xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision c93db682)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27 
28 bool hugetlb_disabled = false;
29 
30 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
31 
32 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
33 			 __builtin_ffs(sizeof(void *)))
34 
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 	/*
38 	 * Only called for hugetlbfs pages, hence can ignore THP and the
39 	 * irq disabled walk.
40 	 */
41 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43 
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 			   unsigned long address, unsigned int pdshift,
46 			   unsigned int pshift, spinlock_t *ptl)
47 {
48 	struct kmem_cache *cachep;
49 	pte_t *new;
50 	int i;
51 	int num_hugepd;
52 
53 	if (pshift >= pdshift) {
54 		cachep = PGT_CACHE(PTE_T_ORDER);
55 		num_hugepd = 1 << (pshift - pdshift);
56 	} else {
57 		cachep = PGT_CACHE(pdshift - pshift);
58 		num_hugepd = 1;
59 	}
60 
61 	if (!cachep) {
62 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 		return -ENOMEM;
64 	}
65 
66 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67 
68 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70 
71 	if (!new)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Make sure other cpus find the hugepd set only after a
76 	 * properly initialized page table is visible to them.
77 	 * For more details look for comment in __pte_alloc().
78 	 */
79 	smp_wmb();
80 
81 	spin_lock(ptl);
82 	/*
83 	 * We have multiple higher-level entries that point to the same
84 	 * actual pte location.  Fill in each as we go and backtrack on error.
85 	 * We need all of these so the DTLB pgtable walk code can find the
86 	 * right higher-level entry without knowing if it's a hugepage or not.
87 	 */
88 	for (i = 0; i < num_hugepd; i++, hpdp++) {
89 		if (unlikely(!hugepd_none(*hpdp)))
90 			break;
91 		hugepd_populate(hpdp, new, pshift);
92 	}
93 	/* If we bailed from the for loop early, an error occurred, clean up */
94 	if (i < num_hugepd) {
95 		for (i = i - 1 ; i >= 0; i--, hpdp--)
96 			*hpdp = __hugepd(0);
97 		kmem_cache_free(cachep, new);
98 	} else {
99 		kmemleak_ignore(new);
100 	}
101 	spin_unlock(ptl);
102 	return 0;
103 }
104 
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
110 		      unsigned long addr, unsigned long sz)
111 {
112 	pgd_t *pg;
113 	p4d_t *p4;
114 	pud_t *pu;
115 	pmd_t *pm;
116 	hugepd_t *hpdp = NULL;
117 	unsigned pshift = __ffs(sz);
118 	unsigned pdshift = PGDIR_SHIFT;
119 	spinlock_t *ptl;
120 
121 	addr &= ~(sz-1);
122 	pg = pgd_offset(mm, addr);
123 	p4 = p4d_offset(pg, addr);
124 
125 #ifdef CONFIG_PPC_BOOK3S_64
126 	if (pshift == PGDIR_SHIFT)
127 		/* 16GB huge page */
128 		return (pte_t *) p4;
129 	else if (pshift > PUD_SHIFT) {
130 		/*
131 		 * We need to use hugepd table
132 		 */
133 		ptl = &mm->page_table_lock;
134 		hpdp = (hugepd_t *)p4;
135 	} else {
136 		pdshift = PUD_SHIFT;
137 		pu = pud_alloc(mm, p4, addr);
138 		if (!pu)
139 			return NULL;
140 		if (pshift == PUD_SHIFT)
141 			return (pte_t *)pu;
142 		else if (pshift > PMD_SHIFT) {
143 			ptl = pud_lockptr(mm, pu);
144 			hpdp = (hugepd_t *)pu;
145 		} else {
146 			pdshift = PMD_SHIFT;
147 			pm = pmd_alloc(mm, pu, addr);
148 			if (!pm)
149 				return NULL;
150 			if (pshift == PMD_SHIFT)
151 				/* 16MB hugepage */
152 				return (pte_t *)pm;
153 			else {
154 				ptl = pmd_lockptr(mm, pm);
155 				hpdp = (hugepd_t *)pm;
156 			}
157 		}
158 	}
159 #else
160 	if (pshift >= PGDIR_SHIFT) {
161 		ptl = &mm->page_table_lock;
162 		hpdp = (hugepd_t *)p4;
163 	} else {
164 		pdshift = PUD_SHIFT;
165 		pu = pud_alloc(mm, p4, addr);
166 		if (!pu)
167 			return NULL;
168 		if (pshift >= PUD_SHIFT) {
169 			ptl = pud_lockptr(mm, pu);
170 			hpdp = (hugepd_t *)pu;
171 		} else {
172 			pdshift = PMD_SHIFT;
173 			pm = pmd_alloc(mm, pu, addr);
174 			if (!pm)
175 				return NULL;
176 			ptl = pmd_lockptr(mm, pm);
177 			hpdp = (hugepd_t *)pm;
178 		}
179 	}
180 #endif
181 	if (!hpdp)
182 		return NULL;
183 
184 	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
185 		return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
186 
187 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188 
189 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
190 						  pdshift, pshift, ptl))
191 		return NULL;
192 
193 	return hugepte_offset(*hpdp, addr, pdshift);
194 }
195 
196 #ifdef CONFIG_PPC_BOOK3S_64
197 /*
198  * Tracks gpages after the device tree is scanned and before the
199  * huge_boot_pages list is ready on pseries.
200  */
201 #define MAX_NUMBER_GPAGES	1024
202 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
203 __initdata static unsigned nr_gpages;
204 
205 /*
206  * Build list of addresses of gigantic pages.  This function is used in early
207  * boot before the buddy allocator is setup.
208  */
209 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
210 {
211 	if (!addr)
212 		return;
213 	while (number_of_pages > 0) {
214 		gpage_freearray[nr_gpages] = addr;
215 		nr_gpages++;
216 		number_of_pages--;
217 		addr += page_size;
218 	}
219 }
220 
221 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
222 {
223 	struct huge_bootmem_page *m;
224 	if (nr_gpages == 0)
225 		return 0;
226 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
227 	gpage_freearray[nr_gpages] = 0;
228 	list_add(&m->list, &huge_boot_pages);
229 	m->hstate = hstate;
230 	return 1;
231 }
232 #endif
233 
234 
235 int __init alloc_bootmem_huge_page(struct hstate *h)
236 {
237 
238 #ifdef CONFIG_PPC_BOOK3S_64
239 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
240 		return pseries_alloc_bootmem_huge_page(h);
241 #endif
242 	return __alloc_bootmem_huge_page(h);
243 }
244 
245 #ifndef CONFIG_PPC_BOOK3S_64
246 #define HUGEPD_FREELIST_SIZE \
247 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
248 
249 struct hugepd_freelist {
250 	struct rcu_head	rcu;
251 	unsigned int index;
252 	void *ptes[];
253 };
254 
255 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
256 
257 static void hugepd_free_rcu_callback(struct rcu_head *head)
258 {
259 	struct hugepd_freelist *batch =
260 		container_of(head, struct hugepd_freelist, rcu);
261 	unsigned int i;
262 
263 	for (i = 0; i < batch->index; i++)
264 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
265 
266 	free_page((unsigned long)batch);
267 }
268 
269 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
270 {
271 	struct hugepd_freelist **batchp;
272 
273 	batchp = &get_cpu_var(hugepd_freelist_cur);
274 
275 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
276 	    mm_is_thread_local(tlb->mm)) {
277 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
278 		put_cpu_var(hugepd_freelist_cur);
279 		return;
280 	}
281 
282 	if (*batchp == NULL) {
283 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
284 		(*batchp)->index = 0;
285 	}
286 
287 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
288 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
289 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
290 		*batchp = NULL;
291 	}
292 	put_cpu_var(hugepd_freelist_cur);
293 }
294 #else
295 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
296 #endif
297 
298 /* Return true when the entry to be freed maps more than the area being freed */
299 static bool range_is_outside_limits(unsigned long start, unsigned long end,
300 				    unsigned long floor, unsigned long ceiling,
301 				    unsigned long mask)
302 {
303 	if ((start & mask) < floor)
304 		return true;
305 	if (ceiling) {
306 		ceiling &= mask;
307 		if (!ceiling)
308 			return true;
309 	}
310 	return end - 1 > ceiling - 1;
311 }
312 
313 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
314 			      unsigned long start, unsigned long end,
315 			      unsigned long floor, unsigned long ceiling)
316 {
317 	pte_t *hugepte = hugepd_page(*hpdp);
318 	int i;
319 
320 	unsigned long pdmask = ~((1UL << pdshift) - 1);
321 	unsigned int num_hugepd = 1;
322 	unsigned int shift = hugepd_shift(*hpdp);
323 
324 	/* Note: On fsl the hpdp may be the first of several */
325 	if (shift > pdshift)
326 		num_hugepd = 1 << (shift - pdshift);
327 
328 	if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
329 		return;
330 
331 	for (i = 0; i < num_hugepd; i++, hpdp++)
332 		*hpdp = __hugepd(0);
333 
334 	if (shift >= pdshift)
335 		hugepd_free(tlb, hugepte);
336 	else
337 		pgtable_free_tlb(tlb, hugepte,
338 				 get_hugepd_cache_index(pdshift - shift));
339 }
340 
341 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
342 				   unsigned long addr, unsigned long end,
343 				   unsigned long floor, unsigned long ceiling)
344 {
345 	pgtable_t token = pmd_pgtable(*pmd);
346 
347 	if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
348 		return;
349 
350 	pmd_clear(pmd);
351 	pte_free_tlb(tlb, token, addr);
352 	mm_dec_nr_ptes(tlb->mm);
353 }
354 
355 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
356 				   unsigned long addr, unsigned long end,
357 				   unsigned long floor, unsigned long ceiling)
358 {
359 	pmd_t *pmd;
360 	unsigned long next;
361 	unsigned long start;
362 
363 	start = addr;
364 	do {
365 		unsigned long more;
366 
367 		pmd = pmd_offset(pud, addr);
368 		next = pmd_addr_end(addr, end);
369 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
370 			if (pmd_none_or_clear_bad(pmd))
371 				continue;
372 
373 			/*
374 			 * if it is not hugepd pointer, we should already find
375 			 * it cleared.
376 			 */
377 			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
378 
379 			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
380 
381 			continue;
382 		}
383 		/*
384 		 * Increment next by the size of the huge mapping since
385 		 * there may be more than one entry at this level for a
386 		 * single hugepage, but all of them point to
387 		 * the same kmem cache that holds the hugepte.
388 		 */
389 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
390 		if (more > next)
391 			next = more;
392 
393 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
394 				  addr, next, floor, ceiling);
395 	} while (addr = next, addr != end);
396 
397 	if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
398 		return;
399 
400 	pmd = pmd_offset(pud, start & PUD_MASK);
401 	pud_clear(pud);
402 	pmd_free_tlb(tlb, pmd, start & PUD_MASK);
403 	mm_dec_nr_pmds(tlb->mm);
404 }
405 
406 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
407 				   unsigned long addr, unsigned long end,
408 				   unsigned long floor, unsigned long ceiling)
409 {
410 	pud_t *pud;
411 	unsigned long next;
412 	unsigned long start;
413 
414 	start = addr;
415 	do {
416 		pud = pud_offset(p4d, addr);
417 		next = pud_addr_end(addr, end);
418 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
419 			if (pud_none_or_clear_bad(pud))
420 				continue;
421 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
422 					       ceiling);
423 		} else {
424 			unsigned long more;
425 			/*
426 			 * Increment next by the size of the huge mapping since
427 			 * there may be more than one entry at this level for a
428 			 * single hugepage, but all of them point to
429 			 * the same kmem cache that holds the hugepte.
430 			 */
431 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
432 			if (more > next)
433 				next = more;
434 
435 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
436 					  addr, next, floor, ceiling);
437 		}
438 	} while (addr = next, addr != end);
439 
440 	if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
441 		return;
442 
443 	pud = pud_offset(p4d, start & PGDIR_MASK);
444 	p4d_clear(p4d);
445 	pud_free_tlb(tlb, pud, start & PGDIR_MASK);
446 	mm_dec_nr_puds(tlb->mm);
447 }
448 
449 /*
450  * This function frees user-level page tables of a process.
451  */
452 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
453 			    unsigned long addr, unsigned long end,
454 			    unsigned long floor, unsigned long ceiling)
455 {
456 	pgd_t *pgd;
457 	p4d_t *p4d;
458 	unsigned long next;
459 
460 	/*
461 	 * Because there are a number of different possible pagetable
462 	 * layouts for hugepage ranges, we limit knowledge of how
463 	 * things should be laid out to the allocation path
464 	 * (huge_pte_alloc(), above).  Everything else works out the
465 	 * structure as it goes from information in the hugepd
466 	 * pointers.  That means that we can't here use the
467 	 * optimization used in the normal page free_pgd_range(), of
468 	 * checking whether we're actually covering a large enough
469 	 * range to have to do anything at the top level of the walk
470 	 * instead of at the bottom.
471 	 *
472 	 * To make sense of this, you should probably go read the big
473 	 * block comment at the top of the normal free_pgd_range(),
474 	 * too.
475 	 */
476 
477 	do {
478 		next = pgd_addr_end(addr, end);
479 		pgd = pgd_offset(tlb->mm, addr);
480 		p4d = p4d_offset(pgd, addr);
481 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
482 			if (p4d_none_or_clear_bad(p4d))
483 				continue;
484 			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
485 		} else {
486 			unsigned long more;
487 			/*
488 			 * Increment next by the size of the huge mapping since
489 			 * there may be more than one entry at the pgd level
490 			 * for a single hugepage, but all of them point to the
491 			 * same kmem cache that holds the hugepte.
492 			 */
493 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
494 			if (more > next)
495 				next = more;
496 
497 			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
498 					  addr, next, floor, ceiling);
499 		}
500 	} while (addr = next, addr != end);
501 }
502 
503 struct page *follow_huge_pd(struct vm_area_struct *vma,
504 			    unsigned long address, hugepd_t hpd,
505 			    int flags, int pdshift)
506 {
507 	pte_t *ptep;
508 	spinlock_t *ptl;
509 	struct page *page = NULL;
510 	unsigned long mask;
511 	int shift = hugepd_shift(hpd);
512 	struct mm_struct *mm = vma->vm_mm;
513 
514 retry:
515 	/*
516 	 * hugepage directory entries are protected by mm->page_table_lock
517 	 * Use this instead of huge_pte_lockptr
518 	 */
519 	ptl = &mm->page_table_lock;
520 	spin_lock(ptl);
521 
522 	ptep = hugepte_offset(hpd, address, pdshift);
523 	if (pte_present(*ptep)) {
524 		mask = (1UL << shift) - 1;
525 		page = pte_page(*ptep);
526 		page += ((address & mask) >> PAGE_SHIFT);
527 		if (flags & FOLL_GET)
528 			get_page(page);
529 	} else {
530 		if (is_hugetlb_entry_migration(*ptep)) {
531 			spin_unlock(ptl);
532 			__migration_entry_wait(mm, ptep, ptl);
533 			goto retry;
534 		}
535 	}
536 	spin_unlock(ptl);
537 	return page;
538 }
539 
540 #ifdef CONFIG_PPC_MM_SLICES
541 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
542 					unsigned long len, unsigned long pgoff,
543 					unsigned long flags)
544 {
545 	struct hstate *hstate = hstate_file(file);
546 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
547 
548 #ifdef CONFIG_PPC_RADIX_MMU
549 	if (radix_enabled())
550 		return radix__hugetlb_get_unmapped_area(file, addr, len,
551 						       pgoff, flags);
552 #endif
553 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
554 }
555 #endif
556 
557 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
558 {
559 	/* With radix we don't use slice, so derive it from vma*/
560 	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
561 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
562 
563 		return 1UL << mmu_psize_to_shift(psize);
564 	}
565 	return vma_kernel_pagesize(vma);
566 }
567 
568 bool __init arch_hugetlb_valid_size(unsigned long size)
569 {
570 	int shift = __ffs(size);
571 	int mmu_psize;
572 
573 	/* Check that it is a page size supported by the hardware and
574 	 * that it fits within pagetable and slice limits. */
575 	if (size <= PAGE_SIZE || !is_power_of_2(size))
576 		return false;
577 
578 	mmu_psize = check_and_get_huge_psize(shift);
579 	if (mmu_psize < 0)
580 		return false;
581 
582 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
583 
584 	return true;
585 }
586 
587 static int __init add_huge_page_size(unsigned long long size)
588 {
589 	int shift = __ffs(size);
590 
591 	if (!arch_hugetlb_valid_size((unsigned long)size))
592 		return -EINVAL;
593 
594 	hugetlb_add_hstate(shift - PAGE_SHIFT);
595 	return 0;
596 }
597 
598 static int __init hugetlbpage_init(void)
599 {
600 	bool configured = false;
601 	int psize;
602 
603 	if (hugetlb_disabled) {
604 		pr_info("HugeTLB support is disabled!\n");
605 		return 0;
606 	}
607 
608 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
609 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
610 		return -ENODEV;
611 
612 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
613 		unsigned shift;
614 		unsigned pdshift;
615 
616 		if (!mmu_psize_defs[psize].shift)
617 			continue;
618 
619 		shift = mmu_psize_to_shift(psize);
620 
621 #ifdef CONFIG_PPC_BOOK3S_64
622 		if (shift > PGDIR_SHIFT)
623 			continue;
624 		else if (shift > PUD_SHIFT)
625 			pdshift = PGDIR_SHIFT;
626 		else if (shift > PMD_SHIFT)
627 			pdshift = PUD_SHIFT;
628 		else
629 			pdshift = PMD_SHIFT;
630 #else
631 		if (shift < PUD_SHIFT)
632 			pdshift = PMD_SHIFT;
633 		else if (shift < PGDIR_SHIFT)
634 			pdshift = PUD_SHIFT;
635 		else
636 			pdshift = PGDIR_SHIFT;
637 #endif
638 
639 		if (add_huge_page_size(1ULL << shift) < 0)
640 			continue;
641 		/*
642 		 * if we have pdshift and shift value same, we don't
643 		 * use pgt cache for hugepd.
644 		 */
645 		if (pdshift > shift) {
646 			if (!IS_ENABLED(CONFIG_PPC_8xx))
647 				pgtable_cache_add(pdshift - shift);
648 		} else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
649 			   IS_ENABLED(CONFIG_PPC_8xx)) {
650 			pgtable_cache_add(PTE_T_ORDER);
651 		}
652 
653 		configured = true;
654 	}
655 
656 	if (configured) {
657 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
658 			hugetlbpage_init_default();
659 	} else
660 		pr_info("Failed to initialize. Disabling HugeTLB");
661 
662 	return 0;
663 }
664 
665 arch_initcall(hugetlbpage_init);
666 
667 void __init gigantic_hugetlb_cma_reserve(void)
668 {
669 	unsigned long order = 0;
670 
671 	if (radix_enabled())
672 		order = PUD_SHIFT - PAGE_SHIFT;
673 	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
674 		/*
675 		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
676 		 */
677 		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
678 
679 	if (order) {
680 		VM_WARN_ON(order < MAX_ORDER);
681 		hugetlb_cma_reserve(order);
682 	}
683 }
684