1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <linux/swap.h> 21 #include <linux/swapops.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 bool hugetlb_disabled = false; 39 40 unsigned int HPAGE_SHIFT; 41 EXPORT_SYMBOL(HPAGE_SHIFT); 42 43 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 44 45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 46 { 47 /* 48 * Only called for hugetlbfs pages, hence can ignore THP and the 49 * irq disabled walk. 50 */ 51 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 52 } 53 54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 55 unsigned long address, unsigned int pdshift, 56 unsigned int pshift, spinlock_t *ptl) 57 { 58 struct kmem_cache *cachep; 59 pte_t *new; 60 int i; 61 int num_hugepd; 62 63 if (pshift >= pdshift) { 64 cachep = hugepte_cache; 65 num_hugepd = 1 << (pshift - pdshift); 66 } else { 67 cachep = PGT_CACHE(pdshift - pshift); 68 num_hugepd = 1; 69 } 70 71 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 72 73 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 74 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 75 76 if (! new) 77 return -ENOMEM; 78 79 /* 80 * Make sure other cpus find the hugepd set only after a 81 * properly initialized page table is visible to them. 82 * For more details look for comment in __pte_alloc(). 83 */ 84 smp_wmb(); 85 86 spin_lock(ptl); 87 /* 88 * We have multiple higher-level entries that point to the same 89 * actual pte location. Fill in each as we go and backtrack on error. 90 * We need all of these so the DTLB pgtable walk code can find the 91 * right higher-level entry without knowing if it's a hugepage or not. 92 */ 93 for (i = 0; i < num_hugepd; i++, hpdp++) { 94 if (unlikely(!hugepd_none(*hpdp))) 95 break; 96 else { 97 #ifdef CONFIG_PPC_BOOK3S_64 98 *hpdp = __hugepd(__pa(new) | 99 (shift_to_mmu_psize(pshift) << 2)); 100 #elif defined(CONFIG_PPC_8xx) 101 *hpdp = __hugepd(__pa(new) | _PMD_USER | 102 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 103 _PMD_PAGE_512K) | _PMD_PRESENT); 104 #else 105 /* We use the old format for PPC_FSL_BOOK3E */ 106 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 107 #endif 108 } 109 } 110 /* If we bailed from the for loop early, an error occurred, clean up */ 111 if (i < num_hugepd) { 112 for (i = i - 1 ; i >= 0; i--, hpdp--) 113 *hpdp = __hugepd(0); 114 kmem_cache_free(cachep, new); 115 } 116 spin_unlock(ptl); 117 return 0; 118 } 119 120 /* 121 * At this point we do the placement change only for BOOK3S 64. This would 122 * possibly work on other subarchs. 123 */ 124 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 125 { 126 pgd_t *pg; 127 pud_t *pu; 128 pmd_t *pm; 129 hugepd_t *hpdp = NULL; 130 unsigned pshift = __ffs(sz); 131 unsigned pdshift = PGDIR_SHIFT; 132 spinlock_t *ptl; 133 134 addr &= ~(sz-1); 135 pg = pgd_offset(mm, addr); 136 137 #ifdef CONFIG_PPC_BOOK3S_64 138 if (pshift == PGDIR_SHIFT) 139 /* 16GB huge page */ 140 return (pte_t *) pg; 141 else if (pshift > PUD_SHIFT) { 142 /* 143 * We need to use hugepd table 144 */ 145 ptl = &mm->page_table_lock; 146 hpdp = (hugepd_t *)pg; 147 } else { 148 pdshift = PUD_SHIFT; 149 pu = pud_alloc(mm, pg, addr); 150 if (pshift == PUD_SHIFT) 151 return (pte_t *)pu; 152 else if (pshift > PMD_SHIFT) { 153 ptl = pud_lockptr(mm, pu); 154 hpdp = (hugepd_t *)pu; 155 } else { 156 pdshift = PMD_SHIFT; 157 pm = pmd_alloc(mm, pu, addr); 158 if (pshift == PMD_SHIFT) 159 /* 16MB hugepage */ 160 return (pte_t *)pm; 161 else { 162 ptl = pmd_lockptr(mm, pm); 163 hpdp = (hugepd_t *)pm; 164 } 165 } 166 } 167 #else 168 if (pshift >= PGDIR_SHIFT) { 169 ptl = &mm->page_table_lock; 170 hpdp = (hugepd_t *)pg; 171 } else { 172 pdshift = PUD_SHIFT; 173 pu = pud_alloc(mm, pg, addr); 174 if (pshift >= PUD_SHIFT) { 175 ptl = pud_lockptr(mm, pu); 176 hpdp = (hugepd_t *)pu; 177 } else { 178 pdshift = PMD_SHIFT; 179 pm = pmd_alloc(mm, pu, addr); 180 ptl = pmd_lockptr(mm, pm); 181 hpdp = (hugepd_t *)pm; 182 } 183 } 184 #endif 185 if (!hpdp) 186 return NULL; 187 188 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 189 190 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 191 pdshift, pshift, ptl)) 192 return NULL; 193 194 return hugepte_offset(*hpdp, addr, pdshift); 195 } 196 197 #ifdef CONFIG_PPC_BOOK3S_64 198 /* 199 * Tracks gpages after the device tree is scanned and before the 200 * huge_boot_pages list is ready on pseries. 201 */ 202 #define MAX_NUMBER_GPAGES 1024 203 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 204 __initdata static unsigned nr_gpages; 205 206 /* 207 * Build list of addresses of gigantic pages. This function is used in early 208 * boot before the buddy allocator is setup. 209 */ 210 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 211 { 212 if (!addr) 213 return; 214 while (number_of_pages > 0) { 215 gpage_freearray[nr_gpages] = addr; 216 nr_gpages++; 217 number_of_pages--; 218 addr += page_size; 219 } 220 } 221 222 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 223 { 224 struct huge_bootmem_page *m; 225 if (nr_gpages == 0) 226 return 0; 227 m = phys_to_virt(gpage_freearray[--nr_gpages]); 228 gpage_freearray[nr_gpages] = 0; 229 list_add(&m->list, &huge_boot_pages); 230 m->hstate = hstate; 231 return 1; 232 } 233 #endif 234 235 236 int __init alloc_bootmem_huge_page(struct hstate *h) 237 { 238 239 #ifdef CONFIG_PPC_BOOK3S_64 240 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 241 return pseries_alloc_bootmem_huge_page(h); 242 #endif 243 return __alloc_bootmem_huge_page(h); 244 } 245 246 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 247 #define HUGEPD_FREELIST_SIZE \ 248 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 249 250 struct hugepd_freelist { 251 struct rcu_head rcu; 252 unsigned int index; 253 void *ptes[0]; 254 }; 255 256 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 257 258 static void hugepd_free_rcu_callback(struct rcu_head *head) 259 { 260 struct hugepd_freelist *batch = 261 container_of(head, struct hugepd_freelist, rcu); 262 unsigned int i; 263 264 for (i = 0; i < batch->index; i++) 265 kmem_cache_free(hugepte_cache, batch->ptes[i]); 266 267 free_page((unsigned long)batch); 268 } 269 270 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 271 { 272 struct hugepd_freelist **batchp; 273 274 batchp = &get_cpu_var(hugepd_freelist_cur); 275 276 if (atomic_read(&tlb->mm->mm_users) < 2 || 277 mm_is_thread_local(tlb->mm)) { 278 kmem_cache_free(hugepte_cache, hugepte); 279 put_cpu_var(hugepd_freelist_cur); 280 return; 281 } 282 283 if (*batchp == NULL) { 284 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 285 (*batchp)->index = 0; 286 } 287 288 (*batchp)->ptes[(*batchp)->index++] = hugepte; 289 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 290 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 291 *batchp = NULL; 292 } 293 put_cpu_var(hugepd_freelist_cur); 294 } 295 #else 296 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 297 #endif 298 299 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 300 unsigned long start, unsigned long end, 301 unsigned long floor, unsigned long ceiling) 302 { 303 pte_t *hugepte = hugepd_page(*hpdp); 304 int i; 305 306 unsigned long pdmask = ~((1UL << pdshift) - 1); 307 unsigned int num_hugepd = 1; 308 unsigned int shift = hugepd_shift(*hpdp); 309 310 /* Note: On fsl the hpdp may be the first of several */ 311 if (shift > pdshift) 312 num_hugepd = 1 << (shift - pdshift); 313 314 start &= pdmask; 315 if (start < floor) 316 return; 317 if (ceiling) { 318 ceiling &= pdmask; 319 if (! ceiling) 320 return; 321 } 322 if (end - 1 > ceiling - 1) 323 return; 324 325 for (i = 0; i < num_hugepd; i++, hpdp++) 326 *hpdp = __hugepd(0); 327 328 if (shift >= pdshift) 329 hugepd_free(tlb, hugepte); 330 else 331 pgtable_free_tlb(tlb, hugepte, 332 get_hugepd_cache_index(pdshift - shift)); 333 } 334 335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 336 unsigned long addr, unsigned long end, 337 unsigned long floor, unsigned long ceiling) 338 { 339 pmd_t *pmd; 340 unsigned long next; 341 unsigned long start; 342 343 start = addr; 344 do { 345 unsigned long more; 346 347 pmd = pmd_offset(pud, addr); 348 next = pmd_addr_end(addr, end); 349 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 350 /* 351 * if it is not hugepd pointer, we should already find 352 * it cleared. 353 */ 354 WARN_ON(!pmd_none_or_clear_bad(pmd)); 355 continue; 356 } 357 /* 358 * Increment next by the size of the huge mapping since 359 * there may be more than one entry at this level for a 360 * single hugepage, but all of them point to 361 * the same kmem cache that holds the hugepte. 362 */ 363 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 364 if (more > next) 365 next = more; 366 367 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 368 addr, next, floor, ceiling); 369 } while (addr = next, addr != end); 370 371 start &= PUD_MASK; 372 if (start < floor) 373 return; 374 if (ceiling) { 375 ceiling &= PUD_MASK; 376 if (!ceiling) 377 return; 378 } 379 if (end - 1 > ceiling - 1) 380 return; 381 382 pmd = pmd_offset(pud, start); 383 pud_clear(pud); 384 pmd_free_tlb(tlb, pmd, start); 385 mm_dec_nr_pmds(tlb->mm); 386 } 387 388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pud_t *pud; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 do { 398 pud = pud_offset(pgd, addr); 399 next = pud_addr_end(addr, end); 400 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 401 if (pud_none_or_clear_bad(pud)) 402 continue; 403 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 404 ceiling); 405 } else { 406 unsigned long more; 407 /* 408 * Increment next by the size of the huge mapping since 409 * there may be more than one entry at this level for a 410 * single hugepage, but all of them point to 411 * the same kmem cache that holds the hugepte. 412 */ 413 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 414 if (more > next) 415 next = more; 416 417 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 418 addr, next, floor, ceiling); 419 } 420 } while (addr = next, addr != end); 421 422 start &= PGDIR_MASK; 423 if (start < floor) 424 return; 425 if (ceiling) { 426 ceiling &= PGDIR_MASK; 427 if (!ceiling) 428 return; 429 } 430 if (end - 1 > ceiling - 1) 431 return; 432 433 pud = pud_offset(pgd, start); 434 pgd_clear(pgd); 435 pud_free_tlb(tlb, pud, start); 436 mm_dec_nr_puds(tlb->mm); 437 } 438 439 /* 440 * This function frees user-level page tables of a process. 441 */ 442 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 443 unsigned long addr, unsigned long end, 444 unsigned long floor, unsigned long ceiling) 445 { 446 pgd_t *pgd; 447 unsigned long next; 448 449 /* 450 * Because there are a number of different possible pagetable 451 * layouts for hugepage ranges, we limit knowledge of how 452 * things should be laid out to the allocation path 453 * (huge_pte_alloc(), above). Everything else works out the 454 * structure as it goes from information in the hugepd 455 * pointers. That means that we can't here use the 456 * optimization used in the normal page free_pgd_range(), of 457 * checking whether we're actually covering a large enough 458 * range to have to do anything at the top level of the walk 459 * instead of at the bottom. 460 * 461 * To make sense of this, you should probably go read the big 462 * block comment at the top of the normal free_pgd_range(), 463 * too. 464 */ 465 466 do { 467 next = pgd_addr_end(addr, end); 468 pgd = pgd_offset(tlb->mm, addr); 469 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 470 if (pgd_none_or_clear_bad(pgd)) 471 continue; 472 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 473 } else { 474 unsigned long more; 475 /* 476 * Increment next by the size of the huge mapping since 477 * there may be more than one entry at the pgd level 478 * for a single hugepage, but all of them point to the 479 * same kmem cache that holds the hugepte. 480 */ 481 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 482 if (more > next) 483 next = more; 484 485 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 486 addr, next, floor, ceiling); 487 } 488 } while (addr = next, addr != end); 489 } 490 491 struct page *follow_huge_pd(struct vm_area_struct *vma, 492 unsigned long address, hugepd_t hpd, 493 int flags, int pdshift) 494 { 495 pte_t *ptep; 496 spinlock_t *ptl; 497 struct page *page = NULL; 498 unsigned long mask; 499 int shift = hugepd_shift(hpd); 500 struct mm_struct *mm = vma->vm_mm; 501 502 retry: 503 /* 504 * hugepage directory entries are protected by mm->page_table_lock 505 * Use this instead of huge_pte_lockptr 506 */ 507 ptl = &mm->page_table_lock; 508 spin_lock(ptl); 509 510 ptep = hugepte_offset(hpd, address, pdshift); 511 if (pte_present(*ptep)) { 512 mask = (1UL << shift) - 1; 513 page = pte_page(*ptep); 514 page += ((address & mask) >> PAGE_SHIFT); 515 if (flags & FOLL_GET) 516 get_page(page); 517 } else { 518 if (is_hugetlb_entry_migration(*ptep)) { 519 spin_unlock(ptl); 520 __migration_entry_wait(mm, ptep, ptl); 521 goto retry; 522 } 523 } 524 spin_unlock(ptl); 525 return page; 526 } 527 528 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 529 unsigned long sz) 530 { 531 unsigned long __boundary = (addr + sz) & ~(sz-1); 532 return (__boundary - 1 < end - 1) ? __boundary : end; 533 } 534 535 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 536 unsigned long end, int write, struct page **pages, int *nr) 537 { 538 pte_t *ptep; 539 unsigned long sz = 1UL << hugepd_shift(hugepd); 540 unsigned long next; 541 542 ptep = hugepte_offset(hugepd, addr, pdshift); 543 do { 544 next = hugepte_addr_end(addr, end, sz); 545 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 546 return 0; 547 } while (ptep++, addr = next, addr != end); 548 549 return 1; 550 } 551 552 #ifdef CONFIG_PPC_MM_SLICES 553 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 554 unsigned long len, unsigned long pgoff, 555 unsigned long flags) 556 { 557 struct hstate *hstate = hstate_file(file); 558 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 559 560 #ifdef CONFIG_PPC_RADIX_MMU 561 if (radix_enabled()) 562 return radix__hugetlb_get_unmapped_area(file, addr, len, 563 pgoff, flags); 564 #endif 565 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 566 } 567 #endif 568 569 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 570 { 571 #ifdef CONFIG_PPC_MM_SLICES 572 /* With radix we don't use slice, so derive it from vma*/ 573 if (!radix_enabled()) { 574 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 575 576 return 1UL << mmu_psize_to_shift(psize); 577 } 578 #endif 579 return vma_kernel_pagesize(vma); 580 } 581 582 static inline bool is_power_of_4(unsigned long x) 583 { 584 if (is_power_of_2(x)) 585 return (__ilog2(x) % 2) ? false : true; 586 return false; 587 } 588 589 static int __init add_huge_page_size(unsigned long long size) 590 { 591 int shift = __ffs(size); 592 int mmu_psize; 593 594 /* Check that it is a page size supported by the hardware and 595 * that it fits within pagetable and slice limits. */ 596 if (size <= PAGE_SIZE) 597 return -EINVAL; 598 #if defined(CONFIG_PPC_FSL_BOOK3E) 599 if (!is_power_of_4(size)) 600 return -EINVAL; 601 #elif !defined(CONFIG_PPC_8xx) 602 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 603 return -EINVAL; 604 #endif 605 606 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 607 return -EINVAL; 608 609 #ifdef CONFIG_PPC_BOOK3S_64 610 /* 611 * We need to make sure that for different page sizes reported by 612 * firmware we only add hugetlb support for page sizes that can be 613 * supported by linux page table layout. 614 * For now we have 615 * Radix: 2M and 1G 616 * Hash: 16M and 16G 617 */ 618 if (radix_enabled()) { 619 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G) 620 return -EINVAL; 621 } else { 622 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 623 return -EINVAL; 624 } 625 #endif 626 627 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 628 629 /* Return if huge page size has already been setup */ 630 if (size_to_hstate(size)) 631 return 0; 632 633 hugetlb_add_hstate(shift - PAGE_SHIFT); 634 635 return 0; 636 } 637 638 static int __init hugepage_setup_sz(char *str) 639 { 640 unsigned long long size; 641 642 size = memparse(str, &str); 643 644 if (add_huge_page_size(size) != 0) { 645 hugetlb_bad_size(); 646 pr_err("Invalid huge page size specified(%llu)\n", size); 647 } 648 649 return 1; 650 } 651 __setup("hugepagesz=", hugepage_setup_sz); 652 653 struct kmem_cache *hugepte_cache; 654 static int __init hugetlbpage_init(void) 655 { 656 int psize; 657 658 if (hugetlb_disabled) { 659 pr_info("HugeTLB support is disabled!\n"); 660 return 0; 661 } 662 663 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 664 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 665 return -ENODEV; 666 #endif 667 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 668 unsigned shift; 669 unsigned pdshift; 670 671 if (!mmu_psize_defs[psize].shift) 672 continue; 673 674 shift = mmu_psize_to_shift(psize); 675 676 #ifdef CONFIG_PPC_BOOK3S_64 677 if (shift > PGDIR_SHIFT) 678 continue; 679 else if (shift > PUD_SHIFT) 680 pdshift = PGDIR_SHIFT; 681 else if (shift > PMD_SHIFT) 682 pdshift = PUD_SHIFT; 683 else 684 pdshift = PMD_SHIFT; 685 #else 686 if (shift < PUD_SHIFT) 687 pdshift = PMD_SHIFT; 688 else if (shift < PGDIR_SHIFT) 689 pdshift = PUD_SHIFT; 690 else 691 pdshift = PGDIR_SHIFT; 692 #endif 693 694 if (add_huge_page_size(1ULL << shift) < 0) 695 continue; 696 /* 697 * if we have pdshift and shift value same, we don't 698 * use pgt cache for hugepd. 699 */ 700 if (pdshift > shift) 701 pgtable_cache_add(pdshift - shift, NULL); 702 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 703 else if (!hugepte_cache) { 704 /* 705 * Create a kmem cache for hugeptes. The bottom bits in 706 * the pte have size information encoded in them, so 707 * align them to allow this 708 */ 709 hugepte_cache = kmem_cache_create("hugepte-cache", 710 sizeof(pte_t), 711 HUGEPD_SHIFT_MASK + 1, 712 0, NULL); 713 if (hugepte_cache == NULL) 714 panic("%s: Unable to create kmem cache " 715 "for hugeptes\n", __func__); 716 717 } 718 #endif 719 } 720 721 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 722 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 723 if (mmu_psize_defs[MMU_PAGE_4M].shift) 724 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 725 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 726 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 727 #else 728 /* Set default large page size. Currently, we pick 16M or 1M 729 * depending on what is available 730 */ 731 if (mmu_psize_defs[MMU_PAGE_16M].shift) 732 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 733 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 734 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 735 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 736 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 737 #endif 738 return 0; 739 } 740 741 arch_initcall(hugetlbpage_init); 742 743 void flush_dcache_icache_hugepage(struct page *page) 744 { 745 int i; 746 void *start; 747 748 BUG_ON(!PageCompound(page)); 749 750 for (i = 0; i < (1UL << compound_order(page)); i++) { 751 if (!PageHighMem(page)) { 752 __flush_dcache_icache(page_address(page+i)); 753 } else { 754 start = kmap_atomic(page+i); 755 __flush_dcache_icache(start); 756 kunmap_atomic(start); 757 } 758 } 759 } 760 761 #endif /* CONFIG_HUGETLB_PAGE */ 762 763 /* 764 * We have 4 cases for pgds and pmds: 765 * (1) invalid (all zeroes) 766 * (2) pointer to next table, as normal; bottom 6 bits == 0 767 * (3) leaf pte for huge page _PAGE_PTE set 768 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 769 * 770 * So long as we atomically load page table pointers we are safe against teardown, 771 * we can follow the address down to the the page and take a ref on it. 772 * This function need to be called with interrupts disabled. We use this variant 773 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED 774 */ 775 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 776 bool *is_thp, unsigned *hpage_shift) 777 { 778 pgd_t pgd, *pgdp; 779 pud_t pud, *pudp; 780 pmd_t pmd, *pmdp; 781 pte_t *ret_pte; 782 hugepd_t *hpdp = NULL; 783 unsigned pdshift = PGDIR_SHIFT; 784 785 if (hpage_shift) 786 *hpage_shift = 0; 787 788 if (is_thp) 789 *is_thp = false; 790 791 pgdp = pgdir + pgd_index(ea); 792 pgd = READ_ONCE(*pgdp); 793 /* 794 * Always operate on the local stack value. This make sure the 795 * value don't get updated by a parallel THP split/collapse, 796 * page fault or a page unmap. The return pte_t * is still not 797 * stable. So should be checked there for above conditions. 798 */ 799 if (pgd_none(pgd)) 800 return NULL; 801 else if (pgd_huge(pgd)) { 802 ret_pte = (pte_t *) pgdp; 803 goto out; 804 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 805 hpdp = (hugepd_t *)&pgd; 806 else { 807 /* 808 * Even if we end up with an unmap, the pgtable will not 809 * be freed, because we do an rcu free and here we are 810 * irq disabled 811 */ 812 pdshift = PUD_SHIFT; 813 pudp = pud_offset(&pgd, ea); 814 pud = READ_ONCE(*pudp); 815 816 if (pud_none(pud)) 817 return NULL; 818 else if (pud_huge(pud)) { 819 ret_pte = (pte_t *) pudp; 820 goto out; 821 } else if (is_hugepd(__hugepd(pud_val(pud)))) 822 hpdp = (hugepd_t *)&pud; 823 else { 824 pdshift = PMD_SHIFT; 825 pmdp = pmd_offset(&pud, ea); 826 pmd = READ_ONCE(*pmdp); 827 /* 828 * A hugepage collapse is captured by pmd_none, because 829 * it mark the pmd none and do a hpte invalidate. 830 */ 831 if (pmd_none(pmd)) 832 return NULL; 833 834 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 835 if (is_thp) 836 *is_thp = true; 837 ret_pte = (pte_t *) pmdp; 838 goto out; 839 } 840 841 if (pmd_huge(pmd)) { 842 ret_pte = (pte_t *) pmdp; 843 goto out; 844 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 845 hpdp = (hugepd_t *)&pmd; 846 else 847 return pte_offset_kernel(&pmd, ea); 848 } 849 } 850 if (!hpdp) 851 return NULL; 852 853 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 854 pdshift = hugepd_shift(*hpdp); 855 out: 856 if (hpage_shift) 857 *hpage_shift = pdshift; 858 return ret_pte; 859 } 860 EXPORT_SYMBOL_GPL(__find_linux_pte); 861 862 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 863 unsigned long end, int write, struct page **pages, int *nr) 864 { 865 unsigned long pte_end; 866 struct page *head, *page; 867 pte_t pte; 868 int refs; 869 870 pte_end = (addr + sz) & ~(sz-1); 871 if (pte_end < end) 872 end = pte_end; 873 874 pte = READ_ONCE(*ptep); 875 876 if (!pte_access_permitted(pte, write)) 877 return 0; 878 879 /* hugepages are never "special" */ 880 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 881 882 refs = 0; 883 head = pte_page(pte); 884 885 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 886 do { 887 VM_BUG_ON(compound_head(page) != head); 888 pages[*nr] = page; 889 (*nr)++; 890 page++; 891 refs++; 892 } while (addr += PAGE_SIZE, addr != end); 893 894 if (!page_cache_add_speculative(head, refs)) { 895 *nr -= refs; 896 return 0; 897 } 898 899 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 900 /* Could be optimized better */ 901 *nr -= refs; 902 while (refs--) 903 put_page(head); 904 return 0; 905 } 906 907 return 1; 908 } 909