xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision c21b37f6)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/tlb.h>
26 #include <asm/spu.h>
27 
28 #include <linux/sysctl.h>
29 
30 #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32 
33 #ifdef CONFIG_PPC_64K_PAGES
34 #define HUGEPTE_INDEX_SIZE	(PMD_SHIFT-HPAGE_SHIFT)
35 #else
36 #define HUGEPTE_INDEX_SIZE	(PUD_SHIFT-HPAGE_SHIFT)
37 #endif
38 #define PTRS_PER_HUGEPTE	(1 << HUGEPTE_INDEX_SIZE)
39 #define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
40 
41 #define HUGEPD_SHIFT		(HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
42 #define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT)
43 #define HUGEPD_MASK		(~(HUGEPD_SIZE-1))
44 
45 #define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM])
46 
47 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
48  * will choke on pointers to hugepte tables, which is handy for
49  * catching screwups early. */
50 #define HUGEPD_OK	0x1
51 
52 typedef struct { unsigned long pd; } hugepd_t;
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 static inline pte_t *hugepd_page(hugepd_t hpd)
57 {
58 	BUG_ON(!(hpd.pd & HUGEPD_OK));
59 	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
60 }
61 
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
63 {
64 	unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
65 	pte_t *dir = hugepd_page(*hpdp);
66 
67 	return dir + idx;
68 }
69 
70 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
71 			   unsigned long address)
72 {
73 	pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
74 				      GFP_KERNEL|__GFP_REPEAT);
75 
76 	if (! new)
77 		return -ENOMEM;
78 
79 	spin_lock(&mm->page_table_lock);
80 	if (!hugepd_none(*hpdp))
81 		kmem_cache_free(huge_pgtable_cache, new);
82 	else
83 		hpdp->pd = (unsigned long)new | HUGEPD_OK;
84 	spin_unlock(&mm->page_table_lock);
85 	return 0;
86 }
87 
88 /* Modelled after find_linux_pte() */
89 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
90 {
91 	pgd_t *pg;
92 	pud_t *pu;
93 
94 	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
95 
96 	addr &= HPAGE_MASK;
97 
98 	pg = pgd_offset(mm, addr);
99 	if (!pgd_none(*pg)) {
100 		pu = pud_offset(pg, addr);
101 		if (!pud_none(*pu)) {
102 #ifdef CONFIG_PPC_64K_PAGES
103 			pmd_t *pm;
104 			pm = pmd_offset(pu, addr);
105 			if (!pmd_none(*pm))
106 				return hugepte_offset((hugepd_t *)pm, addr);
107 #else
108 			return hugepte_offset((hugepd_t *)pu, addr);
109 #endif
110 		}
111 	}
112 
113 	return NULL;
114 }
115 
116 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
117 {
118 	pgd_t *pg;
119 	pud_t *pu;
120 	hugepd_t *hpdp = NULL;
121 
122 	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
123 
124 	addr &= HPAGE_MASK;
125 
126 	pg = pgd_offset(mm, addr);
127 	pu = pud_alloc(mm, pg, addr);
128 
129 	if (pu) {
130 #ifdef CONFIG_PPC_64K_PAGES
131 		pmd_t *pm;
132 		pm = pmd_alloc(mm, pu, addr);
133 		if (pm)
134 			hpdp = (hugepd_t *)pm;
135 #else
136 		hpdp = (hugepd_t *)pu;
137 #endif
138 	}
139 
140 	if (! hpdp)
141 		return NULL;
142 
143 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
144 		return NULL;
145 
146 	return hugepte_offset(hpdp, addr);
147 }
148 
149 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
150 {
151 	return 0;
152 }
153 
154 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
155 {
156 	pte_t *hugepte = hugepd_page(*hpdp);
157 
158 	hpdp->pd = 0;
159 	tlb->need_flush = 1;
160 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
161 						 PGF_CACHENUM_MASK));
162 }
163 
164 #ifdef CONFIG_PPC_64K_PAGES
165 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
166 				   unsigned long addr, unsigned long end,
167 				   unsigned long floor, unsigned long ceiling)
168 {
169 	pmd_t *pmd;
170 	unsigned long next;
171 	unsigned long start;
172 
173 	start = addr;
174 	pmd = pmd_offset(pud, addr);
175 	do {
176 		next = pmd_addr_end(addr, end);
177 		if (pmd_none(*pmd))
178 			continue;
179 		free_hugepte_range(tlb, (hugepd_t *)pmd);
180 	} while (pmd++, addr = next, addr != end);
181 
182 	start &= PUD_MASK;
183 	if (start < floor)
184 		return;
185 	if (ceiling) {
186 		ceiling &= PUD_MASK;
187 		if (!ceiling)
188 			return;
189 	}
190 	if (end - 1 > ceiling - 1)
191 		return;
192 
193 	pmd = pmd_offset(pud, start);
194 	pud_clear(pud);
195 	pmd_free_tlb(tlb, pmd);
196 }
197 #endif
198 
199 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
200 				   unsigned long addr, unsigned long end,
201 				   unsigned long floor, unsigned long ceiling)
202 {
203 	pud_t *pud;
204 	unsigned long next;
205 	unsigned long start;
206 
207 	start = addr;
208 	pud = pud_offset(pgd, addr);
209 	do {
210 		next = pud_addr_end(addr, end);
211 #ifdef CONFIG_PPC_64K_PAGES
212 		if (pud_none_or_clear_bad(pud))
213 			continue;
214 		hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
215 #else
216 		if (pud_none(*pud))
217 			continue;
218 		free_hugepte_range(tlb, (hugepd_t *)pud);
219 #endif
220 	} while (pud++, addr = next, addr != end);
221 
222 	start &= PGDIR_MASK;
223 	if (start < floor)
224 		return;
225 	if (ceiling) {
226 		ceiling &= PGDIR_MASK;
227 		if (!ceiling)
228 			return;
229 	}
230 	if (end - 1 > ceiling - 1)
231 		return;
232 
233 	pud = pud_offset(pgd, start);
234 	pgd_clear(pgd);
235 	pud_free_tlb(tlb, pud);
236 }
237 
238 /*
239  * This function frees user-level page tables of a process.
240  *
241  * Must be called with pagetable lock held.
242  */
243 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
244 			    unsigned long addr, unsigned long end,
245 			    unsigned long floor, unsigned long ceiling)
246 {
247 	pgd_t *pgd;
248 	unsigned long next;
249 	unsigned long start;
250 
251 	/*
252 	 * Comments below take from the normal free_pgd_range().  They
253 	 * apply here too.  The tests against HUGEPD_MASK below are
254 	 * essential, because we *don't* test for this at the bottom
255 	 * level.  Without them we'll attempt to free a hugepte table
256 	 * when we unmap just part of it, even if there are other
257 	 * active mappings using it.
258 	 *
259 	 * The next few lines have given us lots of grief...
260 	 *
261 	 * Why are we testing HUGEPD* at this top level?  Because
262 	 * often there will be no work to do at all, and we'd prefer
263 	 * not to go all the way down to the bottom just to discover
264 	 * that.
265 	 *
266 	 * Why all these "- 1"s?  Because 0 represents both the bottom
267 	 * of the address space and the top of it (using -1 for the
268 	 * top wouldn't help much: the masks would do the wrong thing).
269 	 * The rule is that addr 0 and floor 0 refer to the bottom of
270 	 * the address space, but end 0 and ceiling 0 refer to the top
271 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
272 	 * that end 0 case should be mythical).
273 	 *
274 	 * Wherever addr is brought up or ceiling brought down, we
275 	 * must be careful to reject "the opposite 0" before it
276 	 * confuses the subsequent tests.  But what about where end is
277 	 * brought down by HUGEPD_SIZE below? no, end can't go down to
278 	 * 0 there.
279 	 *
280 	 * Whereas we round start (addr) and ceiling down, by different
281 	 * masks at different levels, in order to test whether a table
282 	 * now has no other vmas using it, so can be freed, we don't
283 	 * bother to round floor or end up - the tests don't need that.
284 	 */
285 
286 	addr &= HUGEPD_MASK;
287 	if (addr < floor) {
288 		addr += HUGEPD_SIZE;
289 		if (!addr)
290 			return;
291 	}
292 	if (ceiling) {
293 		ceiling &= HUGEPD_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		end -= HUGEPD_SIZE;
299 	if (addr > end - 1)
300 		return;
301 
302 	start = addr;
303 	pgd = pgd_offset((*tlb)->mm, addr);
304 	do {
305 		BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize);
306 		next = pgd_addr_end(addr, end);
307 		if (pgd_none_or_clear_bad(pgd))
308 			continue;
309 		hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
310 	} while (pgd++, addr = next, addr != end);
311 }
312 
313 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
314 		     pte_t *ptep, pte_t pte)
315 {
316 	if (pte_present(*ptep)) {
317 		/* We open-code pte_clear because we need to pass the right
318 		 * argument to hpte_need_flush (huge / !huge). Might not be
319 		 * necessary anymore if we make hpte_need_flush() get the
320 		 * page size from the slices
321 		 */
322 		pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
323 	}
324 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
325 }
326 
327 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
328 			      pte_t *ptep)
329 {
330 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
331 	return __pte(old);
332 }
333 
334 struct page *
335 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
336 {
337 	pte_t *ptep;
338 	struct page *page;
339 
340 	if (get_slice_psize(mm, address) != mmu_huge_psize)
341 		return ERR_PTR(-EINVAL);
342 
343 	ptep = huge_pte_offset(mm, address);
344 	page = pte_page(*ptep);
345 	if (page)
346 		page += (address % HPAGE_SIZE) / PAGE_SIZE;
347 
348 	return page;
349 }
350 
351 int pmd_huge(pmd_t pmd)
352 {
353 	return 0;
354 }
355 
356 struct page *
357 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
358 		pmd_t *pmd, int write)
359 {
360 	BUG();
361 	return NULL;
362 }
363 
364 
365 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
366 					unsigned long len, unsigned long pgoff,
367 					unsigned long flags)
368 {
369 	return slice_get_unmapped_area(addr, len, flags,
370 				       mmu_huge_psize, 1, 0);
371 }
372 
373 /*
374  * Called by asm hashtable.S for doing lazy icache flush
375  */
376 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
377 						  pte_t pte, int trap)
378 {
379 	struct page *page;
380 	int i;
381 
382 	if (!pfn_valid(pte_pfn(pte)))
383 		return rflags;
384 
385 	page = pte_page(pte);
386 
387 	/* page is dirty */
388 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
389 		if (trap == 0x400) {
390 			for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
391 				__flush_dcache_icache(page_address(page+i));
392 			set_bit(PG_arch_1, &page->flags);
393 		} else {
394 			rflags |= HPTE_R_N;
395 		}
396 	}
397 	return rflags;
398 }
399 
400 int hash_huge_page(struct mm_struct *mm, unsigned long access,
401 		   unsigned long ea, unsigned long vsid, int local,
402 		   unsigned long trap)
403 {
404 	pte_t *ptep;
405 	unsigned long old_pte, new_pte;
406 	unsigned long va, rflags, pa;
407 	long slot;
408 	int err = 1;
409 
410 	ptep = huge_pte_offset(mm, ea);
411 
412 	/* Search the Linux page table for a match with va */
413 	va = (vsid << 28) | (ea & 0x0fffffff);
414 
415 	/*
416 	 * If no pte found or not present, send the problem up to
417 	 * do_page_fault
418 	 */
419 	if (unlikely(!ptep || pte_none(*ptep)))
420 		goto out;
421 
422 	/*
423 	 * Check the user's access rights to the page.  If access should be
424 	 * prevented then send the problem up to do_page_fault.
425 	 */
426 	if (unlikely(access & ~pte_val(*ptep)))
427 		goto out;
428 	/*
429 	 * At this point, we have a pte (old_pte) which can be used to build
430 	 * or update an HPTE. There are 2 cases:
431 	 *
432 	 * 1. There is a valid (present) pte with no associated HPTE (this is
433 	 *	the most common case)
434 	 * 2. There is a valid (present) pte with an associated HPTE. The
435 	 *	current values of the pp bits in the HPTE prevent access
436 	 *	because we are doing software DIRTY bit management and the
437 	 *	page is currently not DIRTY.
438 	 */
439 
440 
441 	do {
442 		old_pte = pte_val(*ptep);
443 		if (old_pte & _PAGE_BUSY)
444 			goto out;
445 		new_pte = old_pte | _PAGE_BUSY |
446 			_PAGE_ACCESSED | _PAGE_HASHPTE;
447 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
448 					 old_pte, new_pte));
449 
450 	rflags = 0x2 | (!(new_pte & _PAGE_RW));
451  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
452 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
453 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
454 		/* No CPU has hugepages but lacks no execute, so we
455 		 * don't need to worry about that case */
456 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
457 						       trap);
458 
459 	/* Check if pte already has an hpte (case 2) */
460 	if (unlikely(old_pte & _PAGE_HASHPTE)) {
461 		/* There MIGHT be an HPTE for this pte */
462 		unsigned long hash, slot;
463 
464 		hash = hpt_hash(va, HPAGE_SHIFT);
465 		if (old_pte & _PAGE_F_SECOND)
466 			hash = ~hash;
467 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
468 		slot += (old_pte & _PAGE_F_GIX) >> 12;
469 
470 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
471 					 local) == -1)
472 			old_pte &= ~_PAGE_HPTEFLAGS;
473 	}
474 
475 	if (likely(!(old_pte & _PAGE_HASHPTE))) {
476 		unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
477 		unsigned long hpte_group;
478 
479 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
480 
481 repeat:
482 		hpte_group = ((hash & htab_hash_mask) *
483 			      HPTES_PER_GROUP) & ~0x7UL;
484 
485 		/* clear HPTE slot informations in new PTE */
486 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
487 
488 		/* Add in WIMG bits */
489 		/* XXX We should store these in the pte */
490 		/* --BenH: I think they are ... */
491 		rflags |= _PAGE_COHERENT;
492 
493 		/* Insert into the hash table, primary slot */
494 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
495 					  mmu_huge_psize);
496 
497 		/* Primary is full, try the secondary */
498 		if (unlikely(slot == -1)) {
499 			hpte_group = ((~hash & htab_hash_mask) *
500 				      HPTES_PER_GROUP) & ~0x7UL;
501 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
502 						  HPTE_V_SECONDARY,
503 						  mmu_huge_psize);
504 			if (slot == -1) {
505 				if (mftb() & 0x1)
506 					hpte_group = ((hash & htab_hash_mask) *
507 						      HPTES_PER_GROUP)&~0x7UL;
508 
509 				ppc_md.hpte_remove(hpte_group);
510 				goto repeat;
511                         }
512 		}
513 
514 		if (unlikely(slot == -2))
515 			panic("hash_huge_page: pte_insert failed\n");
516 
517 		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
518 	}
519 
520 	/*
521 	 * No need to use ldarx/stdcx here
522 	 */
523 	*ptep = __pte(new_pte & ~_PAGE_BUSY);
524 
525 	err = 0;
526 
527  out:
528 	return err;
529 }
530 
531 static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
532 {
533 	memset(addr, 0, kmem_cache_size(cache));
534 }
535 
536 static int __init hugetlbpage_init(void)
537 {
538 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
539 		return -ENODEV;
540 
541 	huge_pgtable_cache = kmem_cache_create("hugepte_cache",
542 					       HUGEPTE_TABLE_SIZE,
543 					       HUGEPTE_TABLE_SIZE,
544 					       0,
545 					       zero_ctor);
546 	if (! huge_pgtable_cache)
547 		panic("hugetlbpage_init(): could not create hugepte cache\n");
548 
549 	return 0;
550 }
551 
552 module_init(hugetlbpage_init);
553