1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <linux/swap.h> 21 #include <linux/swapops.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 unsigned int HPAGE_SHIFT; 39 EXPORT_SYMBOL(HPAGE_SHIFT); 40 41 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 42 43 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 44 { 45 /* 46 * Only called for hugetlbfs pages, hence can ignore THP and the 47 * irq disabled walk. 48 */ 49 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 50 } 51 52 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 53 unsigned long address, unsigned pdshift, unsigned pshift) 54 { 55 struct kmem_cache *cachep; 56 pte_t *new; 57 int i; 58 int num_hugepd; 59 60 if (pshift >= pdshift) { 61 cachep = hugepte_cache; 62 num_hugepd = 1 << (pshift - pdshift); 63 } else { 64 cachep = PGT_CACHE(pdshift - pshift); 65 num_hugepd = 1; 66 } 67 68 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 69 70 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 71 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 72 73 if (! new) 74 return -ENOMEM; 75 76 /* 77 * Make sure other cpus find the hugepd set only after a 78 * properly initialized page table is visible to them. 79 * For more details look for comment in __pte_alloc(). 80 */ 81 smp_wmb(); 82 83 spin_lock(&mm->page_table_lock); 84 85 /* 86 * We have multiple higher-level entries that point to the same 87 * actual pte location. Fill in each as we go and backtrack on error. 88 * We need all of these so the DTLB pgtable walk code can find the 89 * right higher-level entry without knowing if it's a hugepage or not. 90 */ 91 for (i = 0; i < num_hugepd; i++, hpdp++) { 92 if (unlikely(!hugepd_none(*hpdp))) 93 break; 94 else { 95 #ifdef CONFIG_PPC_BOOK3S_64 96 *hpdp = __hugepd(__pa(new) | 97 (shift_to_mmu_psize(pshift) << 2)); 98 #elif defined(CONFIG_PPC_8xx) 99 *hpdp = __hugepd(__pa(new) | 100 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 101 _PMD_PAGE_512K) | _PMD_PRESENT); 102 #else 103 /* We use the old format for PPC_FSL_BOOK3E */ 104 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 105 #endif 106 } 107 } 108 /* If we bailed from the for loop early, an error occurred, clean up */ 109 if (i < num_hugepd) { 110 for (i = i - 1 ; i >= 0; i--, hpdp--) 111 *hpdp = __hugepd(0); 112 kmem_cache_free(cachep, new); 113 } 114 spin_unlock(&mm->page_table_lock); 115 return 0; 116 } 117 118 /* 119 * These macros define how to determine which level of the page table holds 120 * the hpdp. 121 */ 122 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 123 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 124 #define HUGEPD_PUD_SHIFT PUD_SHIFT 125 #else 126 #define HUGEPD_PGD_SHIFT PUD_SHIFT 127 #define HUGEPD_PUD_SHIFT PMD_SHIFT 128 #endif 129 130 /* 131 * At this point we do the placement change only for BOOK3S 64. This would 132 * possibly work on other subarchs. 133 */ 134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 135 { 136 pgd_t *pg; 137 pud_t *pu; 138 pmd_t *pm; 139 hugepd_t *hpdp = NULL; 140 unsigned pshift = __ffs(sz); 141 unsigned pdshift = PGDIR_SHIFT; 142 143 addr &= ~(sz-1); 144 pg = pgd_offset(mm, addr); 145 146 #ifdef CONFIG_PPC_BOOK3S_64 147 if (pshift == PGDIR_SHIFT) 148 /* 16GB huge page */ 149 return (pte_t *) pg; 150 else if (pshift > PUD_SHIFT) 151 /* 152 * We need to use hugepd table 153 */ 154 hpdp = (hugepd_t *)pg; 155 else { 156 pdshift = PUD_SHIFT; 157 pu = pud_alloc(mm, pg, addr); 158 if (pshift == PUD_SHIFT) 159 return (pte_t *)pu; 160 else if (pshift > PMD_SHIFT) 161 hpdp = (hugepd_t *)pu; 162 else { 163 pdshift = PMD_SHIFT; 164 pm = pmd_alloc(mm, pu, addr); 165 if (pshift == PMD_SHIFT) 166 /* 16MB hugepage */ 167 return (pte_t *)pm; 168 else 169 hpdp = (hugepd_t *)pm; 170 } 171 } 172 #else 173 if (pshift >= HUGEPD_PGD_SHIFT) { 174 hpdp = (hugepd_t *)pg; 175 } else { 176 pdshift = PUD_SHIFT; 177 pu = pud_alloc(mm, pg, addr); 178 if (pshift >= HUGEPD_PUD_SHIFT) { 179 hpdp = (hugepd_t *)pu; 180 } else { 181 pdshift = PMD_SHIFT; 182 pm = pmd_alloc(mm, pu, addr); 183 hpdp = (hugepd_t *)pm; 184 } 185 } 186 #endif 187 if (!hpdp) 188 return NULL; 189 190 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 191 192 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 193 return NULL; 194 195 return hugepte_offset(*hpdp, addr, pdshift); 196 } 197 198 #ifdef CONFIG_PPC_BOOK3S_64 199 /* 200 * Tracks gpages after the device tree is scanned and before the 201 * huge_boot_pages list is ready on pseries. 202 */ 203 #define MAX_NUMBER_GPAGES 1024 204 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 205 __initdata static unsigned nr_gpages; 206 207 /* 208 * Build list of addresses of gigantic pages. This function is used in early 209 * boot before the buddy allocator is setup. 210 */ 211 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 212 { 213 if (!addr) 214 return; 215 while (number_of_pages > 0) { 216 gpage_freearray[nr_gpages] = addr; 217 nr_gpages++; 218 number_of_pages--; 219 addr += page_size; 220 } 221 } 222 223 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 224 { 225 struct huge_bootmem_page *m; 226 if (nr_gpages == 0) 227 return 0; 228 m = phys_to_virt(gpage_freearray[--nr_gpages]); 229 gpage_freearray[nr_gpages] = 0; 230 list_add(&m->list, &huge_boot_pages); 231 m->hstate = hstate; 232 return 1; 233 } 234 #endif 235 236 237 int __init alloc_bootmem_huge_page(struct hstate *h) 238 { 239 240 #ifdef CONFIG_PPC_BOOK3S_64 241 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 242 return pseries_alloc_bootmem_huge_page(h); 243 #endif 244 return __alloc_bootmem_huge_page(h); 245 } 246 247 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 248 #define HUGEPD_FREELIST_SIZE \ 249 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 250 251 struct hugepd_freelist { 252 struct rcu_head rcu; 253 unsigned int index; 254 void *ptes[0]; 255 }; 256 257 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 258 259 static void hugepd_free_rcu_callback(struct rcu_head *head) 260 { 261 struct hugepd_freelist *batch = 262 container_of(head, struct hugepd_freelist, rcu); 263 unsigned int i; 264 265 for (i = 0; i < batch->index; i++) 266 kmem_cache_free(hugepte_cache, batch->ptes[i]); 267 268 free_page((unsigned long)batch); 269 } 270 271 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 272 { 273 struct hugepd_freelist **batchp; 274 275 batchp = &get_cpu_var(hugepd_freelist_cur); 276 277 if (atomic_read(&tlb->mm->mm_users) < 2 || 278 mm_is_thread_local(tlb->mm)) { 279 kmem_cache_free(hugepte_cache, hugepte); 280 put_cpu_var(hugepd_freelist_cur); 281 return; 282 } 283 284 if (*batchp == NULL) { 285 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 286 (*batchp)->index = 0; 287 } 288 289 (*batchp)->ptes[(*batchp)->index++] = hugepte; 290 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 291 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 292 *batchp = NULL; 293 } 294 put_cpu_var(hugepd_freelist_cur); 295 } 296 #else 297 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 298 #endif 299 300 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 301 unsigned long start, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pte_t *hugepte = hugepd_page(*hpdp); 305 int i; 306 307 unsigned long pdmask = ~((1UL << pdshift) - 1); 308 unsigned int num_hugepd = 1; 309 unsigned int shift = hugepd_shift(*hpdp); 310 311 /* Note: On fsl the hpdp may be the first of several */ 312 if (shift > pdshift) 313 num_hugepd = 1 << (shift - pdshift); 314 315 start &= pdmask; 316 if (start < floor) 317 return; 318 if (ceiling) { 319 ceiling &= pdmask; 320 if (! ceiling) 321 return; 322 } 323 if (end - 1 > ceiling - 1) 324 return; 325 326 for (i = 0; i < num_hugepd; i++, hpdp++) 327 *hpdp = __hugepd(0); 328 329 if (shift >= pdshift) 330 hugepd_free(tlb, hugepte); 331 else 332 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 333 } 334 335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 336 unsigned long addr, unsigned long end, 337 unsigned long floor, unsigned long ceiling) 338 { 339 pmd_t *pmd; 340 unsigned long next; 341 unsigned long start; 342 343 start = addr; 344 do { 345 unsigned long more; 346 347 pmd = pmd_offset(pud, addr); 348 next = pmd_addr_end(addr, end); 349 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 350 /* 351 * if it is not hugepd pointer, we should already find 352 * it cleared. 353 */ 354 WARN_ON(!pmd_none_or_clear_bad(pmd)); 355 continue; 356 } 357 /* 358 * Increment next by the size of the huge mapping since 359 * there may be more than one entry at this level for a 360 * single hugepage, but all of them point to 361 * the same kmem cache that holds the hugepte. 362 */ 363 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 364 if (more > next) 365 next = more; 366 367 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 368 addr, next, floor, ceiling); 369 } while (addr = next, addr != end); 370 371 start &= PUD_MASK; 372 if (start < floor) 373 return; 374 if (ceiling) { 375 ceiling &= PUD_MASK; 376 if (!ceiling) 377 return; 378 } 379 if (end - 1 > ceiling - 1) 380 return; 381 382 pmd = pmd_offset(pud, start); 383 pud_clear(pud); 384 pmd_free_tlb(tlb, pmd, start); 385 mm_dec_nr_pmds(tlb->mm); 386 } 387 388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pud_t *pud; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 do { 398 pud = pud_offset(pgd, addr); 399 next = pud_addr_end(addr, end); 400 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 401 if (pud_none_or_clear_bad(pud)) 402 continue; 403 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 404 ceiling); 405 } else { 406 unsigned long more; 407 /* 408 * Increment next by the size of the huge mapping since 409 * there may be more than one entry at this level for a 410 * single hugepage, but all of them point to 411 * the same kmem cache that holds the hugepte. 412 */ 413 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 414 if (more > next) 415 next = more; 416 417 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 418 addr, next, floor, ceiling); 419 } 420 } while (addr = next, addr != end); 421 422 start &= PGDIR_MASK; 423 if (start < floor) 424 return; 425 if (ceiling) { 426 ceiling &= PGDIR_MASK; 427 if (!ceiling) 428 return; 429 } 430 if (end - 1 > ceiling - 1) 431 return; 432 433 pud = pud_offset(pgd, start); 434 pgd_clear(pgd); 435 pud_free_tlb(tlb, pud, start); 436 } 437 438 /* 439 * This function frees user-level page tables of a process. 440 */ 441 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 442 unsigned long addr, unsigned long end, 443 unsigned long floor, unsigned long ceiling) 444 { 445 pgd_t *pgd; 446 unsigned long next; 447 448 /* 449 * Because there are a number of different possible pagetable 450 * layouts for hugepage ranges, we limit knowledge of how 451 * things should be laid out to the allocation path 452 * (huge_pte_alloc(), above). Everything else works out the 453 * structure as it goes from information in the hugepd 454 * pointers. That means that we can't here use the 455 * optimization used in the normal page free_pgd_range(), of 456 * checking whether we're actually covering a large enough 457 * range to have to do anything at the top level of the walk 458 * instead of at the bottom. 459 * 460 * To make sense of this, you should probably go read the big 461 * block comment at the top of the normal free_pgd_range(), 462 * too. 463 */ 464 465 do { 466 next = pgd_addr_end(addr, end); 467 pgd = pgd_offset(tlb->mm, addr); 468 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 469 if (pgd_none_or_clear_bad(pgd)) 470 continue; 471 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 472 } else { 473 unsigned long more; 474 /* 475 * Increment next by the size of the huge mapping since 476 * there may be more than one entry at the pgd level 477 * for a single hugepage, but all of them point to the 478 * same kmem cache that holds the hugepte. 479 */ 480 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 481 if (more > next) 482 next = more; 483 484 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 485 addr, next, floor, ceiling); 486 } 487 } while (addr = next, addr != end); 488 } 489 490 struct page *follow_huge_pd(struct vm_area_struct *vma, 491 unsigned long address, hugepd_t hpd, 492 int flags, int pdshift) 493 { 494 pte_t *ptep; 495 spinlock_t *ptl; 496 struct page *page = NULL; 497 unsigned long mask; 498 int shift = hugepd_shift(hpd); 499 struct mm_struct *mm = vma->vm_mm; 500 501 retry: 502 ptl = &mm->page_table_lock; 503 spin_lock(ptl); 504 505 ptep = hugepte_offset(hpd, address, pdshift); 506 if (pte_present(*ptep)) { 507 mask = (1UL << shift) - 1; 508 page = pte_page(*ptep); 509 page += ((address & mask) >> PAGE_SHIFT); 510 if (flags & FOLL_GET) 511 get_page(page); 512 } else { 513 if (is_hugetlb_entry_migration(*ptep)) { 514 spin_unlock(ptl); 515 __migration_entry_wait(mm, ptep, ptl); 516 goto retry; 517 } 518 } 519 spin_unlock(ptl); 520 return page; 521 } 522 523 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 524 unsigned long sz) 525 { 526 unsigned long __boundary = (addr + sz) & ~(sz-1); 527 return (__boundary - 1 < end - 1) ? __boundary : end; 528 } 529 530 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 531 unsigned long end, int write, struct page **pages, int *nr) 532 { 533 pte_t *ptep; 534 unsigned long sz = 1UL << hugepd_shift(hugepd); 535 unsigned long next; 536 537 ptep = hugepte_offset(hugepd, addr, pdshift); 538 do { 539 next = hugepte_addr_end(addr, end, sz); 540 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 541 return 0; 542 } while (ptep++, addr = next, addr != end); 543 544 return 1; 545 } 546 547 #ifdef CONFIG_PPC_MM_SLICES 548 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 549 unsigned long len, unsigned long pgoff, 550 unsigned long flags) 551 { 552 struct hstate *hstate = hstate_file(file); 553 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 554 555 if (radix_enabled()) 556 return radix__hugetlb_get_unmapped_area(file, addr, len, 557 pgoff, flags); 558 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 559 } 560 #endif 561 562 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 563 { 564 #ifdef CONFIG_PPC_MM_SLICES 565 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 566 /* With radix we don't use slice, so derive it from vma*/ 567 if (!radix_enabled()) 568 return 1UL << mmu_psize_to_shift(psize); 569 #endif 570 if (!is_vm_hugetlb_page(vma)) 571 return PAGE_SIZE; 572 573 return huge_page_size(hstate_vma(vma)); 574 } 575 576 static inline bool is_power_of_4(unsigned long x) 577 { 578 if (is_power_of_2(x)) 579 return (__ilog2(x) % 2) ? false : true; 580 return false; 581 } 582 583 static int __init add_huge_page_size(unsigned long long size) 584 { 585 int shift = __ffs(size); 586 int mmu_psize; 587 588 /* Check that it is a page size supported by the hardware and 589 * that it fits within pagetable and slice limits. */ 590 if (size <= PAGE_SIZE) 591 return -EINVAL; 592 #if defined(CONFIG_PPC_FSL_BOOK3E) 593 if (!is_power_of_4(size)) 594 return -EINVAL; 595 #elif !defined(CONFIG_PPC_8xx) 596 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 597 return -EINVAL; 598 #endif 599 600 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 601 return -EINVAL; 602 603 #ifdef CONFIG_PPC_BOOK3S_64 604 /* 605 * We need to make sure that for different page sizes reported by 606 * firmware we only add hugetlb support for page sizes that can be 607 * supported by linux page table layout. 608 * For now we have 609 * Radix: 2M 610 * Hash: 16M and 16G 611 */ 612 if (radix_enabled()) { 613 if (mmu_psize != MMU_PAGE_2M) { 614 if (cpu_has_feature(CPU_FTR_POWER9_DD1) || 615 (mmu_psize != MMU_PAGE_1G)) 616 return -EINVAL; 617 } 618 } else { 619 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 620 return -EINVAL; 621 } 622 #endif 623 624 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 625 626 /* Return if huge page size has already been setup */ 627 if (size_to_hstate(size)) 628 return 0; 629 630 hugetlb_add_hstate(shift - PAGE_SHIFT); 631 632 return 0; 633 } 634 635 static int __init hugepage_setup_sz(char *str) 636 { 637 unsigned long long size; 638 639 size = memparse(str, &str); 640 641 if (add_huge_page_size(size) != 0) { 642 hugetlb_bad_size(); 643 pr_err("Invalid huge page size specified(%llu)\n", size); 644 } 645 646 return 1; 647 } 648 __setup("hugepagesz=", hugepage_setup_sz); 649 650 struct kmem_cache *hugepte_cache; 651 static int __init hugetlbpage_init(void) 652 { 653 int psize; 654 655 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 656 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 657 return -ENODEV; 658 #endif 659 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 660 unsigned shift; 661 unsigned pdshift; 662 663 if (!mmu_psize_defs[psize].shift) 664 continue; 665 666 shift = mmu_psize_to_shift(psize); 667 668 if (add_huge_page_size(1ULL << shift) < 0) 669 continue; 670 671 if (shift < HUGEPD_PUD_SHIFT) 672 pdshift = PMD_SHIFT; 673 else if (shift < HUGEPD_PGD_SHIFT) 674 pdshift = PUD_SHIFT; 675 else 676 pdshift = PGDIR_SHIFT; 677 /* 678 * if we have pdshift and shift value same, we don't 679 * use pgt cache for hugepd. 680 */ 681 if (pdshift > shift) 682 pgtable_cache_add(pdshift - shift, NULL); 683 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 684 else if (!hugepte_cache) { 685 /* 686 * Create a kmem cache for hugeptes. The bottom bits in 687 * the pte have size information encoded in them, so 688 * align them to allow this 689 */ 690 hugepte_cache = kmem_cache_create("hugepte-cache", 691 sizeof(pte_t), 692 HUGEPD_SHIFT_MASK + 1, 693 0, NULL); 694 if (hugepte_cache == NULL) 695 panic("%s: Unable to create kmem cache " 696 "for hugeptes\n", __func__); 697 698 } 699 #endif 700 } 701 702 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 703 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 704 if (mmu_psize_defs[MMU_PAGE_4M].shift) 705 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 706 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 707 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 708 #else 709 /* Set default large page size. Currently, we pick 16M or 1M 710 * depending on what is available 711 */ 712 if (mmu_psize_defs[MMU_PAGE_16M].shift) 713 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 714 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 715 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 716 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 717 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 718 #endif 719 return 0; 720 } 721 722 arch_initcall(hugetlbpage_init); 723 724 void flush_dcache_icache_hugepage(struct page *page) 725 { 726 int i; 727 void *start; 728 729 BUG_ON(!PageCompound(page)); 730 731 for (i = 0; i < (1UL << compound_order(page)); i++) { 732 if (!PageHighMem(page)) { 733 __flush_dcache_icache(page_address(page+i)); 734 } else { 735 start = kmap_atomic(page+i); 736 __flush_dcache_icache(start); 737 kunmap_atomic(start); 738 } 739 } 740 } 741 742 #endif /* CONFIG_HUGETLB_PAGE */ 743 744 /* 745 * We have 4 cases for pgds and pmds: 746 * (1) invalid (all zeroes) 747 * (2) pointer to next table, as normal; bottom 6 bits == 0 748 * (3) leaf pte for huge page _PAGE_PTE set 749 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 750 * 751 * So long as we atomically load page table pointers we are safe against teardown, 752 * we can follow the address down to the the page and take a ref on it. 753 * This function need to be called with interrupts disabled. We use this variant 754 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1 755 */ 756 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 757 bool *is_thp, unsigned *hpage_shift) 758 { 759 pgd_t pgd, *pgdp; 760 pud_t pud, *pudp; 761 pmd_t pmd, *pmdp; 762 pte_t *ret_pte; 763 hugepd_t *hpdp = NULL; 764 unsigned pdshift = PGDIR_SHIFT; 765 766 if (hpage_shift) 767 *hpage_shift = 0; 768 769 if (is_thp) 770 *is_thp = false; 771 772 pgdp = pgdir + pgd_index(ea); 773 pgd = READ_ONCE(*pgdp); 774 /* 775 * Always operate on the local stack value. This make sure the 776 * value don't get updated by a parallel THP split/collapse, 777 * page fault or a page unmap. The return pte_t * is still not 778 * stable. So should be checked there for above conditions. 779 */ 780 if (pgd_none(pgd)) 781 return NULL; 782 else if (pgd_huge(pgd)) { 783 ret_pte = (pte_t *) pgdp; 784 goto out; 785 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 786 hpdp = (hugepd_t *)&pgd; 787 else { 788 /* 789 * Even if we end up with an unmap, the pgtable will not 790 * be freed, because we do an rcu free and here we are 791 * irq disabled 792 */ 793 pdshift = PUD_SHIFT; 794 pudp = pud_offset(&pgd, ea); 795 pud = READ_ONCE(*pudp); 796 797 if (pud_none(pud)) 798 return NULL; 799 else if (pud_huge(pud)) { 800 ret_pte = (pte_t *) pudp; 801 goto out; 802 } else if (is_hugepd(__hugepd(pud_val(pud)))) 803 hpdp = (hugepd_t *)&pud; 804 else { 805 pdshift = PMD_SHIFT; 806 pmdp = pmd_offset(&pud, ea); 807 pmd = READ_ONCE(*pmdp); 808 /* 809 * A hugepage collapse is captured by pmd_none, because 810 * it mark the pmd none and do a hpte invalidate. 811 */ 812 if (pmd_none(pmd)) 813 return NULL; 814 815 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 816 if (is_thp) 817 *is_thp = true; 818 ret_pte = (pte_t *) pmdp; 819 goto out; 820 } 821 822 if (pmd_huge(pmd)) { 823 ret_pte = (pte_t *) pmdp; 824 goto out; 825 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 826 hpdp = (hugepd_t *)&pmd; 827 else 828 return pte_offset_kernel(&pmd, ea); 829 } 830 } 831 if (!hpdp) 832 return NULL; 833 834 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 835 pdshift = hugepd_shift(*hpdp); 836 out: 837 if (hpage_shift) 838 *hpage_shift = pdshift; 839 return ret_pte; 840 } 841 EXPORT_SYMBOL_GPL(__find_linux_pte); 842 843 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 844 unsigned long end, int write, struct page **pages, int *nr) 845 { 846 unsigned long pte_end; 847 struct page *head, *page; 848 pte_t pte; 849 int refs; 850 851 pte_end = (addr + sz) & ~(sz-1); 852 if (pte_end < end) 853 end = pte_end; 854 855 pte = READ_ONCE(*ptep); 856 857 if (!pte_present(pte) || !pte_read(pte)) 858 return 0; 859 if (write && !pte_write(pte)) 860 return 0; 861 862 /* hugepages are never "special" */ 863 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 864 865 refs = 0; 866 head = pte_page(pte); 867 868 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 869 do { 870 VM_BUG_ON(compound_head(page) != head); 871 pages[*nr] = page; 872 (*nr)++; 873 page++; 874 refs++; 875 } while (addr += PAGE_SIZE, addr != end); 876 877 if (!page_cache_add_speculative(head, refs)) { 878 *nr -= refs; 879 return 0; 880 } 881 882 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 883 /* Could be optimized better */ 884 *nr -= refs; 885 while (refs--) 886 put_page(head); 887 return 0; 888 } 889 890 return 1; 891 } 892