xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 
25 #define PAGE_SHIFT_64K	16
26 #define PAGE_SHIFT_16M	24
27 #define PAGE_SHIFT_16G	34
28 
29 unsigned int HPAGE_SHIFT;
30 
31 /*
32  * Tracks gpages after the device tree is scanned and before the
33  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
34  * just used to track 16G pages and so is a single array.  FSL-based
35  * implementations may have more than one gpage size, so we need multiple
36  * arrays
37  */
38 #ifdef CONFIG_PPC_FSL_BOOK3E
39 #define MAX_NUMBER_GPAGES	128
40 struct psize_gpages {
41 	u64 gpage_list[MAX_NUMBER_GPAGES];
42 	unsigned int nr_gpages;
43 };
44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
45 #else
46 #define MAX_NUMBER_GPAGES	1024
47 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
48 static unsigned nr_gpages;
49 #endif
50 
51 static inline int shift_to_mmu_psize(unsigned int shift)
52 {
53 	int psize;
54 
55 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
56 		if (mmu_psize_defs[psize].shift == shift)
57 			return psize;
58 	return -1;
59 }
60 
61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
62 {
63 	if (mmu_psize_defs[mmu_psize].shift)
64 		return mmu_psize_defs[mmu_psize].shift;
65 	BUG();
66 }
67 
68 #define hugepd_none(hpd)	((hpd).pd == 0)
69 
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71 {
72 	pgd_t *pg;
73 	pud_t *pu;
74 	pmd_t *pm;
75 	hugepd_t *hpdp = NULL;
76 	unsigned pdshift = PGDIR_SHIFT;
77 
78 	if (shift)
79 		*shift = 0;
80 
81 	pg = pgdir + pgd_index(ea);
82 	if (is_hugepd(pg)) {
83 		hpdp = (hugepd_t *)pg;
84 	} else if (!pgd_none(*pg)) {
85 		pdshift = PUD_SHIFT;
86 		pu = pud_offset(pg, ea);
87 		if (is_hugepd(pu))
88 			hpdp = (hugepd_t *)pu;
89 		else if (!pud_none(*pu)) {
90 			pdshift = PMD_SHIFT;
91 			pm = pmd_offset(pu, ea);
92 			if (is_hugepd(pm))
93 				hpdp = (hugepd_t *)pm;
94 			else if (!pmd_none(*pm)) {
95 				return pte_offset_kernel(pm, ea);
96 			}
97 		}
98 	}
99 
100 	if (!hpdp)
101 		return NULL;
102 
103 	if (shift)
104 		*shift = hugepd_shift(*hpdp);
105 	return hugepte_offset(hpdp, ea, pdshift);
106 }
107 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112 }
113 
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115 			   unsigned long address, unsigned pdshift, unsigned pshift)
116 {
117 	struct kmem_cache *cachep;
118 	pte_t *new;
119 
120 #ifdef CONFIG_PPC_FSL_BOOK3E
121 	int i;
122 	int num_hugepd = 1 << (pshift - pdshift);
123 	cachep = hugepte_cache;
124 #else
125 	cachep = PGT_CACHE(pdshift - pshift);
126 #endif
127 
128 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
129 
130 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
131 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
132 
133 	if (! new)
134 		return -ENOMEM;
135 
136 	spin_lock(&mm->page_table_lock);
137 #ifdef CONFIG_PPC_FSL_BOOK3E
138 	/*
139 	 * We have multiple higher-level entries that point to the same
140 	 * actual pte location.  Fill in each as we go and backtrack on error.
141 	 * We need all of these so the DTLB pgtable walk code can find the
142 	 * right higher-level entry without knowing if it's a hugepage or not.
143 	 */
144 	for (i = 0; i < num_hugepd; i++, hpdp++) {
145 		if (unlikely(!hugepd_none(*hpdp)))
146 			break;
147 		else
148 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
149 	}
150 	/* If we bailed from the for loop early, an error occurred, clean up */
151 	if (i < num_hugepd) {
152 		for (i = i - 1 ; i >= 0; i--, hpdp--)
153 			hpdp->pd = 0;
154 		kmem_cache_free(cachep, new);
155 	}
156 #else
157 	if (!hugepd_none(*hpdp))
158 		kmem_cache_free(cachep, new);
159 	else
160 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
161 #endif
162 	spin_unlock(&mm->page_table_lock);
163 	return 0;
164 }
165 
166 /*
167  * These macros define how to determine which level of the page table holds
168  * the hpdp.
169  */
170 #ifdef CONFIG_PPC_FSL_BOOK3E
171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172 #define HUGEPD_PUD_SHIFT PUD_SHIFT
173 #else
174 #define HUGEPD_PGD_SHIFT PUD_SHIFT
175 #define HUGEPD_PUD_SHIFT PMD_SHIFT
176 #endif
177 
178 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
179 {
180 	pgd_t *pg;
181 	pud_t *pu;
182 	pmd_t *pm;
183 	hugepd_t *hpdp = NULL;
184 	unsigned pshift = __ffs(sz);
185 	unsigned pdshift = PGDIR_SHIFT;
186 
187 	addr &= ~(sz-1);
188 
189 	pg = pgd_offset(mm, addr);
190 
191 	if (pshift >= HUGEPD_PGD_SHIFT) {
192 		hpdp = (hugepd_t *)pg;
193 	} else {
194 		pdshift = PUD_SHIFT;
195 		pu = pud_alloc(mm, pg, addr);
196 		if (pshift >= HUGEPD_PUD_SHIFT) {
197 			hpdp = (hugepd_t *)pu;
198 		} else {
199 			pdshift = PMD_SHIFT;
200 			pm = pmd_alloc(mm, pu, addr);
201 			hpdp = (hugepd_t *)pm;
202 		}
203 	}
204 
205 	if (!hpdp)
206 		return NULL;
207 
208 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
209 
210 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
211 		return NULL;
212 
213 	return hugepte_offset(hpdp, addr, pdshift);
214 }
215 
216 #ifdef CONFIG_PPC_FSL_BOOK3E
217 /* Build list of addresses of gigantic pages.  This function is used in early
218  * boot before the buddy or bootmem allocator is setup.
219  */
220 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
221 {
222 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
223 	int i;
224 
225 	if (addr == 0)
226 		return;
227 
228 	gpage_freearray[idx].nr_gpages = number_of_pages;
229 
230 	for (i = 0; i < number_of_pages; i++) {
231 		gpage_freearray[idx].gpage_list[i] = addr;
232 		addr += page_size;
233 	}
234 }
235 
236 /*
237  * Moves the gigantic page addresses from the temporary list to the
238  * huge_boot_pages list.
239  */
240 int alloc_bootmem_huge_page(struct hstate *hstate)
241 {
242 	struct huge_bootmem_page *m;
243 	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
244 	int nr_gpages = gpage_freearray[idx].nr_gpages;
245 
246 	if (nr_gpages == 0)
247 		return 0;
248 
249 #ifdef CONFIG_HIGHMEM
250 	/*
251 	 * If gpages can be in highmem we can't use the trick of storing the
252 	 * data structure in the page; allocate space for this
253 	 */
254 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
255 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
256 #else
257 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
258 #endif
259 
260 	list_add(&m->list, &huge_boot_pages);
261 	gpage_freearray[idx].nr_gpages = nr_gpages;
262 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
263 	m->hstate = hstate;
264 
265 	return 1;
266 }
267 /*
268  * Scan the command line hugepagesz= options for gigantic pages; store those in
269  * a list that we use to allocate the memory once all options are parsed.
270  */
271 
272 unsigned long gpage_npages[MMU_PAGE_COUNT];
273 
274 static int __init do_gpage_early_setup(char *param, char *val)
275 {
276 	static phys_addr_t size;
277 	unsigned long npages;
278 
279 	/*
280 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
281 	 * use the size variable to keep track of whether or not this was done
282 	 * properly and skip over instances where it is incorrect.  Other
283 	 * command-line parsing code will issue warnings, so we don't need to.
284 	 *
285 	 */
286 	if ((strcmp(param, "default_hugepagesz") == 0) ||
287 	    (strcmp(param, "hugepagesz") == 0)) {
288 		size = memparse(val, NULL);
289 	} else if (strcmp(param, "hugepages") == 0) {
290 		if (size != 0) {
291 			if (sscanf(val, "%lu", &npages) <= 0)
292 				npages = 0;
293 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
294 			size = 0;
295 		}
296 	}
297 	return 0;
298 }
299 
300 
301 /*
302  * This function allocates physical space for pages that are larger than the
303  * buddy allocator can handle.  We want to allocate these in highmem because
304  * the amount of lowmem is limited.  This means that this function MUST be
305  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
306  * allocate to grab highmem.
307  */
308 void __init reserve_hugetlb_gpages(void)
309 {
310 	static __initdata char cmdline[COMMAND_LINE_SIZE];
311 	phys_addr_t size, base;
312 	int i;
313 
314 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
315 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
316 			&do_gpage_early_setup);
317 
318 	/*
319 	 * Walk gpage list in reverse, allocating larger page sizes first.
320 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
321 	 * When we reach the point in the list where pages are no longer
322 	 * considered gpages, we're done.
323 	 */
324 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
325 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
326 			continue;
327 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
328 			break;
329 
330 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
331 		base = memblock_alloc_base(size * gpage_npages[i], size,
332 					   MEMBLOCK_ALLOC_ANYWHERE);
333 		add_gpage(base, size, gpage_npages[i]);
334 	}
335 }
336 
337 #else /* !PPC_FSL_BOOK3E */
338 
339 /* Build list of addresses of gigantic pages.  This function is used in early
340  * boot before the buddy or bootmem allocator is setup.
341  */
342 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
343 {
344 	if (!addr)
345 		return;
346 	while (number_of_pages > 0) {
347 		gpage_freearray[nr_gpages] = addr;
348 		nr_gpages++;
349 		number_of_pages--;
350 		addr += page_size;
351 	}
352 }
353 
354 /* Moves the gigantic page addresses from the temporary list to the
355  * huge_boot_pages list.
356  */
357 int alloc_bootmem_huge_page(struct hstate *hstate)
358 {
359 	struct huge_bootmem_page *m;
360 	if (nr_gpages == 0)
361 		return 0;
362 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
363 	gpage_freearray[nr_gpages] = 0;
364 	list_add(&m->list, &huge_boot_pages);
365 	m->hstate = hstate;
366 	return 1;
367 }
368 #endif
369 
370 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
371 {
372 	return 0;
373 }
374 
375 #ifdef CONFIG_PPC_FSL_BOOK3E
376 #define HUGEPD_FREELIST_SIZE \
377 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
378 
379 struct hugepd_freelist {
380 	struct rcu_head	rcu;
381 	unsigned int index;
382 	void *ptes[0];
383 };
384 
385 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
386 
387 static void hugepd_free_rcu_callback(struct rcu_head *head)
388 {
389 	struct hugepd_freelist *batch =
390 		container_of(head, struct hugepd_freelist, rcu);
391 	unsigned int i;
392 
393 	for (i = 0; i < batch->index; i++)
394 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
395 
396 	free_page((unsigned long)batch);
397 }
398 
399 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
400 {
401 	struct hugepd_freelist **batchp;
402 
403 	batchp = &__get_cpu_var(hugepd_freelist_cur);
404 
405 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
406 	    cpumask_equal(mm_cpumask(tlb->mm),
407 			  cpumask_of(smp_processor_id()))) {
408 		kmem_cache_free(hugepte_cache, hugepte);
409 		return;
410 	}
411 
412 	if (*batchp == NULL) {
413 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
414 		(*batchp)->index = 0;
415 	}
416 
417 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
418 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
419 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
420 		*batchp = NULL;
421 	}
422 }
423 #endif
424 
425 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
426 			      unsigned long start, unsigned long end,
427 			      unsigned long floor, unsigned long ceiling)
428 {
429 	pte_t *hugepte = hugepd_page(*hpdp);
430 	int i;
431 
432 	unsigned long pdmask = ~((1UL << pdshift) - 1);
433 	unsigned int num_hugepd = 1;
434 
435 #ifdef CONFIG_PPC_FSL_BOOK3E
436 	/* Note: On fsl the hpdp may be the first of several */
437 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
438 #else
439 	unsigned int shift = hugepd_shift(*hpdp);
440 #endif
441 
442 	start &= pdmask;
443 	if (start < floor)
444 		return;
445 	if (ceiling) {
446 		ceiling &= pdmask;
447 		if (! ceiling)
448 			return;
449 	}
450 	if (end - 1 > ceiling - 1)
451 		return;
452 
453 	for (i = 0; i < num_hugepd; i++, hpdp++)
454 		hpdp->pd = 0;
455 
456 	tlb->need_flush = 1;
457 
458 #ifdef CONFIG_PPC_FSL_BOOK3E
459 	hugepd_free(tlb, hugepte);
460 #else
461 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
462 #endif
463 }
464 
465 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
466 				   unsigned long addr, unsigned long end,
467 				   unsigned long floor, unsigned long ceiling)
468 {
469 	pmd_t *pmd;
470 	unsigned long next;
471 	unsigned long start;
472 
473 	start = addr;
474 	do {
475 		pmd = pmd_offset(pud, addr);
476 		next = pmd_addr_end(addr, end);
477 		if (pmd_none(*pmd))
478 			continue;
479 #ifdef CONFIG_PPC_FSL_BOOK3E
480 		/*
481 		 * Increment next by the size of the huge mapping since
482 		 * there may be more than one entry at this level for a
483 		 * single hugepage, but all of them point to
484 		 * the same kmem cache that holds the hugepte.
485 		 */
486 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
487 #endif
488 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
489 				  addr, next, floor, ceiling);
490 	} while (addr = next, addr != end);
491 
492 	start &= PUD_MASK;
493 	if (start < floor)
494 		return;
495 	if (ceiling) {
496 		ceiling &= PUD_MASK;
497 		if (!ceiling)
498 			return;
499 	}
500 	if (end - 1 > ceiling - 1)
501 		return;
502 
503 	pmd = pmd_offset(pud, start);
504 	pud_clear(pud);
505 	pmd_free_tlb(tlb, pmd, start);
506 }
507 
508 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
509 				   unsigned long addr, unsigned long end,
510 				   unsigned long floor, unsigned long ceiling)
511 {
512 	pud_t *pud;
513 	unsigned long next;
514 	unsigned long start;
515 
516 	start = addr;
517 	do {
518 		pud = pud_offset(pgd, addr);
519 		next = pud_addr_end(addr, end);
520 		if (!is_hugepd(pud)) {
521 			if (pud_none_or_clear_bad(pud))
522 				continue;
523 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
524 					       ceiling);
525 		} else {
526 #ifdef CONFIG_PPC_FSL_BOOK3E
527 			/*
528 			 * Increment next by the size of the huge mapping since
529 			 * there may be more than one entry at this level for a
530 			 * single hugepage, but all of them point to
531 			 * the same kmem cache that holds the hugepte.
532 			 */
533 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
534 #endif
535 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
536 					  addr, next, floor, ceiling);
537 		}
538 	} while (addr = next, addr != end);
539 
540 	start &= PGDIR_MASK;
541 	if (start < floor)
542 		return;
543 	if (ceiling) {
544 		ceiling &= PGDIR_MASK;
545 		if (!ceiling)
546 			return;
547 	}
548 	if (end - 1 > ceiling - 1)
549 		return;
550 
551 	pud = pud_offset(pgd, start);
552 	pgd_clear(pgd);
553 	pud_free_tlb(tlb, pud, start);
554 }
555 
556 /*
557  * This function frees user-level page tables of a process.
558  *
559  * Must be called with pagetable lock held.
560  */
561 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
562 			    unsigned long addr, unsigned long end,
563 			    unsigned long floor, unsigned long ceiling)
564 {
565 	pgd_t *pgd;
566 	unsigned long next;
567 
568 	/*
569 	 * Because there are a number of different possible pagetable
570 	 * layouts for hugepage ranges, we limit knowledge of how
571 	 * things should be laid out to the allocation path
572 	 * (huge_pte_alloc(), above).  Everything else works out the
573 	 * structure as it goes from information in the hugepd
574 	 * pointers.  That means that we can't here use the
575 	 * optimization used in the normal page free_pgd_range(), of
576 	 * checking whether we're actually covering a large enough
577 	 * range to have to do anything at the top level of the walk
578 	 * instead of at the bottom.
579 	 *
580 	 * To make sense of this, you should probably go read the big
581 	 * block comment at the top of the normal free_pgd_range(),
582 	 * too.
583 	 */
584 
585 	do {
586 		next = pgd_addr_end(addr, end);
587 		pgd = pgd_offset(tlb->mm, addr);
588 		if (!is_hugepd(pgd)) {
589 			if (pgd_none_or_clear_bad(pgd))
590 				continue;
591 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
592 		} else {
593 #ifdef CONFIG_PPC_FSL_BOOK3E
594 			/*
595 			 * Increment next by the size of the huge mapping since
596 			 * there may be more than one entry at the pgd level
597 			 * for a single hugepage, but all of them point to the
598 			 * same kmem cache that holds the hugepte.
599 			 */
600 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
601 #endif
602 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
603 					  addr, next, floor, ceiling);
604 		}
605 	} while (addr = next, addr != end);
606 }
607 
608 struct page *
609 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
610 {
611 	pte_t *ptep;
612 	struct page *page;
613 	unsigned shift;
614 	unsigned long mask;
615 
616 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
617 
618 	/* Verify it is a huge page else bail. */
619 	if (!ptep || !shift)
620 		return ERR_PTR(-EINVAL);
621 
622 	mask = (1UL << shift) - 1;
623 	page = pte_page(*ptep);
624 	if (page)
625 		page += (address & mask) / PAGE_SIZE;
626 
627 	return page;
628 }
629 
630 int pmd_huge(pmd_t pmd)
631 {
632 	return 0;
633 }
634 
635 int pud_huge(pud_t pud)
636 {
637 	return 0;
638 }
639 
640 struct page *
641 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
642 		pmd_t *pmd, int write)
643 {
644 	BUG();
645 	return NULL;
646 }
647 
648 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
649 		       unsigned long end, int write, struct page **pages, int *nr)
650 {
651 	unsigned long mask;
652 	unsigned long pte_end;
653 	struct page *head, *page, *tail;
654 	pte_t pte;
655 	int refs;
656 
657 	pte_end = (addr + sz) & ~(sz-1);
658 	if (pte_end < end)
659 		end = pte_end;
660 
661 	pte = *ptep;
662 	mask = _PAGE_PRESENT | _PAGE_USER;
663 	if (write)
664 		mask |= _PAGE_RW;
665 
666 	if ((pte_val(pte) & mask) != mask)
667 		return 0;
668 
669 	/* hugepages are never "special" */
670 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
671 
672 	refs = 0;
673 	head = pte_page(pte);
674 
675 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
676 	tail = page;
677 	do {
678 		VM_BUG_ON(compound_head(page) != head);
679 		pages[*nr] = page;
680 		(*nr)++;
681 		page++;
682 		refs++;
683 	} while (addr += PAGE_SIZE, addr != end);
684 
685 	if (!page_cache_add_speculative(head, refs)) {
686 		*nr -= refs;
687 		return 0;
688 	}
689 
690 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
691 		/* Could be optimized better */
692 		*nr -= refs;
693 		while (refs--)
694 			put_page(head);
695 		return 0;
696 	}
697 
698 	/*
699 	 * Any tail page need their mapcount reference taken before we
700 	 * return.
701 	 */
702 	while (refs--) {
703 		if (PageTail(tail))
704 			get_huge_page_tail(tail);
705 		tail++;
706 	}
707 
708 	return 1;
709 }
710 
711 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
712 				      unsigned long sz)
713 {
714 	unsigned long __boundary = (addr + sz) & ~(sz-1);
715 	return (__boundary - 1 < end - 1) ? __boundary : end;
716 }
717 
718 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
719 	       unsigned long addr, unsigned long end,
720 	       int write, struct page **pages, int *nr)
721 {
722 	pte_t *ptep;
723 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
724 	unsigned long next;
725 
726 	ptep = hugepte_offset(hugepd, addr, pdshift);
727 	do {
728 		next = hugepte_addr_end(addr, end, sz);
729 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
730 			return 0;
731 	} while (ptep++, addr = next, addr != end);
732 
733 	return 1;
734 }
735 
736 #ifdef CONFIG_PPC_MM_SLICES
737 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
738 					unsigned long len, unsigned long pgoff,
739 					unsigned long flags)
740 {
741 	struct hstate *hstate = hstate_file(file);
742 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
743 
744 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
745 }
746 #endif
747 
748 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
749 {
750 #ifdef CONFIG_PPC_MM_SLICES
751 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
752 
753 	return 1UL << mmu_psize_to_shift(psize);
754 #else
755 	if (!is_vm_hugetlb_page(vma))
756 		return PAGE_SIZE;
757 
758 	return huge_page_size(hstate_vma(vma));
759 #endif
760 }
761 
762 static inline bool is_power_of_4(unsigned long x)
763 {
764 	if (is_power_of_2(x))
765 		return (__ilog2(x) % 2) ? false : true;
766 	return false;
767 }
768 
769 static int __init add_huge_page_size(unsigned long long size)
770 {
771 	int shift = __ffs(size);
772 	int mmu_psize;
773 
774 	/* Check that it is a page size supported by the hardware and
775 	 * that it fits within pagetable and slice limits. */
776 #ifdef CONFIG_PPC_FSL_BOOK3E
777 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
778 		return -EINVAL;
779 #else
780 	if (!is_power_of_2(size)
781 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
782 		return -EINVAL;
783 #endif
784 
785 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
786 		return -EINVAL;
787 
788 #ifdef CONFIG_SPU_FS_64K_LS
789 	/* Disable support for 64K huge pages when 64K SPU local store
790 	 * support is enabled as the current implementation conflicts.
791 	 */
792 	if (shift == PAGE_SHIFT_64K)
793 		return -EINVAL;
794 #endif /* CONFIG_SPU_FS_64K_LS */
795 
796 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
797 
798 	/* Return if huge page size has already been setup */
799 	if (size_to_hstate(size))
800 		return 0;
801 
802 	hugetlb_add_hstate(shift - PAGE_SHIFT);
803 
804 	return 0;
805 }
806 
807 static int __init hugepage_setup_sz(char *str)
808 {
809 	unsigned long long size;
810 
811 	size = memparse(str, &str);
812 
813 	if (add_huge_page_size(size) != 0)
814 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
815 
816 	return 1;
817 }
818 __setup("hugepagesz=", hugepage_setup_sz);
819 
820 #ifdef CONFIG_PPC_FSL_BOOK3E
821 struct kmem_cache *hugepte_cache;
822 static int __init hugetlbpage_init(void)
823 {
824 	int psize;
825 
826 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
827 		unsigned shift;
828 
829 		if (!mmu_psize_defs[psize].shift)
830 			continue;
831 
832 		shift = mmu_psize_to_shift(psize);
833 
834 		/* Don't treat normal page sizes as huge... */
835 		if (shift != PAGE_SHIFT)
836 			if (add_huge_page_size(1ULL << shift) < 0)
837 				continue;
838 	}
839 
840 	/*
841 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
842 	 * size information encoded in them, so align them to allow this
843 	 */
844 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
845 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
846 	if (hugepte_cache == NULL)
847 		panic("%s: Unable to create kmem cache for hugeptes\n",
848 		      __func__);
849 
850 	/* Default hpage size = 4M */
851 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
852 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
853 	else
854 		panic("%s: Unable to set default huge page size\n", __func__);
855 
856 
857 	return 0;
858 }
859 #else
860 static int __init hugetlbpage_init(void)
861 {
862 	int psize;
863 
864 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
865 		return -ENODEV;
866 
867 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
868 		unsigned shift;
869 		unsigned pdshift;
870 
871 		if (!mmu_psize_defs[psize].shift)
872 			continue;
873 
874 		shift = mmu_psize_to_shift(psize);
875 
876 		if (add_huge_page_size(1ULL << shift) < 0)
877 			continue;
878 
879 		if (shift < PMD_SHIFT)
880 			pdshift = PMD_SHIFT;
881 		else if (shift < PUD_SHIFT)
882 			pdshift = PUD_SHIFT;
883 		else
884 			pdshift = PGDIR_SHIFT;
885 
886 		pgtable_cache_add(pdshift - shift, NULL);
887 		if (!PGT_CACHE(pdshift - shift))
888 			panic("hugetlbpage_init(): could not create "
889 			      "pgtable cache for %d bit pagesize\n", shift);
890 	}
891 
892 	/* Set default large page size. Currently, we pick 16M or 1M
893 	 * depending on what is available
894 	 */
895 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
896 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
897 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
898 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
899 
900 	return 0;
901 }
902 #endif
903 module_init(hugetlbpage_init);
904 
905 void flush_dcache_icache_hugepage(struct page *page)
906 {
907 	int i;
908 	void *start;
909 
910 	BUG_ON(!PageCompound(page));
911 
912 	for (i = 0; i < (1UL << compound_order(page)); i++) {
913 		if (!PageHighMem(page)) {
914 			__flush_dcache_icache(page_address(page+i));
915 		} else {
916 			start = kmap_atomic(page+i);
917 			__flush_dcache_icache(start);
918 			kunmap_atomic(start);
919 		}
920 	}
921 }
922