1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 25 #define PAGE_SHIFT_64K 16 26 #define PAGE_SHIFT_16M 24 27 #define PAGE_SHIFT_16G 34 28 29 unsigned int HPAGE_SHIFT; 30 31 /* 32 * Tracks gpages after the device tree is scanned and before the 33 * huge_boot_pages list is ready. On non-Freescale implementations, this is 34 * just used to track 16G pages and so is a single array. FSL-based 35 * implementations may have more than one gpage size, so we need multiple 36 * arrays 37 */ 38 #ifdef CONFIG_PPC_FSL_BOOK3E 39 #define MAX_NUMBER_GPAGES 128 40 struct psize_gpages { 41 u64 gpage_list[MAX_NUMBER_GPAGES]; 42 unsigned int nr_gpages; 43 }; 44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 45 #else 46 #define MAX_NUMBER_GPAGES 1024 47 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 48 static unsigned nr_gpages; 49 #endif 50 51 #define hugepd_none(hpd) ((hpd).pd == 0) 52 53 #ifdef CONFIG_PPC_BOOK3S_64 54 /* 55 * At this point we do the placement change only for BOOK3S 64. This would 56 * possibly work on other subarchs. 57 */ 58 59 /* 60 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have 61 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; 62 */ 63 int pmd_huge(pmd_t pmd) 64 { 65 /* 66 * leaf pte for huge page, bottom two bits != 00 67 */ 68 return ((pmd_val(pmd) & 0x3) != 0x0); 69 } 70 71 int pud_huge(pud_t pud) 72 { 73 /* 74 * leaf pte for huge page, bottom two bits != 00 75 */ 76 return ((pud_val(pud) & 0x3) != 0x0); 77 } 78 79 int pgd_huge(pgd_t pgd) 80 { 81 /* 82 * leaf pte for huge page, bottom two bits != 00 83 */ 84 return ((pgd_val(pgd) & 0x3) != 0x0); 85 } 86 #else 87 int pmd_huge(pmd_t pmd) 88 { 89 return 0; 90 } 91 92 int pud_huge(pud_t pud) 93 { 94 return 0; 95 } 96 97 int pgd_huge(pgd_t pgd) 98 { 99 return 0; 100 } 101 #endif 102 103 /* 104 * We have 4 cases for pgds and pmds: 105 * (1) invalid (all zeroes) 106 * (2) pointer to next table, as normal; bottom 6 bits == 0 107 * (3) leaf pte for huge page, bottom two bits != 00 108 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table 109 */ 110 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) 111 { 112 pgd_t *pg; 113 pud_t *pu; 114 pmd_t *pm; 115 pte_t *ret_pte; 116 hugepd_t *hpdp = NULL; 117 unsigned pdshift = PGDIR_SHIFT; 118 119 if (shift) 120 *shift = 0; 121 122 pg = pgdir + pgd_index(ea); 123 124 if (pgd_huge(*pg)) { 125 ret_pte = (pte_t *) pg; 126 goto out; 127 } else if (is_hugepd(pg)) 128 hpdp = (hugepd_t *)pg; 129 else if (!pgd_none(*pg)) { 130 pdshift = PUD_SHIFT; 131 pu = pud_offset(pg, ea); 132 133 if (pud_huge(*pu)) { 134 ret_pte = (pte_t *) pu; 135 goto out; 136 } else if (is_hugepd(pu)) 137 hpdp = (hugepd_t *)pu; 138 else if (!pud_none(*pu)) { 139 pdshift = PMD_SHIFT; 140 pm = pmd_offset(pu, ea); 141 142 if (pmd_huge(*pm)) { 143 ret_pte = (pte_t *) pm; 144 goto out; 145 } else if (is_hugepd(pm)) 146 hpdp = (hugepd_t *)pm; 147 else if (!pmd_none(*pm)) 148 return pte_offset_kernel(pm, ea); 149 } 150 } 151 if (!hpdp) 152 return NULL; 153 154 ret_pte = hugepte_offset(hpdp, ea, pdshift); 155 pdshift = hugepd_shift(*hpdp); 156 out: 157 if (shift) 158 *shift = pdshift; 159 return ret_pte; 160 } 161 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); 162 163 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 164 { 165 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); 166 } 167 168 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 169 unsigned long address, unsigned pdshift, unsigned pshift) 170 { 171 struct kmem_cache *cachep; 172 pte_t *new; 173 174 #ifdef CONFIG_PPC_FSL_BOOK3E 175 int i; 176 int num_hugepd = 1 << (pshift - pdshift); 177 cachep = hugepte_cache; 178 #else 179 cachep = PGT_CACHE(pdshift - pshift); 180 #endif 181 182 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 183 184 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 185 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 186 187 if (! new) 188 return -ENOMEM; 189 190 spin_lock(&mm->page_table_lock); 191 #ifdef CONFIG_PPC_FSL_BOOK3E 192 /* 193 * We have multiple higher-level entries that point to the same 194 * actual pte location. Fill in each as we go and backtrack on error. 195 * We need all of these so the DTLB pgtable walk code can find the 196 * right higher-level entry without knowing if it's a hugepage or not. 197 */ 198 for (i = 0; i < num_hugepd; i++, hpdp++) { 199 if (unlikely(!hugepd_none(*hpdp))) 200 break; 201 else 202 /* We use the old format for PPC_FSL_BOOK3E */ 203 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 204 } 205 /* If we bailed from the for loop early, an error occurred, clean up */ 206 if (i < num_hugepd) { 207 for (i = i - 1 ; i >= 0; i--, hpdp--) 208 hpdp->pd = 0; 209 kmem_cache_free(cachep, new); 210 } 211 #else 212 if (!hugepd_none(*hpdp)) 213 kmem_cache_free(cachep, new); 214 else { 215 #ifdef CONFIG_PPC_BOOK3S_64 216 hpdp->pd = (unsigned long)new | 217 (shift_to_mmu_psize(pshift) << 2); 218 #else 219 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 220 #endif 221 } 222 #endif 223 spin_unlock(&mm->page_table_lock); 224 return 0; 225 } 226 227 /* 228 * These macros define how to determine which level of the page table holds 229 * the hpdp. 230 */ 231 #ifdef CONFIG_PPC_FSL_BOOK3E 232 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 233 #define HUGEPD_PUD_SHIFT PUD_SHIFT 234 #else 235 #define HUGEPD_PGD_SHIFT PUD_SHIFT 236 #define HUGEPD_PUD_SHIFT PMD_SHIFT 237 #endif 238 239 #ifdef CONFIG_PPC_BOOK3S_64 240 /* 241 * At this point we do the placement change only for BOOK3S 64. This would 242 * possibly work on other subarchs. 243 */ 244 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 245 { 246 pgd_t *pg; 247 pud_t *pu; 248 pmd_t *pm; 249 hugepd_t *hpdp = NULL; 250 unsigned pshift = __ffs(sz); 251 unsigned pdshift = PGDIR_SHIFT; 252 253 addr &= ~(sz-1); 254 pg = pgd_offset(mm, addr); 255 256 if (pshift == PGDIR_SHIFT) 257 /* 16GB huge page */ 258 return (pte_t *) pg; 259 else if (pshift > PUD_SHIFT) 260 /* 261 * We need to use hugepd table 262 */ 263 hpdp = (hugepd_t *)pg; 264 else { 265 pdshift = PUD_SHIFT; 266 pu = pud_alloc(mm, pg, addr); 267 if (pshift == PUD_SHIFT) 268 return (pte_t *)pu; 269 else if (pshift > PMD_SHIFT) 270 hpdp = (hugepd_t *)pu; 271 else { 272 pdshift = PMD_SHIFT; 273 pm = pmd_alloc(mm, pu, addr); 274 if (pshift == PMD_SHIFT) 275 /* 16MB hugepage */ 276 return (pte_t *)pm; 277 else 278 hpdp = (hugepd_t *)pm; 279 } 280 } 281 if (!hpdp) 282 return NULL; 283 284 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 285 286 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 287 return NULL; 288 289 return hugepte_offset(hpdp, addr, pdshift); 290 } 291 292 #else 293 294 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 295 { 296 pgd_t *pg; 297 pud_t *pu; 298 pmd_t *pm; 299 hugepd_t *hpdp = NULL; 300 unsigned pshift = __ffs(sz); 301 unsigned pdshift = PGDIR_SHIFT; 302 303 addr &= ~(sz-1); 304 305 pg = pgd_offset(mm, addr); 306 307 if (pshift >= HUGEPD_PGD_SHIFT) { 308 hpdp = (hugepd_t *)pg; 309 } else { 310 pdshift = PUD_SHIFT; 311 pu = pud_alloc(mm, pg, addr); 312 if (pshift >= HUGEPD_PUD_SHIFT) { 313 hpdp = (hugepd_t *)pu; 314 } else { 315 pdshift = PMD_SHIFT; 316 pm = pmd_alloc(mm, pu, addr); 317 hpdp = (hugepd_t *)pm; 318 } 319 } 320 321 if (!hpdp) 322 return NULL; 323 324 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 325 326 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 327 return NULL; 328 329 return hugepte_offset(hpdp, addr, pdshift); 330 } 331 #endif 332 333 #ifdef CONFIG_PPC_FSL_BOOK3E 334 /* Build list of addresses of gigantic pages. This function is used in early 335 * boot before the buddy or bootmem allocator is setup. 336 */ 337 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 338 { 339 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 340 int i; 341 342 if (addr == 0) 343 return; 344 345 gpage_freearray[idx].nr_gpages = number_of_pages; 346 347 for (i = 0; i < number_of_pages; i++) { 348 gpage_freearray[idx].gpage_list[i] = addr; 349 addr += page_size; 350 } 351 } 352 353 /* 354 * Moves the gigantic page addresses from the temporary list to the 355 * huge_boot_pages list. 356 */ 357 int alloc_bootmem_huge_page(struct hstate *hstate) 358 { 359 struct huge_bootmem_page *m; 360 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT); 361 int nr_gpages = gpage_freearray[idx].nr_gpages; 362 363 if (nr_gpages == 0) 364 return 0; 365 366 #ifdef CONFIG_HIGHMEM 367 /* 368 * If gpages can be in highmem we can't use the trick of storing the 369 * data structure in the page; allocate space for this 370 */ 371 m = alloc_bootmem(sizeof(struct huge_bootmem_page)); 372 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 373 #else 374 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 375 #endif 376 377 list_add(&m->list, &huge_boot_pages); 378 gpage_freearray[idx].nr_gpages = nr_gpages; 379 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 380 m->hstate = hstate; 381 382 return 1; 383 } 384 /* 385 * Scan the command line hugepagesz= options for gigantic pages; store those in 386 * a list that we use to allocate the memory once all options are parsed. 387 */ 388 389 unsigned long gpage_npages[MMU_PAGE_COUNT]; 390 391 static int __init do_gpage_early_setup(char *param, char *val, 392 const char *unused) 393 { 394 static phys_addr_t size; 395 unsigned long npages; 396 397 /* 398 * The hugepagesz and hugepages cmdline options are interleaved. We 399 * use the size variable to keep track of whether or not this was done 400 * properly and skip over instances where it is incorrect. Other 401 * command-line parsing code will issue warnings, so we don't need to. 402 * 403 */ 404 if ((strcmp(param, "default_hugepagesz") == 0) || 405 (strcmp(param, "hugepagesz") == 0)) { 406 size = memparse(val, NULL); 407 } else if (strcmp(param, "hugepages") == 0) { 408 if (size != 0) { 409 if (sscanf(val, "%lu", &npages) <= 0) 410 npages = 0; 411 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 412 size = 0; 413 } 414 } 415 return 0; 416 } 417 418 419 /* 420 * This function allocates physical space for pages that are larger than the 421 * buddy allocator can handle. We want to allocate these in highmem because 422 * the amount of lowmem is limited. This means that this function MUST be 423 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 424 * allocate to grab highmem. 425 */ 426 void __init reserve_hugetlb_gpages(void) 427 { 428 static __initdata char cmdline[COMMAND_LINE_SIZE]; 429 phys_addr_t size, base; 430 int i; 431 432 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 433 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 434 &do_gpage_early_setup); 435 436 /* 437 * Walk gpage list in reverse, allocating larger page sizes first. 438 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 439 * When we reach the point in the list where pages are no longer 440 * considered gpages, we're done. 441 */ 442 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 443 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 444 continue; 445 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 446 break; 447 448 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 449 base = memblock_alloc_base(size * gpage_npages[i], size, 450 MEMBLOCK_ALLOC_ANYWHERE); 451 add_gpage(base, size, gpage_npages[i]); 452 } 453 } 454 455 #else /* !PPC_FSL_BOOK3E */ 456 457 /* Build list of addresses of gigantic pages. This function is used in early 458 * boot before the buddy or bootmem allocator is setup. 459 */ 460 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 461 { 462 if (!addr) 463 return; 464 while (number_of_pages > 0) { 465 gpage_freearray[nr_gpages] = addr; 466 nr_gpages++; 467 number_of_pages--; 468 addr += page_size; 469 } 470 } 471 472 /* Moves the gigantic page addresses from the temporary list to the 473 * huge_boot_pages list. 474 */ 475 int alloc_bootmem_huge_page(struct hstate *hstate) 476 { 477 struct huge_bootmem_page *m; 478 if (nr_gpages == 0) 479 return 0; 480 m = phys_to_virt(gpage_freearray[--nr_gpages]); 481 gpage_freearray[nr_gpages] = 0; 482 list_add(&m->list, &huge_boot_pages); 483 m->hstate = hstate; 484 return 1; 485 } 486 #endif 487 488 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 489 { 490 return 0; 491 } 492 493 #ifdef CONFIG_PPC_FSL_BOOK3E 494 #define HUGEPD_FREELIST_SIZE \ 495 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 496 497 struct hugepd_freelist { 498 struct rcu_head rcu; 499 unsigned int index; 500 void *ptes[0]; 501 }; 502 503 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 504 505 static void hugepd_free_rcu_callback(struct rcu_head *head) 506 { 507 struct hugepd_freelist *batch = 508 container_of(head, struct hugepd_freelist, rcu); 509 unsigned int i; 510 511 for (i = 0; i < batch->index; i++) 512 kmem_cache_free(hugepte_cache, batch->ptes[i]); 513 514 free_page((unsigned long)batch); 515 } 516 517 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 518 { 519 struct hugepd_freelist **batchp; 520 521 batchp = &__get_cpu_var(hugepd_freelist_cur); 522 523 if (atomic_read(&tlb->mm->mm_users) < 2 || 524 cpumask_equal(mm_cpumask(tlb->mm), 525 cpumask_of(smp_processor_id()))) { 526 kmem_cache_free(hugepte_cache, hugepte); 527 return; 528 } 529 530 if (*batchp == NULL) { 531 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 532 (*batchp)->index = 0; 533 } 534 535 (*batchp)->ptes[(*batchp)->index++] = hugepte; 536 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 537 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 538 *batchp = NULL; 539 } 540 } 541 #endif 542 543 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 544 unsigned long start, unsigned long end, 545 unsigned long floor, unsigned long ceiling) 546 { 547 pte_t *hugepte = hugepd_page(*hpdp); 548 int i; 549 550 unsigned long pdmask = ~((1UL << pdshift) - 1); 551 unsigned int num_hugepd = 1; 552 553 #ifdef CONFIG_PPC_FSL_BOOK3E 554 /* Note: On fsl the hpdp may be the first of several */ 555 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 556 #else 557 unsigned int shift = hugepd_shift(*hpdp); 558 #endif 559 560 start &= pdmask; 561 if (start < floor) 562 return; 563 if (ceiling) { 564 ceiling &= pdmask; 565 if (! ceiling) 566 return; 567 } 568 if (end - 1 > ceiling - 1) 569 return; 570 571 for (i = 0; i < num_hugepd; i++, hpdp++) 572 hpdp->pd = 0; 573 574 tlb->need_flush = 1; 575 576 #ifdef CONFIG_PPC_FSL_BOOK3E 577 hugepd_free(tlb, hugepte); 578 #else 579 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 580 #endif 581 } 582 583 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 584 unsigned long addr, unsigned long end, 585 unsigned long floor, unsigned long ceiling) 586 { 587 pmd_t *pmd; 588 unsigned long next; 589 unsigned long start; 590 591 start = addr; 592 do { 593 pmd = pmd_offset(pud, addr); 594 next = pmd_addr_end(addr, end); 595 if (pmd_none_or_clear_bad(pmd)) 596 continue; 597 #ifdef CONFIG_PPC_FSL_BOOK3E 598 /* 599 * Increment next by the size of the huge mapping since 600 * there may be more than one entry at this level for a 601 * single hugepage, but all of them point to 602 * the same kmem cache that holds the hugepte. 603 */ 604 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 605 #endif 606 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 607 addr, next, floor, ceiling); 608 } while (addr = next, addr != end); 609 610 start &= PUD_MASK; 611 if (start < floor) 612 return; 613 if (ceiling) { 614 ceiling &= PUD_MASK; 615 if (!ceiling) 616 return; 617 } 618 if (end - 1 > ceiling - 1) 619 return; 620 621 pmd = pmd_offset(pud, start); 622 pud_clear(pud); 623 pmd_free_tlb(tlb, pmd, start); 624 } 625 626 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 627 unsigned long addr, unsigned long end, 628 unsigned long floor, unsigned long ceiling) 629 { 630 pud_t *pud; 631 unsigned long next; 632 unsigned long start; 633 634 start = addr; 635 do { 636 pud = pud_offset(pgd, addr); 637 next = pud_addr_end(addr, end); 638 if (!is_hugepd(pud)) { 639 if (pud_none_or_clear_bad(pud)) 640 continue; 641 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 642 ceiling); 643 } else { 644 #ifdef CONFIG_PPC_FSL_BOOK3E 645 /* 646 * Increment next by the size of the huge mapping since 647 * there may be more than one entry at this level for a 648 * single hugepage, but all of them point to 649 * the same kmem cache that holds the hugepte. 650 */ 651 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 652 #endif 653 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 654 addr, next, floor, ceiling); 655 } 656 } while (addr = next, addr != end); 657 658 start &= PGDIR_MASK; 659 if (start < floor) 660 return; 661 if (ceiling) { 662 ceiling &= PGDIR_MASK; 663 if (!ceiling) 664 return; 665 } 666 if (end - 1 > ceiling - 1) 667 return; 668 669 pud = pud_offset(pgd, start); 670 pgd_clear(pgd); 671 pud_free_tlb(tlb, pud, start); 672 } 673 674 /* 675 * This function frees user-level page tables of a process. 676 * 677 * Must be called with pagetable lock held. 678 */ 679 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 680 unsigned long addr, unsigned long end, 681 unsigned long floor, unsigned long ceiling) 682 { 683 pgd_t *pgd; 684 unsigned long next; 685 686 /* 687 * Because there are a number of different possible pagetable 688 * layouts for hugepage ranges, we limit knowledge of how 689 * things should be laid out to the allocation path 690 * (huge_pte_alloc(), above). Everything else works out the 691 * structure as it goes from information in the hugepd 692 * pointers. That means that we can't here use the 693 * optimization used in the normal page free_pgd_range(), of 694 * checking whether we're actually covering a large enough 695 * range to have to do anything at the top level of the walk 696 * instead of at the bottom. 697 * 698 * To make sense of this, you should probably go read the big 699 * block comment at the top of the normal free_pgd_range(), 700 * too. 701 */ 702 703 do { 704 next = pgd_addr_end(addr, end); 705 pgd = pgd_offset(tlb->mm, addr); 706 if (!is_hugepd(pgd)) { 707 if (pgd_none_or_clear_bad(pgd)) 708 continue; 709 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 710 } else { 711 #ifdef CONFIG_PPC_FSL_BOOK3E 712 /* 713 * Increment next by the size of the huge mapping since 714 * there may be more than one entry at the pgd level 715 * for a single hugepage, but all of them point to the 716 * same kmem cache that holds the hugepte. 717 */ 718 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 719 #endif 720 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 721 addr, next, floor, ceiling); 722 } 723 } while (addr = next, addr != end); 724 } 725 726 struct page * 727 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 728 { 729 pte_t *ptep; 730 struct page *page; 731 unsigned shift; 732 unsigned long mask; 733 734 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); 735 736 /* Verify it is a huge page else bail. */ 737 if (!ptep || !shift) 738 return ERR_PTR(-EINVAL); 739 740 mask = (1UL << shift) - 1; 741 page = pte_page(*ptep); 742 if (page) 743 page += (address & mask) / PAGE_SIZE; 744 745 return page; 746 } 747 748 struct page * 749 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 750 pmd_t *pmd, int write) 751 { 752 BUG(); 753 return NULL; 754 } 755 756 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 757 unsigned long end, int write, struct page **pages, int *nr) 758 { 759 unsigned long mask; 760 unsigned long pte_end; 761 struct page *head, *page, *tail; 762 pte_t pte; 763 int refs; 764 765 pte_end = (addr + sz) & ~(sz-1); 766 if (pte_end < end) 767 end = pte_end; 768 769 pte = *ptep; 770 mask = _PAGE_PRESENT | _PAGE_USER; 771 if (write) 772 mask |= _PAGE_RW; 773 774 if ((pte_val(pte) & mask) != mask) 775 return 0; 776 777 /* hugepages are never "special" */ 778 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 779 780 refs = 0; 781 head = pte_page(pte); 782 783 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 784 tail = page; 785 do { 786 VM_BUG_ON(compound_head(page) != head); 787 pages[*nr] = page; 788 (*nr)++; 789 page++; 790 refs++; 791 } while (addr += PAGE_SIZE, addr != end); 792 793 if (!page_cache_add_speculative(head, refs)) { 794 *nr -= refs; 795 return 0; 796 } 797 798 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 799 /* Could be optimized better */ 800 *nr -= refs; 801 while (refs--) 802 put_page(head); 803 return 0; 804 } 805 806 /* 807 * Any tail page need their mapcount reference taken before we 808 * return. 809 */ 810 while (refs--) { 811 if (PageTail(tail)) 812 get_huge_page_tail(tail); 813 tail++; 814 } 815 816 return 1; 817 } 818 819 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 820 unsigned long sz) 821 { 822 unsigned long __boundary = (addr + sz) & ~(sz-1); 823 return (__boundary - 1 < end - 1) ? __boundary : end; 824 } 825 826 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, 827 unsigned long addr, unsigned long end, 828 int write, struct page **pages, int *nr) 829 { 830 pte_t *ptep; 831 unsigned long sz = 1UL << hugepd_shift(*hugepd); 832 unsigned long next; 833 834 ptep = hugepte_offset(hugepd, addr, pdshift); 835 do { 836 next = hugepte_addr_end(addr, end, sz); 837 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 838 return 0; 839 } while (ptep++, addr = next, addr != end); 840 841 return 1; 842 } 843 844 #ifdef CONFIG_PPC_MM_SLICES 845 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 846 unsigned long len, unsigned long pgoff, 847 unsigned long flags) 848 { 849 struct hstate *hstate = hstate_file(file); 850 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 851 852 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 853 } 854 #endif 855 856 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 857 { 858 #ifdef CONFIG_PPC_MM_SLICES 859 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 860 861 return 1UL << mmu_psize_to_shift(psize); 862 #else 863 if (!is_vm_hugetlb_page(vma)) 864 return PAGE_SIZE; 865 866 return huge_page_size(hstate_vma(vma)); 867 #endif 868 } 869 870 static inline bool is_power_of_4(unsigned long x) 871 { 872 if (is_power_of_2(x)) 873 return (__ilog2(x) % 2) ? false : true; 874 return false; 875 } 876 877 static int __init add_huge_page_size(unsigned long long size) 878 { 879 int shift = __ffs(size); 880 int mmu_psize; 881 882 /* Check that it is a page size supported by the hardware and 883 * that it fits within pagetable and slice limits. */ 884 #ifdef CONFIG_PPC_FSL_BOOK3E 885 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 886 return -EINVAL; 887 #else 888 if (!is_power_of_2(size) 889 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 890 return -EINVAL; 891 #endif 892 893 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 894 return -EINVAL; 895 896 #ifdef CONFIG_SPU_FS_64K_LS 897 /* Disable support for 64K huge pages when 64K SPU local store 898 * support is enabled as the current implementation conflicts. 899 */ 900 if (shift == PAGE_SHIFT_64K) 901 return -EINVAL; 902 #endif /* CONFIG_SPU_FS_64K_LS */ 903 904 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 905 906 /* Return if huge page size has already been setup */ 907 if (size_to_hstate(size)) 908 return 0; 909 910 hugetlb_add_hstate(shift - PAGE_SHIFT); 911 912 return 0; 913 } 914 915 static int __init hugepage_setup_sz(char *str) 916 { 917 unsigned long long size; 918 919 size = memparse(str, &str); 920 921 if (add_huge_page_size(size) != 0) 922 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 923 924 return 1; 925 } 926 __setup("hugepagesz=", hugepage_setup_sz); 927 928 #ifdef CONFIG_PPC_FSL_BOOK3E 929 struct kmem_cache *hugepte_cache; 930 static int __init hugetlbpage_init(void) 931 { 932 int psize; 933 934 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 935 unsigned shift; 936 937 if (!mmu_psize_defs[psize].shift) 938 continue; 939 940 shift = mmu_psize_to_shift(psize); 941 942 /* Don't treat normal page sizes as huge... */ 943 if (shift != PAGE_SHIFT) 944 if (add_huge_page_size(1ULL << shift) < 0) 945 continue; 946 } 947 948 /* 949 * Create a kmem cache for hugeptes. The bottom bits in the pte have 950 * size information encoded in them, so align them to allow this 951 */ 952 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 953 HUGEPD_SHIFT_MASK + 1, 0, NULL); 954 if (hugepte_cache == NULL) 955 panic("%s: Unable to create kmem cache for hugeptes\n", 956 __func__); 957 958 /* Default hpage size = 4M */ 959 if (mmu_psize_defs[MMU_PAGE_4M].shift) 960 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 961 else 962 panic("%s: Unable to set default huge page size\n", __func__); 963 964 965 return 0; 966 } 967 #else 968 static int __init hugetlbpage_init(void) 969 { 970 int psize; 971 972 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 973 return -ENODEV; 974 975 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 976 unsigned shift; 977 unsigned pdshift; 978 979 if (!mmu_psize_defs[psize].shift) 980 continue; 981 982 shift = mmu_psize_to_shift(psize); 983 984 if (add_huge_page_size(1ULL << shift) < 0) 985 continue; 986 987 if (shift < PMD_SHIFT) 988 pdshift = PMD_SHIFT; 989 else if (shift < PUD_SHIFT) 990 pdshift = PUD_SHIFT; 991 else 992 pdshift = PGDIR_SHIFT; 993 /* 994 * if we have pdshift and shift value same, we don't 995 * use pgt cache for hugepd. 996 */ 997 if (pdshift != shift) { 998 pgtable_cache_add(pdshift - shift, NULL); 999 if (!PGT_CACHE(pdshift - shift)) 1000 panic("hugetlbpage_init(): could not create " 1001 "pgtable cache for %d bit pagesize\n", shift); 1002 } 1003 } 1004 1005 /* Set default large page size. Currently, we pick 16M or 1M 1006 * depending on what is available 1007 */ 1008 if (mmu_psize_defs[MMU_PAGE_16M].shift) 1009 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 1010 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 1011 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 1012 1013 return 0; 1014 } 1015 #endif 1016 module_init(hugetlbpage_init); 1017 1018 void flush_dcache_icache_hugepage(struct page *page) 1019 { 1020 int i; 1021 void *start; 1022 1023 BUG_ON(!PageCompound(page)); 1024 1025 for (i = 0; i < (1UL << compound_order(page)); i++) { 1026 if (!PageHighMem(page)) { 1027 __flush_dcache_icache(page_address(page+i)); 1028 } else { 1029 start = kmap_atomic(page+i); 1030 __flush_dcache_icache(start); 1031 kunmap_atomic(start); 1032 } 1033 } 1034 } 1035