xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
57 {
58 	/* Only called for hugetlbfs pages, hence can ignore THP */
59 	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
60 }
61 
62 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63 			   unsigned long address, unsigned pdshift, unsigned pshift)
64 {
65 	struct kmem_cache *cachep;
66 	pte_t *new;
67 
68 #ifdef CONFIG_PPC_FSL_BOOK3E
69 	int i;
70 	int num_hugepd = 1 << (pshift - pdshift);
71 	cachep = hugepte_cache;
72 #else
73 	cachep = PGT_CACHE(pdshift - pshift);
74 #endif
75 
76 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
77 
78 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
80 
81 	if (! new)
82 		return -ENOMEM;
83 
84 	spin_lock(&mm->page_table_lock);
85 #ifdef CONFIG_PPC_FSL_BOOK3E
86 	/*
87 	 * We have multiple higher-level entries that point to the same
88 	 * actual pte location.  Fill in each as we go and backtrack on error.
89 	 * We need all of these so the DTLB pgtable walk code can find the
90 	 * right higher-level entry without knowing if it's a hugepage or not.
91 	 */
92 	for (i = 0; i < num_hugepd; i++, hpdp++) {
93 		if (unlikely(!hugepd_none(*hpdp)))
94 			break;
95 		else
96 			/* We use the old format for PPC_FSL_BOOK3E */
97 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
98 	}
99 	/* If we bailed from the for loop early, an error occurred, clean up */
100 	if (i < num_hugepd) {
101 		for (i = i - 1 ; i >= 0; i--, hpdp--)
102 			hpdp->pd = 0;
103 		kmem_cache_free(cachep, new);
104 	}
105 #else
106 	if (!hugepd_none(*hpdp))
107 		kmem_cache_free(cachep, new);
108 	else {
109 #ifdef CONFIG_PPC_BOOK3S_64
110 		hpdp->pd = (unsigned long)new |
111 			    (shift_to_mmu_psize(pshift) << 2);
112 #else
113 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
114 #endif
115 	}
116 #endif
117 	spin_unlock(&mm->page_table_lock);
118 	return 0;
119 }
120 
121 /*
122  * These macros define how to determine which level of the page table holds
123  * the hpdp.
124  */
125 #ifdef CONFIG_PPC_FSL_BOOK3E
126 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
127 #define HUGEPD_PUD_SHIFT PUD_SHIFT
128 #else
129 #define HUGEPD_PGD_SHIFT PUD_SHIFT
130 #define HUGEPD_PUD_SHIFT PMD_SHIFT
131 #endif
132 
133 #ifdef CONFIG_PPC_BOOK3S_64
134 /*
135  * At this point we do the placement change only for BOOK3S 64. This would
136  * possibly work on other subarchs.
137  */
138 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
139 {
140 	pgd_t *pg;
141 	pud_t *pu;
142 	pmd_t *pm;
143 	hugepd_t *hpdp = NULL;
144 	unsigned pshift = __ffs(sz);
145 	unsigned pdshift = PGDIR_SHIFT;
146 
147 	addr &= ~(sz-1);
148 	pg = pgd_offset(mm, addr);
149 
150 	if (pshift == PGDIR_SHIFT)
151 		/* 16GB huge page */
152 		return (pte_t *) pg;
153 	else if (pshift > PUD_SHIFT)
154 		/*
155 		 * We need to use hugepd table
156 		 */
157 		hpdp = (hugepd_t *)pg;
158 	else {
159 		pdshift = PUD_SHIFT;
160 		pu = pud_alloc(mm, pg, addr);
161 		if (pshift == PUD_SHIFT)
162 			return (pte_t *)pu;
163 		else if (pshift > PMD_SHIFT)
164 			hpdp = (hugepd_t *)pu;
165 		else {
166 			pdshift = PMD_SHIFT;
167 			pm = pmd_alloc(mm, pu, addr);
168 			if (pshift == PMD_SHIFT)
169 				/* 16MB hugepage */
170 				return (pte_t *)pm;
171 			else
172 				hpdp = (hugepd_t *)pm;
173 		}
174 	}
175 	if (!hpdp)
176 		return NULL;
177 
178 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
179 
180 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
181 		return NULL;
182 
183 	return hugepte_offset(*hpdp, addr, pdshift);
184 }
185 
186 #else
187 
188 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
189 {
190 	pgd_t *pg;
191 	pud_t *pu;
192 	pmd_t *pm;
193 	hugepd_t *hpdp = NULL;
194 	unsigned pshift = __ffs(sz);
195 	unsigned pdshift = PGDIR_SHIFT;
196 
197 	addr &= ~(sz-1);
198 
199 	pg = pgd_offset(mm, addr);
200 
201 	if (pshift >= HUGEPD_PGD_SHIFT) {
202 		hpdp = (hugepd_t *)pg;
203 	} else {
204 		pdshift = PUD_SHIFT;
205 		pu = pud_alloc(mm, pg, addr);
206 		if (pshift >= HUGEPD_PUD_SHIFT) {
207 			hpdp = (hugepd_t *)pu;
208 		} else {
209 			pdshift = PMD_SHIFT;
210 			pm = pmd_alloc(mm, pu, addr);
211 			hpdp = (hugepd_t *)pm;
212 		}
213 	}
214 
215 	if (!hpdp)
216 		return NULL;
217 
218 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
219 
220 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
221 		return NULL;
222 
223 	return hugepte_offset(*hpdp, addr, pdshift);
224 }
225 #endif
226 
227 #ifdef CONFIG_PPC_FSL_BOOK3E
228 /* Build list of addresses of gigantic pages.  This function is used in early
229  * boot before the buddy allocator is setup.
230  */
231 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
232 {
233 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
234 	int i;
235 
236 	if (addr == 0)
237 		return;
238 
239 	gpage_freearray[idx].nr_gpages = number_of_pages;
240 
241 	for (i = 0; i < number_of_pages; i++) {
242 		gpage_freearray[idx].gpage_list[i] = addr;
243 		addr += page_size;
244 	}
245 }
246 
247 /*
248  * Moves the gigantic page addresses from the temporary list to the
249  * huge_boot_pages list.
250  */
251 int alloc_bootmem_huge_page(struct hstate *hstate)
252 {
253 	struct huge_bootmem_page *m;
254 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
255 	int nr_gpages = gpage_freearray[idx].nr_gpages;
256 
257 	if (nr_gpages == 0)
258 		return 0;
259 
260 #ifdef CONFIG_HIGHMEM
261 	/*
262 	 * If gpages can be in highmem we can't use the trick of storing the
263 	 * data structure in the page; allocate space for this
264 	 */
265 	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
266 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
267 #else
268 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
269 #endif
270 
271 	list_add(&m->list, &huge_boot_pages);
272 	gpage_freearray[idx].nr_gpages = nr_gpages;
273 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
274 	m->hstate = hstate;
275 
276 	return 1;
277 }
278 /*
279  * Scan the command line hugepagesz= options for gigantic pages; store those in
280  * a list that we use to allocate the memory once all options are parsed.
281  */
282 
283 unsigned long gpage_npages[MMU_PAGE_COUNT];
284 
285 static int __init do_gpage_early_setup(char *param, char *val,
286 				       const char *unused, void *arg)
287 {
288 	static phys_addr_t size;
289 	unsigned long npages;
290 
291 	/*
292 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
293 	 * use the size variable to keep track of whether or not this was done
294 	 * properly and skip over instances where it is incorrect.  Other
295 	 * command-line parsing code will issue warnings, so we don't need to.
296 	 *
297 	 */
298 	if ((strcmp(param, "default_hugepagesz") == 0) ||
299 	    (strcmp(param, "hugepagesz") == 0)) {
300 		size = memparse(val, NULL);
301 	} else if (strcmp(param, "hugepages") == 0) {
302 		if (size != 0) {
303 			if (sscanf(val, "%lu", &npages) <= 0)
304 				npages = 0;
305 			if (npages > MAX_NUMBER_GPAGES) {
306 				pr_warn("MMU: %lu pages requested for page "
307 					"size %llu KB, limiting to "
308 					__stringify(MAX_NUMBER_GPAGES) "\n",
309 					npages, size / 1024);
310 				npages = MAX_NUMBER_GPAGES;
311 			}
312 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
313 			size = 0;
314 		}
315 	}
316 	return 0;
317 }
318 
319 
320 /*
321  * This function allocates physical space for pages that are larger than the
322  * buddy allocator can handle.  We want to allocate these in highmem because
323  * the amount of lowmem is limited.  This means that this function MUST be
324  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
325  * allocate to grab highmem.
326  */
327 void __init reserve_hugetlb_gpages(void)
328 {
329 	static __initdata char cmdline[COMMAND_LINE_SIZE];
330 	phys_addr_t size, base;
331 	int i;
332 
333 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
334 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
335 			NULL, &do_gpage_early_setup);
336 
337 	/*
338 	 * Walk gpage list in reverse, allocating larger page sizes first.
339 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
340 	 * When we reach the point in the list where pages are no longer
341 	 * considered gpages, we're done.
342 	 */
343 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
344 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
345 			continue;
346 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
347 			break;
348 
349 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
350 		base = memblock_alloc_base(size * gpage_npages[i], size,
351 					   MEMBLOCK_ALLOC_ANYWHERE);
352 		add_gpage(base, size, gpage_npages[i]);
353 	}
354 }
355 
356 #else /* !PPC_FSL_BOOK3E */
357 
358 /* Build list of addresses of gigantic pages.  This function is used in early
359  * boot before the buddy allocator is setup.
360  */
361 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
362 {
363 	if (!addr)
364 		return;
365 	while (number_of_pages > 0) {
366 		gpage_freearray[nr_gpages] = addr;
367 		nr_gpages++;
368 		number_of_pages--;
369 		addr += page_size;
370 	}
371 }
372 
373 /* Moves the gigantic page addresses from the temporary list to the
374  * huge_boot_pages list.
375  */
376 int alloc_bootmem_huge_page(struct hstate *hstate)
377 {
378 	struct huge_bootmem_page *m;
379 	if (nr_gpages == 0)
380 		return 0;
381 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
382 	gpage_freearray[nr_gpages] = 0;
383 	list_add(&m->list, &huge_boot_pages);
384 	m->hstate = hstate;
385 	return 1;
386 }
387 #endif
388 
389 #ifdef CONFIG_PPC_FSL_BOOK3E
390 #define HUGEPD_FREELIST_SIZE \
391 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
392 
393 struct hugepd_freelist {
394 	struct rcu_head	rcu;
395 	unsigned int index;
396 	void *ptes[0];
397 };
398 
399 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
400 
401 static void hugepd_free_rcu_callback(struct rcu_head *head)
402 {
403 	struct hugepd_freelist *batch =
404 		container_of(head, struct hugepd_freelist, rcu);
405 	unsigned int i;
406 
407 	for (i = 0; i < batch->index; i++)
408 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
409 
410 	free_page((unsigned long)batch);
411 }
412 
413 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
414 {
415 	struct hugepd_freelist **batchp;
416 
417 	batchp = this_cpu_ptr(&hugepd_freelist_cur);
418 
419 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
420 	    cpumask_equal(mm_cpumask(tlb->mm),
421 			  cpumask_of(smp_processor_id()))) {
422 		kmem_cache_free(hugepte_cache, hugepte);
423         put_cpu_var(hugepd_freelist_cur);
424 		return;
425 	}
426 
427 	if (*batchp == NULL) {
428 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
429 		(*batchp)->index = 0;
430 	}
431 
432 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
433 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
434 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
435 		*batchp = NULL;
436 	}
437 	put_cpu_var(hugepd_freelist_cur);
438 }
439 #endif
440 
441 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
442 			      unsigned long start, unsigned long end,
443 			      unsigned long floor, unsigned long ceiling)
444 {
445 	pte_t *hugepte = hugepd_page(*hpdp);
446 	int i;
447 
448 	unsigned long pdmask = ~((1UL << pdshift) - 1);
449 	unsigned int num_hugepd = 1;
450 
451 #ifdef CONFIG_PPC_FSL_BOOK3E
452 	/* Note: On fsl the hpdp may be the first of several */
453 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
454 #else
455 	unsigned int shift = hugepd_shift(*hpdp);
456 #endif
457 
458 	start &= pdmask;
459 	if (start < floor)
460 		return;
461 	if (ceiling) {
462 		ceiling &= pdmask;
463 		if (! ceiling)
464 			return;
465 	}
466 	if (end - 1 > ceiling - 1)
467 		return;
468 
469 	for (i = 0; i < num_hugepd; i++, hpdp++)
470 		hpdp->pd = 0;
471 
472 #ifdef CONFIG_PPC_FSL_BOOK3E
473 	hugepd_free(tlb, hugepte);
474 #else
475 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
476 #endif
477 }
478 
479 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
480 				   unsigned long addr, unsigned long end,
481 				   unsigned long floor, unsigned long ceiling)
482 {
483 	pmd_t *pmd;
484 	unsigned long next;
485 	unsigned long start;
486 
487 	start = addr;
488 	do {
489 		pmd = pmd_offset(pud, addr);
490 		next = pmd_addr_end(addr, end);
491 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
492 			/*
493 			 * if it is not hugepd pointer, we should already find
494 			 * it cleared.
495 			 */
496 			WARN_ON(!pmd_none_or_clear_bad(pmd));
497 			continue;
498 		}
499 #ifdef CONFIG_PPC_FSL_BOOK3E
500 		/*
501 		 * Increment next by the size of the huge mapping since
502 		 * there may be more than one entry at this level for a
503 		 * single hugepage, but all of them point to
504 		 * the same kmem cache that holds the hugepte.
505 		 */
506 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
507 #endif
508 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
509 				  addr, next, floor, ceiling);
510 	} while (addr = next, addr != end);
511 
512 	start &= PUD_MASK;
513 	if (start < floor)
514 		return;
515 	if (ceiling) {
516 		ceiling &= PUD_MASK;
517 		if (!ceiling)
518 			return;
519 	}
520 	if (end - 1 > ceiling - 1)
521 		return;
522 
523 	pmd = pmd_offset(pud, start);
524 	pud_clear(pud);
525 	pmd_free_tlb(tlb, pmd, start);
526 	mm_dec_nr_pmds(tlb->mm);
527 }
528 
529 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
530 				   unsigned long addr, unsigned long end,
531 				   unsigned long floor, unsigned long ceiling)
532 {
533 	pud_t *pud;
534 	unsigned long next;
535 	unsigned long start;
536 
537 	start = addr;
538 	do {
539 		pud = pud_offset(pgd, addr);
540 		next = pud_addr_end(addr, end);
541 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
542 			if (pud_none_or_clear_bad(pud))
543 				continue;
544 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
545 					       ceiling);
546 		} else {
547 #ifdef CONFIG_PPC_FSL_BOOK3E
548 			/*
549 			 * Increment next by the size of the huge mapping since
550 			 * there may be more than one entry at this level for a
551 			 * single hugepage, but all of them point to
552 			 * the same kmem cache that holds the hugepte.
553 			 */
554 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
555 #endif
556 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
557 					  addr, next, floor, ceiling);
558 		}
559 	} while (addr = next, addr != end);
560 
561 	start &= PGDIR_MASK;
562 	if (start < floor)
563 		return;
564 	if (ceiling) {
565 		ceiling &= PGDIR_MASK;
566 		if (!ceiling)
567 			return;
568 	}
569 	if (end - 1 > ceiling - 1)
570 		return;
571 
572 	pud = pud_offset(pgd, start);
573 	pgd_clear(pgd);
574 	pud_free_tlb(tlb, pud, start);
575 }
576 
577 /*
578  * This function frees user-level page tables of a process.
579  */
580 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
581 			    unsigned long addr, unsigned long end,
582 			    unsigned long floor, unsigned long ceiling)
583 {
584 	pgd_t *pgd;
585 	unsigned long next;
586 
587 	/*
588 	 * Because there are a number of different possible pagetable
589 	 * layouts for hugepage ranges, we limit knowledge of how
590 	 * things should be laid out to the allocation path
591 	 * (huge_pte_alloc(), above).  Everything else works out the
592 	 * structure as it goes from information in the hugepd
593 	 * pointers.  That means that we can't here use the
594 	 * optimization used in the normal page free_pgd_range(), of
595 	 * checking whether we're actually covering a large enough
596 	 * range to have to do anything at the top level of the walk
597 	 * instead of at the bottom.
598 	 *
599 	 * To make sense of this, you should probably go read the big
600 	 * block comment at the top of the normal free_pgd_range(),
601 	 * too.
602 	 */
603 
604 	do {
605 		next = pgd_addr_end(addr, end);
606 		pgd = pgd_offset(tlb->mm, addr);
607 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
608 			if (pgd_none_or_clear_bad(pgd))
609 				continue;
610 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
611 		} else {
612 #ifdef CONFIG_PPC_FSL_BOOK3E
613 			/*
614 			 * Increment next by the size of the huge mapping since
615 			 * there may be more than one entry at the pgd level
616 			 * for a single hugepage, but all of them point to the
617 			 * same kmem cache that holds the hugepte.
618 			 */
619 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
620 #endif
621 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
622 					  addr, next, floor, ceiling);
623 		}
624 	} while (addr = next, addr != end);
625 }
626 
627 /*
628  * We are holding mmap_sem, so a parallel huge page collapse cannot run.
629  * To prevent hugepage split, disable irq.
630  */
631 struct page *
632 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
633 {
634 	bool is_thp;
635 	pte_t *ptep, pte;
636 	unsigned shift;
637 	unsigned long mask, flags;
638 	struct page *page = ERR_PTR(-EINVAL);
639 
640 	local_irq_save(flags);
641 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
642 	if (!ptep)
643 		goto no_page;
644 	pte = READ_ONCE(*ptep);
645 	/*
646 	 * Verify it is a huge page else bail.
647 	 * Transparent hugepages are handled by generic code. We can skip them
648 	 * here.
649 	 */
650 	if (!shift || is_thp)
651 		goto no_page;
652 
653 	if (!pte_present(pte)) {
654 		page = NULL;
655 		goto no_page;
656 	}
657 	mask = (1UL << shift) - 1;
658 	page = pte_page(pte);
659 	if (page)
660 		page += (address & mask) / PAGE_SIZE;
661 
662 no_page:
663 	local_irq_restore(flags);
664 	return page;
665 }
666 
667 struct page *
668 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
669 		pmd_t *pmd, int write)
670 {
671 	BUG();
672 	return NULL;
673 }
674 
675 struct page *
676 follow_huge_pud(struct mm_struct *mm, unsigned long address,
677 		pud_t *pud, int write)
678 {
679 	BUG();
680 	return NULL;
681 }
682 
683 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
684 				      unsigned long sz)
685 {
686 	unsigned long __boundary = (addr + sz) & ~(sz-1);
687 	return (__boundary - 1 < end - 1) ? __boundary : end;
688 }
689 
690 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
691 		unsigned long end, int write, struct page **pages, int *nr)
692 {
693 	pte_t *ptep;
694 	unsigned long sz = 1UL << hugepd_shift(hugepd);
695 	unsigned long next;
696 
697 	ptep = hugepte_offset(hugepd, addr, pdshift);
698 	do {
699 		next = hugepte_addr_end(addr, end, sz);
700 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
701 			return 0;
702 	} while (ptep++, addr = next, addr != end);
703 
704 	return 1;
705 }
706 
707 #ifdef CONFIG_PPC_MM_SLICES
708 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
709 					unsigned long len, unsigned long pgoff,
710 					unsigned long flags)
711 {
712 	struct hstate *hstate = hstate_file(file);
713 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
714 
715 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
716 }
717 #endif
718 
719 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
720 {
721 #ifdef CONFIG_PPC_MM_SLICES
722 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
723 
724 	return 1UL << mmu_psize_to_shift(psize);
725 #else
726 	if (!is_vm_hugetlb_page(vma))
727 		return PAGE_SIZE;
728 
729 	return huge_page_size(hstate_vma(vma));
730 #endif
731 }
732 
733 static inline bool is_power_of_4(unsigned long x)
734 {
735 	if (is_power_of_2(x))
736 		return (__ilog2(x) % 2) ? false : true;
737 	return false;
738 }
739 
740 static int __init add_huge_page_size(unsigned long long size)
741 {
742 	int shift = __ffs(size);
743 	int mmu_psize;
744 
745 	/* Check that it is a page size supported by the hardware and
746 	 * that it fits within pagetable and slice limits. */
747 #ifdef CONFIG_PPC_FSL_BOOK3E
748 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
749 		return -EINVAL;
750 #else
751 	if (!is_power_of_2(size)
752 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
753 		return -EINVAL;
754 #endif
755 
756 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
757 		return -EINVAL;
758 
759 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
760 
761 	/* Return if huge page size has already been setup */
762 	if (size_to_hstate(size))
763 		return 0;
764 
765 	hugetlb_add_hstate(shift - PAGE_SHIFT);
766 
767 	return 0;
768 }
769 
770 static int __init hugepage_setup_sz(char *str)
771 {
772 	unsigned long long size;
773 
774 	size = memparse(str, &str);
775 
776 	if (add_huge_page_size(size) != 0)
777 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
778 
779 	return 1;
780 }
781 __setup("hugepagesz=", hugepage_setup_sz);
782 
783 #ifdef CONFIG_PPC_FSL_BOOK3E
784 struct kmem_cache *hugepte_cache;
785 static int __init hugetlbpage_init(void)
786 {
787 	int psize;
788 
789 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
790 		unsigned shift;
791 
792 		if (!mmu_psize_defs[psize].shift)
793 			continue;
794 
795 		shift = mmu_psize_to_shift(psize);
796 
797 		/* Don't treat normal page sizes as huge... */
798 		if (shift != PAGE_SHIFT)
799 			if (add_huge_page_size(1ULL << shift) < 0)
800 				continue;
801 	}
802 
803 	/*
804 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
805 	 * size information encoded in them, so align them to allow this
806 	 */
807 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
808 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
809 	if (hugepte_cache == NULL)
810 		panic("%s: Unable to create kmem cache for hugeptes\n",
811 		      __func__);
812 
813 	/* Default hpage size = 4M */
814 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
815 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
816 	else
817 		panic("%s: Unable to set default huge page size\n", __func__);
818 
819 
820 	return 0;
821 }
822 #else
823 static int __init hugetlbpage_init(void)
824 {
825 	int psize;
826 
827 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
828 		return -ENODEV;
829 
830 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
831 		unsigned shift;
832 		unsigned pdshift;
833 
834 		if (!mmu_psize_defs[psize].shift)
835 			continue;
836 
837 		shift = mmu_psize_to_shift(psize);
838 
839 		if (add_huge_page_size(1ULL << shift) < 0)
840 			continue;
841 
842 		if (shift < PMD_SHIFT)
843 			pdshift = PMD_SHIFT;
844 		else if (shift < PUD_SHIFT)
845 			pdshift = PUD_SHIFT;
846 		else
847 			pdshift = PGDIR_SHIFT;
848 		/*
849 		 * if we have pdshift and shift value same, we don't
850 		 * use pgt cache for hugepd.
851 		 */
852 		if (pdshift != shift) {
853 			pgtable_cache_add(pdshift - shift, NULL);
854 			if (!PGT_CACHE(pdshift - shift))
855 				panic("hugetlbpage_init(): could not create "
856 				      "pgtable cache for %d bit pagesize\n", shift);
857 		}
858 	}
859 
860 	/* Set default large page size. Currently, we pick 16M or 1M
861 	 * depending on what is available
862 	 */
863 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
864 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
865 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
866 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
867 
868 	return 0;
869 }
870 #endif
871 arch_initcall(hugetlbpage_init);
872 
873 void flush_dcache_icache_hugepage(struct page *page)
874 {
875 	int i;
876 	void *start;
877 
878 	BUG_ON(!PageCompound(page));
879 
880 	for (i = 0; i < (1UL << compound_order(page)); i++) {
881 		if (!PageHighMem(page)) {
882 			__flush_dcache_icache(page_address(page+i));
883 		} else {
884 			start = kmap_atomic(page+i);
885 			__flush_dcache_icache(start);
886 			kunmap_atomic(start);
887 		}
888 	}
889 }
890 
891 #endif /* CONFIG_HUGETLB_PAGE */
892 
893 /*
894  * We have 4 cases for pgds and pmds:
895  * (1) invalid (all zeroes)
896  * (2) pointer to next table, as normal; bottom 6 bits == 0
897  * (3) leaf pte for huge page _PAGE_PTE set
898  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
899  *
900  * So long as we atomically load page table pointers we are safe against teardown,
901  * we can follow the address down to the the page and take a ref on it.
902  * This function need to be called with interrupts disabled. We use this variant
903  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
904  */
905 
906 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
907 				   bool *is_thp, unsigned *shift)
908 {
909 	pgd_t pgd, *pgdp;
910 	pud_t pud, *pudp;
911 	pmd_t pmd, *pmdp;
912 	pte_t *ret_pte;
913 	hugepd_t *hpdp = NULL;
914 	unsigned pdshift = PGDIR_SHIFT;
915 
916 	if (shift)
917 		*shift = 0;
918 
919 	if (is_thp)
920 		*is_thp = false;
921 
922 	pgdp = pgdir + pgd_index(ea);
923 	pgd  = READ_ONCE(*pgdp);
924 	/*
925 	 * Always operate on the local stack value. This make sure the
926 	 * value don't get updated by a parallel THP split/collapse,
927 	 * page fault or a page unmap. The return pte_t * is still not
928 	 * stable. So should be checked there for above conditions.
929 	 */
930 	if (pgd_none(pgd))
931 		return NULL;
932 	else if (pgd_huge(pgd)) {
933 		ret_pte = (pte_t *) pgdp;
934 		goto out;
935 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
936 		hpdp = (hugepd_t *)&pgd;
937 	else {
938 		/*
939 		 * Even if we end up with an unmap, the pgtable will not
940 		 * be freed, because we do an rcu free and here we are
941 		 * irq disabled
942 		 */
943 		pdshift = PUD_SHIFT;
944 		pudp = pud_offset(&pgd, ea);
945 		pud  = READ_ONCE(*pudp);
946 
947 		if (pud_none(pud))
948 			return NULL;
949 		else if (pud_huge(pud)) {
950 			ret_pte = (pte_t *) pudp;
951 			goto out;
952 		} else if (is_hugepd(__hugepd(pud_val(pud))))
953 			hpdp = (hugepd_t *)&pud;
954 		else {
955 			pdshift = PMD_SHIFT;
956 			pmdp = pmd_offset(&pud, ea);
957 			pmd  = READ_ONCE(*pmdp);
958 			/*
959 			 * A hugepage collapse is captured by pmd_none, because
960 			 * it mark the pmd none and do a hpte invalidate.
961 			 */
962 			if (pmd_none(pmd))
963 				return NULL;
964 
965 			if (pmd_trans_huge(pmd)) {
966 				if (is_thp)
967 					*is_thp = true;
968 				ret_pte = (pte_t *) pmdp;
969 				goto out;
970 			}
971 
972 			if (pmd_huge(pmd)) {
973 				ret_pte = (pte_t *) pmdp;
974 				goto out;
975 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
976 				hpdp = (hugepd_t *)&pmd;
977 			else
978 				return pte_offset_kernel(&pmd, ea);
979 		}
980 	}
981 	if (!hpdp)
982 		return NULL;
983 
984 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
985 	pdshift = hugepd_shift(*hpdp);
986 out:
987 	if (shift)
988 		*shift = pdshift;
989 	return ret_pte;
990 }
991 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
992 
993 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
994 		unsigned long end, int write, struct page **pages, int *nr)
995 {
996 	unsigned long mask;
997 	unsigned long pte_end;
998 	struct page *head, *page;
999 	pte_t pte;
1000 	int refs;
1001 
1002 	pte_end = (addr + sz) & ~(sz-1);
1003 	if (pte_end < end)
1004 		end = pte_end;
1005 
1006 	pte = READ_ONCE(*ptep);
1007 	mask = _PAGE_PRESENT | _PAGE_USER;
1008 	if (write)
1009 		mask |= _PAGE_RW;
1010 
1011 	if ((pte_val(pte) & mask) != mask)
1012 		return 0;
1013 
1014 	/* hugepages are never "special" */
1015 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1016 
1017 	refs = 0;
1018 	head = pte_page(pte);
1019 
1020 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1021 	do {
1022 		VM_BUG_ON(compound_head(page) != head);
1023 		pages[*nr] = page;
1024 		(*nr)++;
1025 		page++;
1026 		refs++;
1027 	} while (addr += PAGE_SIZE, addr != end);
1028 
1029 	if (!page_cache_add_speculative(head, refs)) {
1030 		*nr -= refs;
1031 		return 0;
1032 	}
1033 
1034 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1035 		/* Could be optimized better */
1036 		*nr -= refs;
1037 		while (refs--)
1038 			put_page(head);
1039 		return 0;
1040 	}
1041 
1042 	return 1;
1043 }
1044