xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision b34e08d5)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58  * At this point we do the placement change only for BOOK3S 64. This would
59  * possibly work on other subarchs.
60  */
61 
62 /*
63  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65  */
66 int pmd_huge(pmd_t pmd)
67 {
68 	/*
69 	 * leaf pte for huge page, bottom two bits != 00
70 	 */
71 	return ((pmd_val(pmd) & 0x3) != 0x0);
72 }
73 
74 int pud_huge(pud_t pud)
75 {
76 	/*
77 	 * leaf pte for huge page, bottom two bits != 00
78 	 */
79 	return ((pud_val(pud) & 0x3) != 0x0);
80 }
81 
82 int pgd_huge(pgd_t pgd)
83 {
84 	/*
85 	 * leaf pte for huge page, bottom two bits != 00
86 	 */
87 	return ((pgd_val(pgd) & 0x3) != 0x0);
88 }
89 
90 int pmd_huge_support(void)
91 {
92 	return 1;
93 }
94 #else
95 int pmd_huge(pmd_t pmd)
96 {
97 	return 0;
98 }
99 
100 int pud_huge(pud_t pud)
101 {
102 	return 0;
103 }
104 
105 int pgd_huge(pgd_t pgd)
106 {
107 	return 0;
108 }
109 
110 int pmd_huge_support(void)
111 {
112 	return 0;
113 }
114 #endif
115 
116 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
117 {
118 	/* Only called for hugetlbfs pages, hence can ignore THP */
119 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
120 }
121 
122 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
123 			   unsigned long address, unsigned pdshift, unsigned pshift)
124 {
125 	struct kmem_cache *cachep;
126 	pte_t *new;
127 
128 #ifdef CONFIG_PPC_FSL_BOOK3E
129 	int i;
130 	int num_hugepd = 1 << (pshift - pdshift);
131 	cachep = hugepte_cache;
132 #else
133 	cachep = PGT_CACHE(pdshift - pshift);
134 #endif
135 
136 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
137 
138 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
139 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
140 
141 	if (! new)
142 		return -ENOMEM;
143 
144 	spin_lock(&mm->page_table_lock);
145 #ifdef CONFIG_PPC_FSL_BOOK3E
146 	/*
147 	 * We have multiple higher-level entries that point to the same
148 	 * actual pte location.  Fill in each as we go and backtrack on error.
149 	 * We need all of these so the DTLB pgtable walk code can find the
150 	 * right higher-level entry without knowing if it's a hugepage or not.
151 	 */
152 	for (i = 0; i < num_hugepd; i++, hpdp++) {
153 		if (unlikely(!hugepd_none(*hpdp)))
154 			break;
155 		else
156 			/* We use the old format for PPC_FSL_BOOK3E */
157 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
158 	}
159 	/* If we bailed from the for loop early, an error occurred, clean up */
160 	if (i < num_hugepd) {
161 		for (i = i - 1 ; i >= 0; i--, hpdp--)
162 			hpdp->pd = 0;
163 		kmem_cache_free(cachep, new);
164 	}
165 #else
166 	if (!hugepd_none(*hpdp))
167 		kmem_cache_free(cachep, new);
168 	else {
169 #ifdef CONFIG_PPC_BOOK3S_64
170 		hpdp->pd = (unsigned long)new |
171 			    (shift_to_mmu_psize(pshift) << 2);
172 #else
173 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
174 #endif
175 	}
176 #endif
177 	spin_unlock(&mm->page_table_lock);
178 	return 0;
179 }
180 
181 /*
182  * These macros define how to determine which level of the page table holds
183  * the hpdp.
184  */
185 #ifdef CONFIG_PPC_FSL_BOOK3E
186 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
187 #define HUGEPD_PUD_SHIFT PUD_SHIFT
188 #else
189 #define HUGEPD_PGD_SHIFT PUD_SHIFT
190 #define HUGEPD_PUD_SHIFT PMD_SHIFT
191 #endif
192 
193 #ifdef CONFIG_PPC_BOOK3S_64
194 /*
195  * At this point we do the placement change only for BOOK3S 64. This would
196  * possibly work on other subarchs.
197  */
198 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
199 {
200 	pgd_t *pg;
201 	pud_t *pu;
202 	pmd_t *pm;
203 	hugepd_t *hpdp = NULL;
204 	unsigned pshift = __ffs(sz);
205 	unsigned pdshift = PGDIR_SHIFT;
206 
207 	addr &= ~(sz-1);
208 	pg = pgd_offset(mm, addr);
209 
210 	if (pshift == PGDIR_SHIFT)
211 		/* 16GB huge page */
212 		return (pte_t *) pg;
213 	else if (pshift > PUD_SHIFT)
214 		/*
215 		 * We need to use hugepd table
216 		 */
217 		hpdp = (hugepd_t *)pg;
218 	else {
219 		pdshift = PUD_SHIFT;
220 		pu = pud_alloc(mm, pg, addr);
221 		if (pshift == PUD_SHIFT)
222 			return (pte_t *)pu;
223 		else if (pshift > PMD_SHIFT)
224 			hpdp = (hugepd_t *)pu;
225 		else {
226 			pdshift = PMD_SHIFT;
227 			pm = pmd_alloc(mm, pu, addr);
228 			if (pshift == PMD_SHIFT)
229 				/* 16MB hugepage */
230 				return (pte_t *)pm;
231 			else
232 				hpdp = (hugepd_t *)pm;
233 		}
234 	}
235 	if (!hpdp)
236 		return NULL;
237 
238 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
239 
240 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
241 		return NULL;
242 
243 	return hugepte_offset(hpdp, addr, pdshift);
244 }
245 
246 #else
247 
248 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
249 {
250 	pgd_t *pg;
251 	pud_t *pu;
252 	pmd_t *pm;
253 	hugepd_t *hpdp = NULL;
254 	unsigned pshift = __ffs(sz);
255 	unsigned pdshift = PGDIR_SHIFT;
256 
257 	addr &= ~(sz-1);
258 
259 	pg = pgd_offset(mm, addr);
260 
261 	if (pshift >= HUGEPD_PGD_SHIFT) {
262 		hpdp = (hugepd_t *)pg;
263 	} else {
264 		pdshift = PUD_SHIFT;
265 		pu = pud_alloc(mm, pg, addr);
266 		if (pshift >= HUGEPD_PUD_SHIFT) {
267 			hpdp = (hugepd_t *)pu;
268 		} else {
269 			pdshift = PMD_SHIFT;
270 			pm = pmd_alloc(mm, pu, addr);
271 			hpdp = (hugepd_t *)pm;
272 		}
273 	}
274 
275 	if (!hpdp)
276 		return NULL;
277 
278 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
279 
280 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
281 		return NULL;
282 
283 	return hugepte_offset(hpdp, addr, pdshift);
284 }
285 #endif
286 
287 #ifdef CONFIG_PPC_FSL_BOOK3E
288 /* Build list of addresses of gigantic pages.  This function is used in early
289  * boot before the buddy or bootmem allocator is setup.
290  */
291 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
292 {
293 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
294 	int i;
295 
296 	if (addr == 0)
297 		return;
298 
299 	gpage_freearray[idx].nr_gpages = number_of_pages;
300 
301 	for (i = 0; i < number_of_pages; i++) {
302 		gpage_freearray[idx].gpage_list[i] = addr;
303 		addr += page_size;
304 	}
305 }
306 
307 /*
308  * Moves the gigantic page addresses from the temporary list to the
309  * huge_boot_pages list.
310  */
311 int alloc_bootmem_huge_page(struct hstate *hstate)
312 {
313 	struct huge_bootmem_page *m;
314 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
315 	int nr_gpages = gpage_freearray[idx].nr_gpages;
316 
317 	if (nr_gpages == 0)
318 		return 0;
319 
320 #ifdef CONFIG_HIGHMEM
321 	/*
322 	 * If gpages can be in highmem we can't use the trick of storing the
323 	 * data structure in the page; allocate space for this
324 	 */
325 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
326 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
327 #else
328 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
329 #endif
330 
331 	list_add(&m->list, &huge_boot_pages);
332 	gpage_freearray[idx].nr_gpages = nr_gpages;
333 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
334 	m->hstate = hstate;
335 
336 	return 1;
337 }
338 /*
339  * Scan the command line hugepagesz= options for gigantic pages; store those in
340  * a list that we use to allocate the memory once all options are parsed.
341  */
342 
343 unsigned long gpage_npages[MMU_PAGE_COUNT];
344 
345 static int __init do_gpage_early_setup(char *param, char *val,
346 				       const char *unused)
347 {
348 	static phys_addr_t size;
349 	unsigned long npages;
350 
351 	/*
352 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
353 	 * use the size variable to keep track of whether or not this was done
354 	 * properly and skip over instances where it is incorrect.  Other
355 	 * command-line parsing code will issue warnings, so we don't need to.
356 	 *
357 	 */
358 	if ((strcmp(param, "default_hugepagesz") == 0) ||
359 	    (strcmp(param, "hugepagesz") == 0)) {
360 		size = memparse(val, NULL);
361 	} else if (strcmp(param, "hugepages") == 0) {
362 		if (size != 0) {
363 			if (sscanf(val, "%lu", &npages) <= 0)
364 				npages = 0;
365 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 			size = 0;
367 		}
368 	}
369 	return 0;
370 }
371 
372 
373 /*
374  * This function allocates physical space for pages that are larger than the
375  * buddy allocator can handle.  We want to allocate these in highmem because
376  * the amount of lowmem is limited.  This means that this function MUST be
377  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378  * allocate to grab highmem.
379  */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 	static __initdata char cmdline[COMMAND_LINE_SIZE];
383 	phys_addr_t size, base;
384 	int i;
385 
386 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 			&do_gpage_early_setup);
389 
390 	/*
391 	 * Walk gpage list in reverse, allocating larger page sizes first.
392 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 	 * When we reach the point in the list where pages are no longer
394 	 * considered gpages, we're done.
395 	 */
396 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 			continue;
399 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 			break;
401 
402 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 		base = memblock_alloc_base(size * gpage_npages[i], size,
404 					   MEMBLOCK_ALLOC_ANYWHERE);
405 		add_gpage(base, size, gpage_npages[i]);
406 	}
407 }
408 
409 #else /* !PPC_FSL_BOOK3E */
410 
411 /* Build list of addresses of gigantic pages.  This function is used in early
412  * boot before the buddy or bootmem allocator is setup.
413  */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 	if (!addr)
417 		return;
418 	while (number_of_pages > 0) {
419 		gpage_freearray[nr_gpages] = addr;
420 		nr_gpages++;
421 		number_of_pages--;
422 		addr += page_size;
423 	}
424 }
425 
426 /* Moves the gigantic page addresses from the temporary list to the
427  * huge_boot_pages list.
428  */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 	struct huge_bootmem_page *m;
432 	if (nr_gpages == 0)
433 		return 0;
434 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 	gpage_freearray[nr_gpages] = 0;
436 	list_add(&m->list, &huge_boot_pages);
437 	m->hstate = hstate;
438 	return 1;
439 }
440 #endif
441 
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 	return 0;
445 }
446 
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450 
451 struct hugepd_freelist {
452 	struct rcu_head	rcu;
453 	unsigned int index;
454 	void *ptes[0];
455 };
456 
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458 
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 	struct hugepd_freelist *batch =
462 		container_of(head, struct hugepd_freelist, rcu);
463 	unsigned int i;
464 
465 	for (i = 0; i < batch->index; i++)
466 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
467 
468 	free_page((unsigned long)batch);
469 }
470 
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 	struct hugepd_freelist **batchp;
474 
475 	batchp = &get_cpu_var(hugepd_freelist_cur);
476 
477 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 	    cpumask_equal(mm_cpumask(tlb->mm),
479 			  cpumask_of(smp_processor_id()))) {
480 		kmem_cache_free(hugepte_cache, hugepte);
481         put_cpu_var(hugepd_freelist_cur);
482 		return;
483 	}
484 
485 	if (*batchp == NULL) {
486 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 		(*batchp)->index = 0;
488 	}
489 
490 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
491 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 		*batchp = NULL;
494 	}
495 	put_cpu_var(hugepd_freelist_cur);
496 }
497 #endif
498 
499 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 			      unsigned long start, unsigned long end,
501 			      unsigned long floor, unsigned long ceiling)
502 {
503 	pte_t *hugepte = hugepd_page(*hpdp);
504 	int i;
505 
506 	unsigned long pdmask = ~((1UL << pdshift) - 1);
507 	unsigned int num_hugepd = 1;
508 
509 #ifdef CONFIG_PPC_FSL_BOOK3E
510 	/* Note: On fsl the hpdp may be the first of several */
511 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
512 #else
513 	unsigned int shift = hugepd_shift(*hpdp);
514 #endif
515 
516 	start &= pdmask;
517 	if (start < floor)
518 		return;
519 	if (ceiling) {
520 		ceiling &= pdmask;
521 		if (! ceiling)
522 			return;
523 	}
524 	if (end - 1 > ceiling - 1)
525 		return;
526 
527 	for (i = 0; i < num_hugepd; i++, hpdp++)
528 		hpdp->pd = 0;
529 
530 	tlb->need_flush = 1;
531 
532 #ifdef CONFIG_PPC_FSL_BOOK3E
533 	hugepd_free(tlb, hugepte);
534 #else
535 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
536 #endif
537 }
538 
539 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
540 				   unsigned long addr, unsigned long end,
541 				   unsigned long floor, unsigned long ceiling)
542 {
543 	pmd_t *pmd;
544 	unsigned long next;
545 	unsigned long start;
546 
547 	start = addr;
548 	do {
549 		pmd = pmd_offset(pud, addr);
550 		next = pmd_addr_end(addr, end);
551 		if (!is_hugepd(pmd)) {
552 			/*
553 			 * if it is not hugepd pointer, we should already find
554 			 * it cleared.
555 			 */
556 			WARN_ON(!pmd_none_or_clear_bad(pmd));
557 			continue;
558 		}
559 #ifdef CONFIG_PPC_FSL_BOOK3E
560 		/*
561 		 * Increment next by the size of the huge mapping since
562 		 * there may be more than one entry at this level for a
563 		 * single hugepage, but all of them point to
564 		 * the same kmem cache that holds the hugepte.
565 		 */
566 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
567 #endif
568 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
569 				  addr, next, floor, ceiling);
570 	} while (addr = next, addr != end);
571 
572 	start &= PUD_MASK;
573 	if (start < floor)
574 		return;
575 	if (ceiling) {
576 		ceiling &= PUD_MASK;
577 		if (!ceiling)
578 			return;
579 	}
580 	if (end - 1 > ceiling - 1)
581 		return;
582 
583 	pmd = pmd_offset(pud, start);
584 	pud_clear(pud);
585 	pmd_free_tlb(tlb, pmd, start);
586 }
587 
588 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
589 				   unsigned long addr, unsigned long end,
590 				   unsigned long floor, unsigned long ceiling)
591 {
592 	pud_t *pud;
593 	unsigned long next;
594 	unsigned long start;
595 
596 	start = addr;
597 	do {
598 		pud = pud_offset(pgd, addr);
599 		next = pud_addr_end(addr, end);
600 		if (!is_hugepd(pud)) {
601 			if (pud_none_or_clear_bad(pud))
602 				continue;
603 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
604 					       ceiling);
605 		} else {
606 #ifdef CONFIG_PPC_FSL_BOOK3E
607 			/*
608 			 * Increment next by the size of the huge mapping since
609 			 * there may be more than one entry at this level for a
610 			 * single hugepage, but all of them point to
611 			 * the same kmem cache that holds the hugepte.
612 			 */
613 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
614 #endif
615 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
616 					  addr, next, floor, ceiling);
617 		}
618 	} while (addr = next, addr != end);
619 
620 	start &= PGDIR_MASK;
621 	if (start < floor)
622 		return;
623 	if (ceiling) {
624 		ceiling &= PGDIR_MASK;
625 		if (!ceiling)
626 			return;
627 	}
628 	if (end - 1 > ceiling - 1)
629 		return;
630 
631 	pud = pud_offset(pgd, start);
632 	pgd_clear(pgd);
633 	pud_free_tlb(tlb, pud, start);
634 }
635 
636 /*
637  * This function frees user-level page tables of a process.
638  */
639 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
640 			    unsigned long addr, unsigned long end,
641 			    unsigned long floor, unsigned long ceiling)
642 {
643 	pgd_t *pgd;
644 	unsigned long next;
645 
646 	/*
647 	 * Because there are a number of different possible pagetable
648 	 * layouts for hugepage ranges, we limit knowledge of how
649 	 * things should be laid out to the allocation path
650 	 * (huge_pte_alloc(), above).  Everything else works out the
651 	 * structure as it goes from information in the hugepd
652 	 * pointers.  That means that we can't here use the
653 	 * optimization used in the normal page free_pgd_range(), of
654 	 * checking whether we're actually covering a large enough
655 	 * range to have to do anything at the top level of the walk
656 	 * instead of at the bottom.
657 	 *
658 	 * To make sense of this, you should probably go read the big
659 	 * block comment at the top of the normal free_pgd_range(),
660 	 * too.
661 	 */
662 
663 	do {
664 		next = pgd_addr_end(addr, end);
665 		pgd = pgd_offset(tlb->mm, addr);
666 		if (!is_hugepd(pgd)) {
667 			if (pgd_none_or_clear_bad(pgd))
668 				continue;
669 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
670 		} else {
671 #ifdef CONFIG_PPC_FSL_BOOK3E
672 			/*
673 			 * Increment next by the size of the huge mapping since
674 			 * there may be more than one entry at the pgd level
675 			 * for a single hugepage, but all of them point to the
676 			 * same kmem cache that holds the hugepte.
677 			 */
678 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
679 #endif
680 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
681 					  addr, next, floor, ceiling);
682 		}
683 	} while (addr = next, addr != end);
684 }
685 
686 struct page *
687 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
688 {
689 	pte_t *ptep;
690 	struct page *page;
691 	unsigned shift;
692 	unsigned long mask;
693 	/*
694 	 * Transparent hugepages are handled by generic code. We can skip them
695 	 * here.
696 	 */
697 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
698 
699 	/* Verify it is a huge page else bail. */
700 	if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
701 		return ERR_PTR(-EINVAL);
702 
703 	mask = (1UL << shift) - 1;
704 	page = pte_page(*ptep);
705 	if (page)
706 		page += (address & mask) / PAGE_SIZE;
707 
708 	return page;
709 }
710 
711 struct page *
712 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
713 		pmd_t *pmd, int write)
714 {
715 	BUG();
716 	return NULL;
717 }
718 
719 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
720 				      unsigned long sz)
721 {
722 	unsigned long __boundary = (addr + sz) & ~(sz-1);
723 	return (__boundary - 1 < end - 1) ? __boundary : end;
724 }
725 
726 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
727 	       unsigned long addr, unsigned long end,
728 	       int write, struct page **pages, int *nr)
729 {
730 	pte_t *ptep;
731 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
732 	unsigned long next;
733 
734 	ptep = hugepte_offset(hugepd, addr, pdshift);
735 	do {
736 		next = hugepte_addr_end(addr, end, sz);
737 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
738 			return 0;
739 	} while (ptep++, addr = next, addr != end);
740 
741 	return 1;
742 }
743 
744 #ifdef CONFIG_PPC_MM_SLICES
745 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
746 					unsigned long len, unsigned long pgoff,
747 					unsigned long flags)
748 {
749 	struct hstate *hstate = hstate_file(file);
750 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
751 
752 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
753 }
754 #endif
755 
756 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
757 {
758 #ifdef CONFIG_PPC_MM_SLICES
759 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
760 
761 	return 1UL << mmu_psize_to_shift(psize);
762 #else
763 	if (!is_vm_hugetlb_page(vma))
764 		return PAGE_SIZE;
765 
766 	return huge_page_size(hstate_vma(vma));
767 #endif
768 }
769 
770 static inline bool is_power_of_4(unsigned long x)
771 {
772 	if (is_power_of_2(x))
773 		return (__ilog2(x) % 2) ? false : true;
774 	return false;
775 }
776 
777 static int __init add_huge_page_size(unsigned long long size)
778 {
779 	int shift = __ffs(size);
780 	int mmu_psize;
781 
782 	/* Check that it is a page size supported by the hardware and
783 	 * that it fits within pagetable and slice limits. */
784 #ifdef CONFIG_PPC_FSL_BOOK3E
785 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
786 		return -EINVAL;
787 #else
788 	if (!is_power_of_2(size)
789 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
790 		return -EINVAL;
791 #endif
792 
793 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
794 		return -EINVAL;
795 
796 #ifdef CONFIG_SPU_FS_64K_LS
797 	/* Disable support for 64K huge pages when 64K SPU local store
798 	 * support is enabled as the current implementation conflicts.
799 	 */
800 	if (shift == PAGE_SHIFT_64K)
801 		return -EINVAL;
802 #endif /* CONFIG_SPU_FS_64K_LS */
803 
804 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
805 
806 	/* Return if huge page size has already been setup */
807 	if (size_to_hstate(size))
808 		return 0;
809 
810 	hugetlb_add_hstate(shift - PAGE_SHIFT);
811 
812 	return 0;
813 }
814 
815 static int __init hugepage_setup_sz(char *str)
816 {
817 	unsigned long long size;
818 
819 	size = memparse(str, &str);
820 
821 	if (add_huge_page_size(size) != 0)
822 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
823 
824 	return 1;
825 }
826 __setup("hugepagesz=", hugepage_setup_sz);
827 
828 #ifdef CONFIG_PPC_FSL_BOOK3E
829 struct kmem_cache *hugepte_cache;
830 static int __init hugetlbpage_init(void)
831 {
832 	int psize;
833 
834 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
835 		unsigned shift;
836 
837 		if (!mmu_psize_defs[psize].shift)
838 			continue;
839 
840 		shift = mmu_psize_to_shift(psize);
841 
842 		/* Don't treat normal page sizes as huge... */
843 		if (shift != PAGE_SHIFT)
844 			if (add_huge_page_size(1ULL << shift) < 0)
845 				continue;
846 	}
847 
848 	/*
849 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
850 	 * size information encoded in them, so align them to allow this
851 	 */
852 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
853 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
854 	if (hugepte_cache == NULL)
855 		panic("%s: Unable to create kmem cache for hugeptes\n",
856 		      __func__);
857 
858 	/* Default hpage size = 4M */
859 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
860 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
861 	else
862 		panic("%s: Unable to set default huge page size\n", __func__);
863 
864 
865 	return 0;
866 }
867 #else
868 static int __init hugetlbpage_init(void)
869 {
870 	int psize;
871 
872 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
873 		return -ENODEV;
874 
875 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
876 		unsigned shift;
877 		unsigned pdshift;
878 
879 		if (!mmu_psize_defs[psize].shift)
880 			continue;
881 
882 		shift = mmu_psize_to_shift(psize);
883 
884 		if (add_huge_page_size(1ULL << shift) < 0)
885 			continue;
886 
887 		if (shift < PMD_SHIFT)
888 			pdshift = PMD_SHIFT;
889 		else if (shift < PUD_SHIFT)
890 			pdshift = PUD_SHIFT;
891 		else
892 			pdshift = PGDIR_SHIFT;
893 		/*
894 		 * if we have pdshift and shift value same, we don't
895 		 * use pgt cache for hugepd.
896 		 */
897 		if (pdshift != shift) {
898 			pgtable_cache_add(pdshift - shift, NULL);
899 			if (!PGT_CACHE(pdshift - shift))
900 				panic("hugetlbpage_init(): could not create "
901 				      "pgtable cache for %d bit pagesize\n", shift);
902 		}
903 	}
904 
905 	/* Set default large page size. Currently, we pick 16M or 1M
906 	 * depending on what is available
907 	 */
908 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
909 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
910 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
911 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
912 
913 	return 0;
914 }
915 #endif
916 module_init(hugetlbpage_init);
917 
918 void flush_dcache_icache_hugepage(struct page *page)
919 {
920 	int i;
921 	void *start;
922 
923 	BUG_ON(!PageCompound(page));
924 
925 	for (i = 0; i < (1UL << compound_order(page)); i++) {
926 		if (!PageHighMem(page)) {
927 			__flush_dcache_icache(page_address(page+i));
928 		} else {
929 			start = kmap_atomic(page+i);
930 			__flush_dcache_icache(start);
931 			kunmap_atomic(start);
932 		}
933 	}
934 }
935 
936 #endif /* CONFIG_HUGETLB_PAGE */
937 
938 /*
939  * We have 4 cases for pgds and pmds:
940  * (1) invalid (all zeroes)
941  * (2) pointer to next table, as normal; bottom 6 bits == 0
942  * (3) leaf pte for huge page, bottom two bits != 00
943  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
944  *
945  * So long as we atomically load page table pointers we are safe against teardown,
946  * we can follow the address down to the the page and take a ref on it.
947  */
948 
949 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
950 {
951 	pgd_t pgd, *pgdp;
952 	pud_t pud, *pudp;
953 	pmd_t pmd, *pmdp;
954 	pte_t *ret_pte;
955 	hugepd_t *hpdp = NULL;
956 	unsigned pdshift = PGDIR_SHIFT;
957 
958 	if (shift)
959 		*shift = 0;
960 
961 	pgdp = pgdir + pgd_index(ea);
962 	pgd  = ACCESS_ONCE(*pgdp);
963 	/*
964 	 * Always operate on the local stack value. This make sure the
965 	 * value don't get updated by a parallel THP split/collapse,
966 	 * page fault or a page unmap. The return pte_t * is still not
967 	 * stable. So should be checked there for above conditions.
968 	 */
969 	if (pgd_none(pgd))
970 		return NULL;
971 	else if (pgd_huge(pgd)) {
972 		ret_pte = (pte_t *) pgdp;
973 		goto out;
974 	} else if (is_hugepd(&pgd))
975 		hpdp = (hugepd_t *)&pgd;
976 	else {
977 		/*
978 		 * Even if we end up with an unmap, the pgtable will not
979 		 * be freed, because we do an rcu free and here we are
980 		 * irq disabled
981 		 */
982 		pdshift = PUD_SHIFT;
983 		pudp = pud_offset(&pgd, ea);
984 		pud  = ACCESS_ONCE(*pudp);
985 
986 		if (pud_none(pud))
987 			return NULL;
988 		else if (pud_huge(pud)) {
989 			ret_pte = (pte_t *) pudp;
990 			goto out;
991 		} else if (is_hugepd(&pud))
992 			hpdp = (hugepd_t *)&pud;
993 		else {
994 			pdshift = PMD_SHIFT;
995 			pmdp = pmd_offset(&pud, ea);
996 			pmd  = ACCESS_ONCE(*pmdp);
997 			/*
998 			 * A hugepage collapse is captured by pmd_none, because
999 			 * it mark the pmd none and do a hpte invalidate.
1000 			 *
1001 			 * A hugepage split is captured by pmd_trans_splitting
1002 			 * because we mark the pmd trans splitting and do a
1003 			 * hpte invalidate
1004 			 *
1005 			 */
1006 			if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1007 				return NULL;
1008 
1009 			if (pmd_huge(pmd) || pmd_large(pmd)) {
1010 				ret_pte = (pte_t *) pmdp;
1011 				goto out;
1012 			} else if (is_hugepd(&pmd))
1013 				hpdp = (hugepd_t *)&pmd;
1014 			else
1015 				return pte_offset_kernel(&pmd, ea);
1016 		}
1017 	}
1018 	if (!hpdp)
1019 		return NULL;
1020 
1021 	ret_pte = hugepte_offset(hpdp, ea, pdshift);
1022 	pdshift = hugepd_shift(*hpdp);
1023 out:
1024 	if (shift)
1025 		*shift = pdshift;
1026 	return ret_pte;
1027 }
1028 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1029 
1030 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1031 		unsigned long end, int write, struct page **pages, int *nr)
1032 {
1033 	unsigned long mask;
1034 	unsigned long pte_end;
1035 	struct page *head, *page, *tail;
1036 	pte_t pte;
1037 	int refs;
1038 
1039 	pte_end = (addr + sz) & ~(sz-1);
1040 	if (pte_end < end)
1041 		end = pte_end;
1042 
1043 	pte = ACCESS_ONCE(*ptep);
1044 	mask = _PAGE_PRESENT | _PAGE_USER;
1045 	if (write)
1046 		mask |= _PAGE_RW;
1047 
1048 	if ((pte_val(pte) & mask) != mask)
1049 		return 0;
1050 
1051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1052 	/*
1053 	 * check for splitting here
1054 	 */
1055 	if (pmd_trans_splitting(pte_pmd(pte)))
1056 		return 0;
1057 #endif
1058 
1059 	/* hugepages are never "special" */
1060 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1061 
1062 	refs = 0;
1063 	head = pte_page(pte);
1064 
1065 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1066 	tail = page;
1067 	do {
1068 		VM_BUG_ON(compound_head(page) != head);
1069 		pages[*nr] = page;
1070 		(*nr)++;
1071 		page++;
1072 		refs++;
1073 	} while (addr += PAGE_SIZE, addr != end);
1074 
1075 	if (!page_cache_add_speculative(head, refs)) {
1076 		*nr -= refs;
1077 		return 0;
1078 	}
1079 
1080 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1081 		/* Could be optimized better */
1082 		*nr -= refs;
1083 		while (refs--)
1084 			put_page(head);
1085 		return 0;
1086 	}
1087 
1088 	/*
1089 	 * Any tail page need their mapcount reference taken before we
1090 	 * return.
1091 	 */
1092 	while (refs--) {
1093 		if (PageTail(tail))
1094 			get_huge_page_tail(tail);
1095 		tail++;
1096 	}
1097 
1098 	return 1;
1099 }
1100