1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 25 #define PAGE_SHIFT_64K 16 26 #define PAGE_SHIFT_16M 24 27 #define PAGE_SHIFT_16G 34 28 29 unsigned int HPAGE_SHIFT; 30 31 /* 32 * Tracks gpages after the device tree is scanned and before the 33 * huge_boot_pages list is ready. On non-Freescale implementations, this is 34 * just used to track 16G pages and so is a single array. FSL-based 35 * implementations may have more than one gpage size, so we need multiple 36 * arrays 37 */ 38 #ifdef CONFIG_PPC_FSL_BOOK3E 39 #define MAX_NUMBER_GPAGES 128 40 struct psize_gpages { 41 u64 gpage_list[MAX_NUMBER_GPAGES]; 42 unsigned int nr_gpages; 43 }; 44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 45 #else 46 #define MAX_NUMBER_GPAGES 1024 47 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 48 static unsigned nr_gpages; 49 #endif 50 51 static inline int shift_to_mmu_psize(unsigned int shift) 52 { 53 int psize; 54 55 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) 56 if (mmu_psize_defs[psize].shift == shift) 57 return psize; 58 return -1; 59 } 60 61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) 62 { 63 if (mmu_psize_defs[mmu_psize].shift) 64 return mmu_psize_defs[mmu_psize].shift; 65 BUG(); 66 } 67 68 #define hugepd_none(hpd) ((hpd).pd == 0) 69 70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) 71 { 72 pgd_t *pg; 73 pud_t *pu; 74 pmd_t *pm; 75 hugepd_t *hpdp = NULL; 76 unsigned pdshift = PGDIR_SHIFT; 77 78 if (shift) 79 *shift = 0; 80 81 pg = pgdir + pgd_index(ea); 82 if (is_hugepd(pg)) { 83 hpdp = (hugepd_t *)pg; 84 } else if (!pgd_none(*pg)) { 85 pdshift = PUD_SHIFT; 86 pu = pud_offset(pg, ea); 87 if (is_hugepd(pu)) 88 hpdp = (hugepd_t *)pu; 89 else if (!pud_none(*pu)) { 90 pdshift = PMD_SHIFT; 91 pm = pmd_offset(pu, ea); 92 if (is_hugepd(pm)) 93 hpdp = (hugepd_t *)pm; 94 else if (!pmd_none(*pm)) { 95 return pte_offset_kernel(pm, ea); 96 } 97 } 98 } 99 100 if (!hpdp) 101 return NULL; 102 103 if (shift) 104 *shift = hugepd_shift(*hpdp); 105 return hugepte_offset(hpdp, ea, pdshift); 106 } 107 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); 108 109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 110 { 111 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); 112 } 113 114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 115 unsigned long address, unsigned pdshift, unsigned pshift) 116 { 117 struct kmem_cache *cachep; 118 pte_t *new; 119 120 #ifdef CONFIG_PPC_FSL_BOOK3E 121 int i; 122 int num_hugepd = 1 << (pshift - pdshift); 123 cachep = hugepte_cache; 124 #else 125 cachep = PGT_CACHE(pdshift - pshift); 126 #endif 127 128 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 129 130 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 131 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 132 133 if (! new) 134 return -ENOMEM; 135 136 spin_lock(&mm->page_table_lock); 137 #ifdef CONFIG_PPC_FSL_BOOK3E 138 /* 139 * We have multiple higher-level entries that point to the same 140 * actual pte location. Fill in each as we go and backtrack on error. 141 * We need all of these so the DTLB pgtable walk code can find the 142 * right higher-level entry without knowing if it's a hugepage or not. 143 */ 144 for (i = 0; i < num_hugepd; i++, hpdp++) { 145 if (unlikely(!hugepd_none(*hpdp))) 146 break; 147 else 148 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 149 } 150 /* If we bailed from the for loop early, an error occurred, clean up */ 151 if (i < num_hugepd) { 152 for (i = i - 1 ; i >= 0; i--, hpdp--) 153 hpdp->pd = 0; 154 kmem_cache_free(cachep, new); 155 } 156 #else 157 if (!hugepd_none(*hpdp)) 158 kmem_cache_free(cachep, new); 159 else 160 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 161 #endif 162 spin_unlock(&mm->page_table_lock); 163 return 0; 164 } 165 166 /* 167 * These macros define how to determine which level of the page table holds 168 * the hpdp. 169 */ 170 #ifdef CONFIG_PPC_FSL_BOOK3E 171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 172 #define HUGEPD_PUD_SHIFT PUD_SHIFT 173 #else 174 #define HUGEPD_PGD_SHIFT PUD_SHIFT 175 #define HUGEPD_PUD_SHIFT PMD_SHIFT 176 #endif 177 178 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 179 { 180 pgd_t *pg; 181 pud_t *pu; 182 pmd_t *pm; 183 hugepd_t *hpdp = NULL; 184 unsigned pshift = __ffs(sz); 185 unsigned pdshift = PGDIR_SHIFT; 186 187 addr &= ~(sz-1); 188 189 pg = pgd_offset(mm, addr); 190 191 if (pshift >= HUGEPD_PGD_SHIFT) { 192 hpdp = (hugepd_t *)pg; 193 } else { 194 pdshift = PUD_SHIFT; 195 pu = pud_alloc(mm, pg, addr); 196 if (pshift >= HUGEPD_PUD_SHIFT) { 197 hpdp = (hugepd_t *)pu; 198 } else { 199 pdshift = PMD_SHIFT; 200 pm = pmd_alloc(mm, pu, addr); 201 hpdp = (hugepd_t *)pm; 202 } 203 } 204 205 if (!hpdp) 206 return NULL; 207 208 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 209 210 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 211 return NULL; 212 213 return hugepte_offset(hpdp, addr, pdshift); 214 } 215 216 #ifdef CONFIG_PPC_FSL_BOOK3E 217 /* Build list of addresses of gigantic pages. This function is used in early 218 * boot before the buddy or bootmem allocator is setup. 219 */ 220 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 221 { 222 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 223 int i; 224 225 if (addr == 0) 226 return; 227 228 gpage_freearray[idx].nr_gpages = number_of_pages; 229 230 for (i = 0; i < number_of_pages; i++) { 231 gpage_freearray[idx].gpage_list[i] = addr; 232 addr += page_size; 233 } 234 } 235 236 /* 237 * Moves the gigantic page addresses from the temporary list to the 238 * huge_boot_pages list. 239 */ 240 int alloc_bootmem_huge_page(struct hstate *hstate) 241 { 242 struct huge_bootmem_page *m; 243 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT); 244 int nr_gpages = gpage_freearray[idx].nr_gpages; 245 246 if (nr_gpages == 0) 247 return 0; 248 249 #ifdef CONFIG_HIGHMEM 250 /* 251 * If gpages can be in highmem we can't use the trick of storing the 252 * data structure in the page; allocate space for this 253 */ 254 m = alloc_bootmem(sizeof(struct huge_bootmem_page)); 255 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 256 #else 257 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 258 #endif 259 260 list_add(&m->list, &huge_boot_pages); 261 gpage_freearray[idx].nr_gpages = nr_gpages; 262 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 263 m->hstate = hstate; 264 265 return 1; 266 } 267 /* 268 * Scan the command line hugepagesz= options for gigantic pages; store those in 269 * a list that we use to allocate the memory once all options are parsed. 270 */ 271 272 unsigned long gpage_npages[MMU_PAGE_COUNT]; 273 274 static int __init do_gpage_early_setup(char *param, char *val) 275 { 276 static phys_addr_t size; 277 unsigned long npages; 278 279 /* 280 * The hugepagesz and hugepages cmdline options are interleaved. We 281 * use the size variable to keep track of whether or not this was done 282 * properly and skip over instances where it is incorrect. Other 283 * command-line parsing code will issue warnings, so we don't need to. 284 * 285 */ 286 if ((strcmp(param, "default_hugepagesz") == 0) || 287 (strcmp(param, "hugepagesz") == 0)) { 288 size = memparse(val, NULL); 289 } else if (strcmp(param, "hugepages") == 0) { 290 if (size != 0) { 291 if (sscanf(val, "%lu", &npages) <= 0) 292 npages = 0; 293 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 294 size = 0; 295 } 296 } 297 return 0; 298 } 299 300 301 /* 302 * This function allocates physical space for pages that are larger than the 303 * buddy allocator can handle. We want to allocate these in highmem because 304 * the amount of lowmem is limited. This means that this function MUST be 305 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 306 * allocate to grab highmem. 307 */ 308 void __init reserve_hugetlb_gpages(void) 309 { 310 static __initdata char cmdline[COMMAND_LINE_SIZE]; 311 phys_addr_t size, base; 312 int i; 313 314 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 315 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 316 &do_gpage_early_setup); 317 318 /* 319 * Walk gpage list in reverse, allocating larger page sizes first. 320 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 321 * When we reach the point in the list where pages are no longer 322 * considered gpages, we're done. 323 */ 324 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 325 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 326 continue; 327 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 328 break; 329 330 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 331 base = memblock_alloc_base(size * gpage_npages[i], size, 332 MEMBLOCK_ALLOC_ANYWHERE); 333 add_gpage(base, size, gpage_npages[i]); 334 } 335 } 336 337 #else /* !PPC_FSL_BOOK3E */ 338 339 /* Build list of addresses of gigantic pages. This function is used in early 340 * boot before the buddy or bootmem allocator is setup. 341 */ 342 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 343 { 344 if (!addr) 345 return; 346 while (number_of_pages > 0) { 347 gpage_freearray[nr_gpages] = addr; 348 nr_gpages++; 349 number_of_pages--; 350 addr += page_size; 351 } 352 } 353 354 /* Moves the gigantic page addresses from the temporary list to the 355 * huge_boot_pages list. 356 */ 357 int alloc_bootmem_huge_page(struct hstate *hstate) 358 { 359 struct huge_bootmem_page *m; 360 if (nr_gpages == 0) 361 return 0; 362 m = phys_to_virt(gpage_freearray[--nr_gpages]); 363 gpage_freearray[nr_gpages] = 0; 364 list_add(&m->list, &huge_boot_pages); 365 m->hstate = hstate; 366 return 1; 367 } 368 #endif 369 370 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 371 { 372 return 0; 373 } 374 375 #ifdef CONFIG_PPC_FSL_BOOK3E 376 #define HUGEPD_FREELIST_SIZE \ 377 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 378 379 struct hugepd_freelist { 380 struct rcu_head rcu; 381 unsigned int index; 382 void *ptes[0]; 383 }; 384 385 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 386 387 static void hugepd_free_rcu_callback(struct rcu_head *head) 388 { 389 struct hugepd_freelist *batch = 390 container_of(head, struct hugepd_freelist, rcu); 391 unsigned int i; 392 393 for (i = 0; i < batch->index; i++) 394 kmem_cache_free(hugepte_cache, batch->ptes[i]); 395 396 free_page((unsigned long)batch); 397 } 398 399 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 400 { 401 struct hugepd_freelist **batchp; 402 403 batchp = &__get_cpu_var(hugepd_freelist_cur); 404 405 if (atomic_read(&tlb->mm->mm_users) < 2 || 406 cpumask_equal(mm_cpumask(tlb->mm), 407 cpumask_of(smp_processor_id()))) { 408 kmem_cache_free(hugepte_cache, hugepte); 409 return; 410 } 411 412 if (*batchp == NULL) { 413 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 414 (*batchp)->index = 0; 415 } 416 417 (*batchp)->ptes[(*batchp)->index++] = hugepte; 418 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 419 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 420 *batchp = NULL; 421 } 422 } 423 #endif 424 425 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 426 unsigned long start, unsigned long end, 427 unsigned long floor, unsigned long ceiling) 428 { 429 pte_t *hugepte = hugepd_page(*hpdp); 430 int i; 431 432 unsigned long pdmask = ~((1UL << pdshift) - 1); 433 unsigned int num_hugepd = 1; 434 435 #ifdef CONFIG_PPC_FSL_BOOK3E 436 /* Note: On fsl the hpdp may be the first of several */ 437 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 438 #else 439 unsigned int shift = hugepd_shift(*hpdp); 440 #endif 441 442 start &= pdmask; 443 if (start < floor) 444 return; 445 if (ceiling) { 446 ceiling &= pdmask; 447 if (! ceiling) 448 return; 449 } 450 if (end - 1 > ceiling - 1) 451 return; 452 453 for (i = 0; i < num_hugepd; i++, hpdp++) 454 hpdp->pd = 0; 455 456 tlb->need_flush = 1; 457 458 #ifdef CONFIG_PPC_FSL_BOOK3E 459 hugepd_free(tlb, hugepte); 460 #else 461 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 462 #endif 463 } 464 465 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 466 unsigned long addr, unsigned long end, 467 unsigned long floor, unsigned long ceiling) 468 { 469 pmd_t *pmd; 470 unsigned long next; 471 unsigned long start; 472 473 start = addr; 474 do { 475 pmd = pmd_offset(pud, addr); 476 next = pmd_addr_end(addr, end); 477 if (pmd_none(*pmd)) 478 continue; 479 #ifdef CONFIG_PPC_FSL_BOOK3E 480 /* 481 * Increment next by the size of the huge mapping since 482 * there may be more than one entry at this level for a 483 * single hugepage, but all of them point to 484 * the same kmem cache that holds the hugepte. 485 */ 486 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 487 #endif 488 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 489 addr, next, floor, ceiling); 490 } while (addr = next, addr != end); 491 492 start &= PUD_MASK; 493 if (start < floor) 494 return; 495 if (ceiling) { 496 ceiling &= PUD_MASK; 497 if (!ceiling) 498 return; 499 } 500 if (end - 1 > ceiling - 1) 501 return; 502 503 pmd = pmd_offset(pud, start); 504 pud_clear(pud); 505 pmd_free_tlb(tlb, pmd, start); 506 } 507 508 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 509 unsigned long addr, unsigned long end, 510 unsigned long floor, unsigned long ceiling) 511 { 512 pud_t *pud; 513 unsigned long next; 514 unsigned long start; 515 516 start = addr; 517 do { 518 pud = pud_offset(pgd, addr); 519 next = pud_addr_end(addr, end); 520 if (!is_hugepd(pud)) { 521 if (pud_none_or_clear_bad(pud)) 522 continue; 523 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 524 ceiling); 525 } else { 526 #ifdef CONFIG_PPC_FSL_BOOK3E 527 /* 528 * Increment next by the size of the huge mapping since 529 * there may be more than one entry at this level for a 530 * single hugepage, but all of them point to 531 * the same kmem cache that holds the hugepte. 532 */ 533 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 534 #endif 535 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 536 addr, next, floor, ceiling); 537 } 538 } while (addr = next, addr != end); 539 540 start &= PGDIR_MASK; 541 if (start < floor) 542 return; 543 if (ceiling) { 544 ceiling &= PGDIR_MASK; 545 if (!ceiling) 546 return; 547 } 548 if (end - 1 > ceiling - 1) 549 return; 550 551 pud = pud_offset(pgd, start); 552 pgd_clear(pgd); 553 pud_free_tlb(tlb, pud, start); 554 } 555 556 /* 557 * This function frees user-level page tables of a process. 558 * 559 * Must be called with pagetable lock held. 560 */ 561 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 562 unsigned long addr, unsigned long end, 563 unsigned long floor, unsigned long ceiling) 564 { 565 pgd_t *pgd; 566 unsigned long next; 567 568 /* 569 * Because there are a number of different possible pagetable 570 * layouts for hugepage ranges, we limit knowledge of how 571 * things should be laid out to the allocation path 572 * (huge_pte_alloc(), above). Everything else works out the 573 * structure as it goes from information in the hugepd 574 * pointers. That means that we can't here use the 575 * optimization used in the normal page free_pgd_range(), of 576 * checking whether we're actually covering a large enough 577 * range to have to do anything at the top level of the walk 578 * instead of at the bottom. 579 * 580 * To make sense of this, you should probably go read the big 581 * block comment at the top of the normal free_pgd_range(), 582 * too. 583 */ 584 585 do { 586 next = pgd_addr_end(addr, end); 587 pgd = pgd_offset(tlb->mm, addr); 588 if (!is_hugepd(pgd)) { 589 if (pgd_none_or_clear_bad(pgd)) 590 continue; 591 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 592 } else { 593 #ifdef CONFIG_PPC_FSL_BOOK3E 594 /* 595 * Increment next by the size of the huge mapping since 596 * there may be more than one entry at the pgd level 597 * for a single hugepage, but all of them point to the 598 * same kmem cache that holds the hugepte. 599 */ 600 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 601 #endif 602 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 603 addr, next, floor, ceiling); 604 } 605 } while (addr = next, addr != end); 606 } 607 608 struct page * 609 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 610 { 611 pte_t *ptep; 612 struct page *page; 613 unsigned shift; 614 unsigned long mask; 615 616 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); 617 618 /* Verify it is a huge page else bail. */ 619 if (!ptep || !shift) 620 return ERR_PTR(-EINVAL); 621 622 mask = (1UL << shift) - 1; 623 page = pte_page(*ptep); 624 if (page) 625 page += (address & mask) / PAGE_SIZE; 626 627 return page; 628 } 629 630 int pmd_huge(pmd_t pmd) 631 { 632 return 0; 633 } 634 635 int pud_huge(pud_t pud) 636 { 637 return 0; 638 } 639 640 struct page * 641 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 642 pmd_t *pmd, int write) 643 { 644 BUG(); 645 return NULL; 646 } 647 648 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 649 unsigned long end, int write, struct page **pages, int *nr) 650 { 651 unsigned long mask; 652 unsigned long pte_end; 653 struct page *head, *page, *tail; 654 pte_t pte; 655 int refs; 656 657 pte_end = (addr + sz) & ~(sz-1); 658 if (pte_end < end) 659 end = pte_end; 660 661 pte = *ptep; 662 mask = _PAGE_PRESENT | _PAGE_USER; 663 if (write) 664 mask |= _PAGE_RW; 665 666 if ((pte_val(pte) & mask) != mask) 667 return 0; 668 669 /* hugepages are never "special" */ 670 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 671 672 refs = 0; 673 head = pte_page(pte); 674 675 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 676 tail = page; 677 do { 678 VM_BUG_ON(compound_head(page) != head); 679 pages[*nr] = page; 680 (*nr)++; 681 page++; 682 refs++; 683 } while (addr += PAGE_SIZE, addr != end); 684 685 if (!page_cache_add_speculative(head, refs)) { 686 *nr -= refs; 687 return 0; 688 } 689 690 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 691 /* Could be optimized better */ 692 *nr -= refs; 693 while (refs--) 694 put_page(head); 695 return 0; 696 } 697 698 /* 699 * Any tail page need their mapcount reference taken before we 700 * return. 701 */ 702 while (refs--) { 703 if (PageTail(tail)) 704 get_huge_page_tail(tail); 705 tail++; 706 } 707 708 return 1; 709 } 710 711 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 712 unsigned long sz) 713 { 714 unsigned long __boundary = (addr + sz) & ~(sz-1); 715 return (__boundary - 1 < end - 1) ? __boundary : end; 716 } 717 718 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, 719 unsigned long addr, unsigned long end, 720 int write, struct page **pages, int *nr) 721 { 722 pte_t *ptep; 723 unsigned long sz = 1UL << hugepd_shift(*hugepd); 724 unsigned long next; 725 726 ptep = hugepte_offset(hugepd, addr, pdshift); 727 do { 728 next = hugepte_addr_end(addr, end, sz); 729 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 730 return 0; 731 } while (ptep++, addr = next, addr != end); 732 733 return 1; 734 } 735 736 #ifdef CONFIG_PPC_MM_SLICES 737 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 738 unsigned long len, unsigned long pgoff, 739 unsigned long flags) 740 { 741 struct hstate *hstate = hstate_file(file); 742 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 743 744 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); 745 } 746 #endif 747 748 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 749 { 750 #ifdef CONFIG_PPC_MM_SLICES 751 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 752 753 return 1UL << mmu_psize_to_shift(psize); 754 #else 755 if (!is_vm_hugetlb_page(vma)) 756 return PAGE_SIZE; 757 758 return huge_page_size(hstate_vma(vma)); 759 #endif 760 } 761 762 static inline bool is_power_of_4(unsigned long x) 763 { 764 if (is_power_of_2(x)) 765 return (__ilog2(x) % 2) ? false : true; 766 return false; 767 } 768 769 static int __init add_huge_page_size(unsigned long long size) 770 { 771 int shift = __ffs(size); 772 int mmu_psize; 773 774 /* Check that it is a page size supported by the hardware and 775 * that it fits within pagetable and slice limits. */ 776 #ifdef CONFIG_PPC_FSL_BOOK3E 777 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 778 return -EINVAL; 779 #else 780 if (!is_power_of_2(size) 781 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 782 return -EINVAL; 783 #endif 784 785 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 786 return -EINVAL; 787 788 #ifdef CONFIG_SPU_FS_64K_LS 789 /* Disable support for 64K huge pages when 64K SPU local store 790 * support is enabled as the current implementation conflicts. 791 */ 792 if (shift == PAGE_SHIFT_64K) 793 return -EINVAL; 794 #endif /* CONFIG_SPU_FS_64K_LS */ 795 796 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 797 798 /* Return if huge page size has already been setup */ 799 if (size_to_hstate(size)) 800 return 0; 801 802 hugetlb_add_hstate(shift - PAGE_SHIFT); 803 804 return 0; 805 } 806 807 static int __init hugepage_setup_sz(char *str) 808 { 809 unsigned long long size; 810 811 size = memparse(str, &str); 812 813 if (add_huge_page_size(size) != 0) 814 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 815 816 return 1; 817 } 818 __setup("hugepagesz=", hugepage_setup_sz); 819 820 #ifdef CONFIG_PPC_FSL_BOOK3E 821 struct kmem_cache *hugepte_cache; 822 static int __init hugetlbpage_init(void) 823 { 824 int psize; 825 826 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 827 unsigned shift; 828 829 if (!mmu_psize_defs[psize].shift) 830 continue; 831 832 shift = mmu_psize_to_shift(psize); 833 834 /* Don't treat normal page sizes as huge... */ 835 if (shift != PAGE_SHIFT) 836 if (add_huge_page_size(1ULL << shift) < 0) 837 continue; 838 } 839 840 /* 841 * Create a kmem cache for hugeptes. The bottom bits in the pte have 842 * size information encoded in them, so align them to allow this 843 */ 844 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 845 HUGEPD_SHIFT_MASK + 1, 0, NULL); 846 if (hugepte_cache == NULL) 847 panic("%s: Unable to create kmem cache for hugeptes\n", 848 __func__); 849 850 /* Default hpage size = 4M */ 851 if (mmu_psize_defs[MMU_PAGE_4M].shift) 852 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 853 else 854 panic("%s: Unable to set default huge page size\n", __func__); 855 856 857 return 0; 858 } 859 #else 860 static int __init hugetlbpage_init(void) 861 { 862 int psize; 863 864 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 865 return -ENODEV; 866 867 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 868 unsigned shift; 869 unsigned pdshift; 870 871 if (!mmu_psize_defs[psize].shift) 872 continue; 873 874 shift = mmu_psize_to_shift(psize); 875 876 if (add_huge_page_size(1ULL << shift) < 0) 877 continue; 878 879 if (shift < PMD_SHIFT) 880 pdshift = PMD_SHIFT; 881 else if (shift < PUD_SHIFT) 882 pdshift = PUD_SHIFT; 883 else 884 pdshift = PGDIR_SHIFT; 885 886 pgtable_cache_add(pdshift - shift, NULL); 887 if (!PGT_CACHE(pdshift - shift)) 888 panic("hugetlbpage_init(): could not create " 889 "pgtable cache for %d bit pagesize\n", shift); 890 } 891 892 /* Set default large page size. Currently, we pick 16M or 1M 893 * depending on what is available 894 */ 895 if (mmu_psize_defs[MMU_PAGE_16M].shift) 896 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 897 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 898 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 899 900 return 0; 901 } 902 #endif 903 module_init(hugetlbpage_init); 904 905 void flush_dcache_icache_hugepage(struct page *page) 906 { 907 int i; 908 void *start; 909 910 BUG_ON(!PageCompound(page)); 911 912 for (i = 0; i < (1UL << compound_order(page)); i++) { 913 if (!PageHighMem(page)) { 914 __flush_dcache_icache(page_address(page+i)); 915 } else { 916 start = kmap_atomic(page+i); 917 __flush_dcache_icache(start); 918 kunmap_atomic(start); 919 } 920 } 921 } 922