580 /* With radix we don't use slice, so derive it from vma*/ 581 if (!radix_enabled()) { 582 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 583 584 return 1UL << mmu_psize_to_shift(psize); 585 } 586 #endif 587 return vma_kernel_pagesize(vma); 588 } 589 590 static inline bool is_power_of_4(unsigned long x) 591 { 592 if (is_power_of_2(x)) 593 return (__ilog2(x) % 2) ? false : true; 594 return false; 595 } 596 597 static int __init add_huge_page_size(unsigned long long size) 598 { 599 int shift = __ffs(size); 600 int mmu_psize; 601 602 /* Check that it is a page size supported by the hardware and 603 * that it fits within pagetable and slice limits. */ 604 if (size <= PAGE_SIZE) 605 return -EINVAL; 606 #if defined(CONFIG_PPC_FSL_BOOK3E) 607 if (!is_power_of_4(size)) 608 return -EINVAL; 609 #elif !defined(CONFIG_PPC_8xx) 610 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 611 return -EINVAL; 612 #endif 613 614 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 615 return -EINVAL; 616 617 #ifdef CONFIG_PPC_BOOK3S_64 618 /* 619 * We need to make sure that for different page sizes reported by 620 * firmware we only add hugetlb support for page sizes that can be 621 * supported by linux page table layout. 622 * For now we have 623 * Radix: 2M 624 * Hash: 16M and 16G 625 */ 626 if (radix_enabled()) { 627 if (mmu_psize != MMU_PAGE_2M) { 628 if (cpu_has_feature(CPU_FTR_POWER9_DD1) || 629 (mmu_psize != MMU_PAGE_1G)) 630 return -EINVAL; 631 } 632 } else { 633 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 634 return -EINVAL; 635 } 636 #endif 637 638 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 639 640 /* Return if huge page size has already been setup */ 641 if (size_to_hstate(size)) 642 return 0; 643 644 hugetlb_add_hstate(shift - PAGE_SHIFT); 645 646 return 0; 647 } 648 649 static int __init hugepage_setup_sz(char *str) 650 { 651 unsigned long long size; 652 653 size = memparse(str, &str); 654 655 if (add_huge_page_size(size) != 0) { 656 hugetlb_bad_size(); 657 pr_err("Invalid huge page size specified(%llu)\n", size); 658 } 659 660 return 1; 661 } 662 __setup("hugepagesz=", hugepage_setup_sz); 663 664 struct kmem_cache *hugepte_cache; 665 static int __init hugetlbpage_init(void) 666 { 667 int psize; 668 669 if (hugetlb_disabled) { 670 pr_info("HugeTLB support is disabled!\n"); 671 return 0; 672 } 673 674 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 675 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 676 return -ENODEV; 677 #endif 678 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 679 unsigned shift; 680 unsigned pdshift; 681 682 if (!mmu_psize_defs[psize].shift) 683 continue; 684 685 shift = mmu_psize_to_shift(psize); 686 687 #ifdef CONFIG_PPC_BOOK3S_64 688 if (shift > PGDIR_SHIFT) 689 continue; 690 else if (shift > PUD_SHIFT) 691 pdshift = PGDIR_SHIFT; 692 else if (shift > PMD_SHIFT) 693 pdshift = PUD_SHIFT; 694 else 695 pdshift = PMD_SHIFT; 696 #else 697 if (shift < HUGEPD_PUD_SHIFT) 698 pdshift = PMD_SHIFT; 699 else if (shift < HUGEPD_PGD_SHIFT) 700 pdshift = PUD_SHIFT; 701 else 702 pdshift = PGDIR_SHIFT; 703 #endif 704 705 if (add_huge_page_size(1ULL << shift) < 0) 706 continue; 707 /* 708 * if we have pdshift and shift value same, we don't 709 * use pgt cache for hugepd. 710 */ 711 if (pdshift > shift) 712 pgtable_cache_add(pdshift - shift, NULL); 713 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 714 else if (!hugepte_cache) { 715 /* 716 * Create a kmem cache for hugeptes. The bottom bits in 717 * the pte have size information encoded in them, so 718 * align them to allow this 719 */ 720 hugepte_cache = kmem_cache_create("hugepte-cache", 721 sizeof(pte_t), 722 HUGEPD_SHIFT_MASK + 1, 723 0, NULL); 724 if (hugepte_cache == NULL) 725 panic("%s: Unable to create kmem cache " 726 "for hugeptes\n", __func__); 727 728 } 729 #endif 730 } 731 732 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 733 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 734 if (mmu_psize_defs[MMU_PAGE_4M].shift) 735 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 736 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 737 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 738 #else 739 /* Set default large page size. Currently, we pick 16M or 1M 740 * depending on what is available 741 */ 742 if (mmu_psize_defs[MMU_PAGE_16M].shift) 743 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 744 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 745 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 746 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 747 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 748 #endif 749 return 0; 750 } 751 752 arch_initcall(hugetlbpage_init); 753 754 void flush_dcache_icache_hugepage(struct page *page) 755 { 756 int i; 757 void *start; 758 759 BUG_ON(!PageCompound(page)); 760 761 for (i = 0; i < (1UL << compound_order(page)); i++) { 762 if (!PageHighMem(page)) { 763 __flush_dcache_icache(page_address(page+i)); 764 } else { 765 start = kmap_atomic(page+i); 766 __flush_dcache_icache(start); 767 kunmap_atomic(start); 768 } 769 } 770 } 771 772 #endif /* CONFIG_HUGETLB_PAGE */ 773 774 /* 775 * We have 4 cases for pgds and pmds: 776 * (1) invalid (all zeroes) 777 * (2) pointer to next table, as normal; bottom 6 bits == 0 778 * (3) leaf pte for huge page _PAGE_PTE set 779 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 780 * 781 * So long as we atomically load page table pointers we are safe against teardown, 782 * we can follow the address down to the the page and take a ref on it. 783 * This function need to be called with interrupts disabled. We use this variant 784 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED 785 */ 786 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 787 bool *is_thp, unsigned *hpage_shift) 788 { 789 pgd_t pgd, *pgdp; 790 pud_t pud, *pudp; 791 pmd_t pmd, *pmdp; 792 pte_t *ret_pte; 793 hugepd_t *hpdp = NULL; 794 unsigned pdshift = PGDIR_SHIFT; 795 796 if (hpage_shift) 797 *hpage_shift = 0; 798 799 if (is_thp) 800 *is_thp = false; 801 802 pgdp = pgdir + pgd_index(ea); 803 pgd = READ_ONCE(*pgdp); 804 /* 805 * Always operate on the local stack value. This make sure the 806 * value don't get updated by a parallel THP split/collapse, 807 * page fault or a page unmap. The return pte_t * is still not 808 * stable. So should be checked there for above conditions. 809 */ 810 if (pgd_none(pgd)) 811 return NULL; 812 else if (pgd_huge(pgd)) { 813 ret_pte = (pte_t *) pgdp; 814 goto out; 815 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 816 hpdp = (hugepd_t *)&pgd; 817 else { 818 /* 819 * Even if we end up with an unmap, the pgtable will not 820 * be freed, because we do an rcu free and here we are 821 * irq disabled 822 */ 823 pdshift = PUD_SHIFT; 824 pudp = pud_offset(&pgd, ea); 825 pud = READ_ONCE(*pudp); 826 827 if (pud_none(pud)) 828 return NULL; 829 else if (pud_huge(pud)) { 830 ret_pte = (pte_t *) pudp; 831 goto out; 832 } else if (is_hugepd(__hugepd(pud_val(pud)))) 833 hpdp = (hugepd_t *)&pud; 834 else { 835 pdshift = PMD_SHIFT; 836 pmdp = pmd_offset(&pud, ea); 837 pmd = READ_ONCE(*pmdp); 838 /* 839 * A hugepage collapse is captured by pmd_none, because 840 * it mark the pmd none and do a hpte invalidate. 841 */ 842 if (pmd_none(pmd)) 843 return NULL; 844 845 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 846 if (is_thp) 847 *is_thp = true; 848 ret_pte = (pte_t *) pmdp; 849 goto out; 850 } 851 852 if (pmd_huge(pmd)) { 853 ret_pte = (pte_t *) pmdp; 854 goto out; 855 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 856 hpdp = (hugepd_t *)&pmd; 857 else 858 return pte_offset_kernel(&pmd, ea); 859 } 860 } 861 if (!hpdp) 862 return NULL; 863 864 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 865 pdshift = hugepd_shift(*hpdp); 866 out: 867 if (hpage_shift) 868 *hpage_shift = pdshift; 869 return ret_pte; 870 } 871 EXPORT_SYMBOL_GPL(__find_linux_pte); 872 873 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 874 unsigned long end, int write, struct page **pages, int *nr) 875 { 876 unsigned long pte_end; 877 struct page *head, *page; 878 pte_t pte; 879 int refs; 880 881 pte_end = (addr + sz) & ~(sz-1); 882 if (pte_end < end) 883 end = pte_end; 884 885 pte = READ_ONCE(*ptep); 886 887 if (!pte_access_permitted(pte, write)) 888 return 0; 889 890 /* hugepages are never "special" */ 891 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 892 893 refs = 0; 894 head = pte_page(pte); 895 896 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 897 do { 898 VM_BUG_ON(compound_head(page) != head); 899 pages[*nr] = page; 900 (*nr)++; 901 page++; 902 refs++; 903 } while (addr += PAGE_SIZE, addr != end); 904 905 if (!page_cache_add_speculative(head, refs)) { 906 *nr -= refs; 907 return 0; 908 } 909 910 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 911 /* Could be optimized better */ 912 *nr -= refs; 913 while (refs--) 914 put_page(head); 915 return 0; 916 } 917 918 return 1; 919 } 920