1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <linux/swap.h> 21 #include <linux/swapops.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 bool hugetlb_disabled = false; 39 40 unsigned int HPAGE_SHIFT; 41 EXPORT_SYMBOL(HPAGE_SHIFT); 42 43 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 44 45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 46 { 47 /* 48 * Only called for hugetlbfs pages, hence can ignore THP and the 49 * irq disabled walk. 50 */ 51 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 52 } 53 54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 55 unsigned long address, unsigned int pdshift, 56 unsigned int pshift, spinlock_t *ptl) 57 { 58 struct kmem_cache *cachep; 59 pte_t *new; 60 int i; 61 int num_hugepd; 62 63 if (pshift >= pdshift) { 64 cachep = hugepte_cache; 65 num_hugepd = 1 << (pshift - pdshift); 66 } else { 67 cachep = PGT_CACHE(pdshift - pshift); 68 num_hugepd = 1; 69 } 70 71 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 72 73 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 74 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 75 76 if (! new) 77 return -ENOMEM; 78 79 /* 80 * Make sure other cpus find the hugepd set only after a 81 * properly initialized page table is visible to them. 82 * For more details look for comment in __pte_alloc(). 83 */ 84 smp_wmb(); 85 86 spin_lock(ptl); 87 /* 88 * We have multiple higher-level entries that point to the same 89 * actual pte location. Fill in each as we go and backtrack on error. 90 * We need all of these so the DTLB pgtable walk code can find the 91 * right higher-level entry without knowing if it's a hugepage or not. 92 */ 93 for (i = 0; i < num_hugepd; i++, hpdp++) { 94 if (unlikely(!hugepd_none(*hpdp))) 95 break; 96 else { 97 #ifdef CONFIG_PPC_BOOK3S_64 98 *hpdp = __hugepd(__pa(new) | 99 (shift_to_mmu_psize(pshift) << 2)); 100 #elif defined(CONFIG_PPC_8xx) 101 *hpdp = __hugepd(__pa(new) | _PMD_USER | 102 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 103 _PMD_PAGE_512K) | _PMD_PRESENT); 104 #else 105 /* We use the old format for PPC_FSL_BOOK3E */ 106 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 107 #endif 108 } 109 } 110 /* If we bailed from the for loop early, an error occurred, clean up */ 111 if (i < num_hugepd) { 112 for (i = i - 1 ; i >= 0; i--, hpdp--) 113 *hpdp = __hugepd(0); 114 kmem_cache_free(cachep, new); 115 } 116 spin_unlock(ptl); 117 return 0; 118 } 119 120 /* 121 * These macros define how to determine which level of the page table holds 122 * the hpdp. 123 */ 124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 125 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 126 #define HUGEPD_PUD_SHIFT PUD_SHIFT 127 #endif 128 129 /* 130 * At this point we do the placement change only for BOOK3S 64. This would 131 * possibly work on other subarchs. 132 */ 133 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 134 { 135 pgd_t *pg; 136 pud_t *pu; 137 pmd_t *pm; 138 hugepd_t *hpdp = NULL; 139 unsigned pshift = __ffs(sz); 140 unsigned pdshift = PGDIR_SHIFT; 141 spinlock_t *ptl; 142 143 addr &= ~(sz-1); 144 pg = pgd_offset(mm, addr); 145 146 #ifdef CONFIG_PPC_BOOK3S_64 147 if (pshift == PGDIR_SHIFT) 148 /* 16GB huge page */ 149 return (pte_t *) pg; 150 else if (pshift > PUD_SHIFT) { 151 /* 152 * We need to use hugepd table 153 */ 154 ptl = &mm->page_table_lock; 155 hpdp = (hugepd_t *)pg; 156 } else { 157 pdshift = PUD_SHIFT; 158 pu = pud_alloc(mm, pg, addr); 159 if (pshift == PUD_SHIFT) 160 return (pte_t *)pu; 161 else if (pshift > PMD_SHIFT) { 162 ptl = pud_lockptr(mm, pu); 163 hpdp = (hugepd_t *)pu; 164 } else { 165 pdshift = PMD_SHIFT; 166 pm = pmd_alloc(mm, pu, addr); 167 if (pshift == PMD_SHIFT) 168 /* 16MB hugepage */ 169 return (pte_t *)pm; 170 else { 171 ptl = pmd_lockptr(mm, pm); 172 hpdp = (hugepd_t *)pm; 173 } 174 } 175 } 176 #else 177 if (pshift >= HUGEPD_PGD_SHIFT) { 178 ptl = &mm->page_table_lock; 179 hpdp = (hugepd_t *)pg; 180 } else { 181 pdshift = PUD_SHIFT; 182 pu = pud_alloc(mm, pg, addr); 183 if (pshift >= HUGEPD_PUD_SHIFT) { 184 ptl = pud_lockptr(mm, pu); 185 hpdp = (hugepd_t *)pu; 186 } else { 187 pdshift = PMD_SHIFT; 188 pm = pmd_alloc(mm, pu, addr); 189 ptl = pmd_lockptr(mm, pm); 190 hpdp = (hugepd_t *)pm; 191 } 192 } 193 #endif 194 if (!hpdp) 195 return NULL; 196 197 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 198 199 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 200 pdshift, pshift, ptl)) 201 return NULL; 202 203 return hugepte_offset(*hpdp, addr, pdshift); 204 } 205 206 #ifdef CONFIG_PPC_BOOK3S_64 207 /* 208 * Tracks gpages after the device tree is scanned and before the 209 * huge_boot_pages list is ready on pseries. 210 */ 211 #define MAX_NUMBER_GPAGES 1024 212 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 213 __initdata static unsigned nr_gpages; 214 215 /* 216 * Build list of addresses of gigantic pages. This function is used in early 217 * boot before the buddy allocator is setup. 218 */ 219 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 220 { 221 if (!addr) 222 return; 223 while (number_of_pages > 0) { 224 gpage_freearray[nr_gpages] = addr; 225 nr_gpages++; 226 number_of_pages--; 227 addr += page_size; 228 } 229 } 230 231 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 232 { 233 struct huge_bootmem_page *m; 234 if (nr_gpages == 0) 235 return 0; 236 m = phys_to_virt(gpage_freearray[--nr_gpages]); 237 gpage_freearray[nr_gpages] = 0; 238 list_add(&m->list, &huge_boot_pages); 239 m->hstate = hstate; 240 return 1; 241 } 242 #endif 243 244 245 int __init alloc_bootmem_huge_page(struct hstate *h) 246 { 247 248 #ifdef CONFIG_PPC_BOOK3S_64 249 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 250 return pseries_alloc_bootmem_huge_page(h); 251 #endif 252 return __alloc_bootmem_huge_page(h); 253 } 254 255 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 256 #define HUGEPD_FREELIST_SIZE \ 257 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 258 259 struct hugepd_freelist { 260 struct rcu_head rcu; 261 unsigned int index; 262 void *ptes[0]; 263 }; 264 265 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 266 267 static void hugepd_free_rcu_callback(struct rcu_head *head) 268 { 269 struct hugepd_freelist *batch = 270 container_of(head, struct hugepd_freelist, rcu); 271 unsigned int i; 272 273 for (i = 0; i < batch->index; i++) 274 kmem_cache_free(hugepte_cache, batch->ptes[i]); 275 276 free_page((unsigned long)batch); 277 } 278 279 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 280 { 281 struct hugepd_freelist **batchp; 282 283 batchp = &get_cpu_var(hugepd_freelist_cur); 284 285 if (atomic_read(&tlb->mm->mm_users) < 2 || 286 mm_is_thread_local(tlb->mm)) { 287 kmem_cache_free(hugepte_cache, hugepte); 288 put_cpu_var(hugepd_freelist_cur); 289 return; 290 } 291 292 if (*batchp == NULL) { 293 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 294 (*batchp)->index = 0; 295 } 296 297 (*batchp)->ptes[(*batchp)->index++] = hugepte; 298 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 299 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 300 *batchp = NULL; 301 } 302 put_cpu_var(hugepd_freelist_cur); 303 } 304 #else 305 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 306 #endif 307 308 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 309 unsigned long start, unsigned long end, 310 unsigned long floor, unsigned long ceiling) 311 { 312 pte_t *hugepte = hugepd_page(*hpdp); 313 int i; 314 315 unsigned long pdmask = ~((1UL << pdshift) - 1); 316 unsigned int num_hugepd = 1; 317 unsigned int shift = hugepd_shift(*hpdp); 318 319 /* Note: On fsl the hpdp may be the first of several */ 320 if (shift > pdshift) 321 num_hugepd = 1 << (shift - pdshift); 322 323 start &= pdmask; 324 if (start < floor) 325 return; 326 if (ceiling) { 327 ceiling &= pdmask; 328 if (! ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 return; 333 334 for (i = 0; i < num_hugepd; i++, hpdp++) 335 *hpdp = __hugepd(0); 336 337 if (shift >= pdshift) 338 hugepd_free(tlb, hugepte); 339 else 340 pgtable_free_tlb(tlb, hugepte, 341 get_hugepd_cache_index(pdshift - shift)); 342 } 343 344 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 345 unsigned long addr, unsigned long end, 346 unsigned long floor, unsigned long ceiling) 347 { 348 pmd_t *pmd; 349 unsigned long next; 350 unsigned long start; 351 352 start = addr; 353 do { 354 unsigned long more; 355 356 pmd = pmd_offset(pud, addr); 357 next = pmd_addr_end(addr, end); 358 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 359 /* 360 * if it is not hugepd pointer, we should already find 361 * it cleared. 362 */ 363 WARN_ON(!pmd_none_or_clear_bad(pmd)); 364 continue; 365 } 366 /* 367 * Increment next by the size of the huge mapping since 368 * there may be more than one entry at this level for a 369 * single hugepage, but all of them point to 370 * the same kmem cache that holds the hugepte. 371 */ 372 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 373 if (more > next) 374 next = more; 375 376 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 377 addr, next, floor, ceiling); 378 } while (addr = next, addr != end); 379 380 start &= PUD_MASK; 381 if (start < floor) 382 return; 383 if (ceiling) { 384 ceiling &= PUD_MASK; 385 if (!ceiling) 386 return; 387 } 388 if (end - 1 > ceiling - 1) 389 return; 390 391 pmd = pmd_offset(pud, start); 392 pud_clear(pud); 393 pmd_free_tlb(tlb, pmd, start); 394 mm_dec_nr_pmds(tlb->mm); 395 } 396 397 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 398 unsigned long addr, unsigned long end, 399 unsigned long floor, unsigned long ceiling) 400 { 401 pud_t *pud; 402 unsigned long next; 403 unsigned long start; 404 405 start = addr; 406 do { 407 pud = pud_offset(pgd, addr); 408 next = pud_addr_end(addr, end); 409 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 410 if (pud_none_or_clear_bad(pud)) 411 continue; 412 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 413 ceiling); 414 } else { 415 unsigned long more; 416 /* 417 * Increment next by the size of the huge mapping since 418 * there may be more than one entry at this level for a 419 * single hugepage, but all of them point to 420 * the same kmem cache that holds the hugepte. 421 */ 422 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 423 if (more > next) 424 next = more; 425 426 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 427 addr, next, floor, ceiling); 428 } 429 } while (addr = next, addr != end); 430 431 start &= PGDIR_MASK; 432 if (start < floor) 433 return; 434 if (ceiling) { 435 ceiling &= PGDIR_MASK; 436 if (!ceiling) 437 return; 438 } 439 if (end - 1 > ceiling - 1) 440 return; 441 442 pud = pud_offset(pgd, start); 443 pgd_clear(pgd); 444 pud_free_tlb(tlb, pud, start); 445 mm_dec_nr_puds(tlb->mm); 446 } 447 448 /* 449 * This function frees user-level page tables of a process. 450 */ 451 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 452 unsigned long addr, unsigned long end, 453 unsigned long floor, unsigned long ceiling) 454 { 455 pgd_t *pgd; 456 unsigned long next; 457 458 /* 459 * Because there are a number of different possible pagetable 460 * layouts for hugepage ranges, we limit knowledge of how 461 * things should be laid out to the allocation path 462 * (huge_pte_alloc(), above). Everything else works out the 463 * structure as it goes from information in the hugepd 464 * pointers. That means that we can't here use the 465 * optimization used in the normal page free_pgd_range(), of 466 * checking whether we're actually covering a large enough 467 * range to have to do anything at the top level of the walk 468 * instead of at the bottom. 469 * 470 * To make sense of this, you should probably go read the big 471 * block comment at the top of the normal free_pgd_range(), 472 * too. 473 */ 474 475 do { 476 next = pgd_addr_end(addr, end); 477 pgd = pgd_offset(tlb->mm, addr); 478 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 479 if (pgd_none_or_clear_bad(pgd)) 480 continue; 481 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 482 } else { 483 unsigned long more; 484 /* 485 * Increment next by the size of the huge mapping since 486 * there may be more than one entry at the pgd level 487 * for a single hugepage, but all of them point to the 488 * same kmem cache that holds the hugepte. 489 */ 490 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 491 if (more > next) 492 next = more; 493 494 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 495 addr, next, floor, ceiling); 496 } 497 } while (addr = next, addr != end); 498 } 499 500 struct page *follow_huge_pd(struct vm_area_struct *vma, 501 unsigned long address, hugepd_t hpd, 502 int flags, int pdshift) 503 { 504 pte_t *ptep; 505 spinlock_t *ptl; 506 struct page *page = NULL; 507 unsigned long mask; 508 int shift = hugepd_shift(hpd); 509 struct mm_struct *mm = vma->vm_mm; 510 511 retry: 512 /* 513 * hugepage directory entries are protected by mm->page_table_lock 514 * Use this instead of huge_pte_lockptr 515 */ 516 ptl = &mm->page_table_lock; 517 spin_lock(ptl); 518 519 ptep = hugepte_offset(hpd, address, pdshift); 520 if (pte_present(*ptep)) { 521 mask = (1UL << shift) - 1; 522 page = pte_page(*ptep); 523 page += ((address & mask) >> PAGE_SHIFT); 524 if (flags & FOLL_GET) 525 get_page(page); 526 } else { 527 if (is_hugetlb_entry_migration(*ptep)) { 528 spin_unlock(ptl); 529 __migration_entry_wait(mm, ptep, ptl); 530 goto retry; 531 } 532 } 533 spin_unlock(ptl); 534 return page; 535 } 536 537 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 538 unsigned long sz) 539 { 540 unsigned long __boundary = (addr + sz) & ~(sz-1); 541 return (__boundary - 1 < end - 1) ? __boundary : end; 542 } 543 544 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 545 unsigned long end, int write, struct page **pages, int *nr) 546 { 547 pte_t *ptep; 548 unsigned long sz = 1UL << hugepd_shift(hugepd); 549 unsigned long next; 550 551 ptep = hugepte_offset(hugepd, addr, pdshift); 552 do { 553 next = hugepte_addr_end(addr, end, sz); 554 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 555 return 0; 556 } while (ptep++, addr = next, addr != end); 557 558 return 1; 559 } 560 561 #ifdef CONFIG_PPC_MM_SLICES 562 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 563 unsigned long len, unsigned long pgoff, 564 unsigned long flags) 565 { 566 struct hstate *hstate = hstate_file(file); 567 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 568 569 #ifdef CONFIG_PPC_RADIX_MMU 570 if (radix_enabled()) 571 return radix__hugetlb_get_unmapped_area(file, addr, len, 572 pgoff, flags); 573 #endif 574 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 575 } 576 #endif 577 578 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 579 { 580 #ifdef CONFIG_PPC_MM_SLICES 581 /* With radix we don't use slice, so derive it from vma*/ 582 if (!radix_enabled()) { 583 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 584 585 return 1UL << mmu_psize_to_shift(psize); 586 } 587 #endif 588 return vma_kernel_pagesize(vma); 589 } 590 591 static inline bool is_power_of_4(unsigned long x) 592 { 593 if (is_power_of_2(x)) 594 return (__ilog2(x) % 2) ? false : true; 595 return false; 596 } 597 598 static int __init add_huge_page_size(unsigned long long size) 599 { 600 int shift = __ffs(size); 601 int mmu_psize; 602 603 /* Check that it is a page size supported by the hardware and 604 * that it fits within pagetable and slice limits. */ 605 if (size <= PAGE_SIZE) 606 return -EINVAL; 607 #if defined(CONFIG_PPC_FSL_BOOK3E) 608 if (!is_power_of_4(size)) 609 return -EINVAL; 610 #elif !defined(CONFIG_PPC_8xx) 611 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 612 return -EINVAL; 613 #endif 614 615 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 616 return -EINVAL; 617 618 #ifdef CONFIG_PPC_BOOK3S_64 619 /* 620 * We need to make sure that for different page sizes reported by 621 * firmware we only add hugetlb support for page sizes that can be 622 * supported by linux page table layout. 623 * For now we have 624 * Radix: 2M 625 * Hash: 16M and 16G 626 */ 627 if (radix_enabled()) { 628 if (mmu_psize != MMU_PAGE_2M) { 629 if (cpu_has_feature(CPU_FTR_POWER9_DD1) || 630 (mmu_psize != MMU_PAGE_1G)) 631 return -EINVAL; 632 } 633 } else { 634 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 635 return -EINVAL; 636 } 637 #endif 638 639 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 640 641 /* Return if huge page size has already been setup */ 642 if (size_to_hstate(size)) 643 return 0; 644 645 hugetlb_add_hstate(shift - PAGE_SHIFT); 646 647 return 0; 648 } 649 650 static int __init hugepage_setup_sz(char *str) 651 { 652 unsigned long long size; 653 654 size = memparse(str, &str); 655 656 if (add_huge_page_size(size) != 0) { 657 hugetlb_bad_size(); 658 pr_err("Invalid huge page size specified(%llu)\n", size); 659 } 660 661 return 1; 662 } 663 __setup("hugepagesz=", hugepage_setup_sz); 664 665 struct kmem_cache *hugepte_cache; 666 static int __init hugetlbpage_init(void) 667 { 668 int psize; 669 670 if (hugetlb_disabled) { 671 pr_info("HugeTLB support is disabled!\n"); 672 return 0; 673 } 674 675 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 676 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 677 return -ENODEV; 678 #endif 679 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 680 unsigned shift; 681 unsigned pdshift; 682 683 if (!mmu_psize_defs[psize].shift) 684 continue; 685 686 shift = mmu_psize_to_shift(psize); 687 688 #ifdef CONFIG_PPC_BOOK3S_64 689 if (shift > PGDIR_SHIFT) 690 continue; 691 else if (shift > PUD_SHIFT) 692 pdshift = PGDIR_SHIFT; 693 else if (shift > PMD_SHIFT) 694 pdshift = PUD_SHIFT; 695 else 696 pdshift = PMD_SHIFT; 697 #else 698 if (shift < HUGEPD_PUD_SHIFT) 699 pdshift = PMD_SHIFT; 700 else if (shift < HUGEPD_PGD_SHIFT) 701 pdshift = PUD_SHIFT; 702 else 703 pdshift = PGDIR_SHIFT; 704 #endif 705 706 if (add_huge_page_size(1ULL << shift) < 0) 707 continue; 708 /* 709 * if we have pdshift and shift value same, we don't 710 * use pgt cache for hugepd. 711 */ 712 if (pdshift > shift) 713 pgtable_cache_add(pdshift - shift, NULL); 714 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 715 else if (!hugepte_cache) { 716 /* 717 * Create a kmem cache for hugeptes. The bottom bits in 718 * the pte have size information encoded in them, so 719 * align them to allow this 720 */ 721 hugepte_cache = kmem_cache_create("hugepte-cache", 722 sizeof(pte_t), 723 HUGEPD_SHIFT_MASK + 1, 724 0, NULL); 725 if (hugepte_cache == NULL) 726 panic("%s: Unable to create kmem cache " 727 "for hugeptes\n", __func__); 728 729 } 730 #endif 731 } 732 733 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 734 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 735 if (mmu_psize_defs[MMU_PAGE_4M].shift) 736 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 737 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 738 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 739 #else 740 /* Set default large page size. Currently, we pick 16M or 1M 741 * depending on what is available 742 */ 743 if (mmu_psize_defs[MMU_PAGE_16M].shift) 744 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 745 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 746 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 747 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 748 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 749 #endif 750 return 0; 751 } 752 753 arch_initcall(hugetlbpage_init); 754 755 void flush_dcache_icache_hugepage(struct page *page) 756 { 757 int i; 758 void *start; 759 760 BUG_ON(!PageCompound(page)); 761 762 for (i = 0; i < (1UL << compound_order(page)); i++) { 763 if (!PageHighMem(page)) { 764 __flush_dcache_icache(page_address(page+i)); 765 } else { 766 start = kmap_atomic(page+i); 767 __flush_dcache_icache(start); 768 kunmap_atomic(start); 769 } 770 } 771 } 772 773 #endif /* CONFIG_HUGETLB_PAGE */ 774 775 /* 776 * We have 4 cases for pgds and pmds: 777 * (1) invalid (all zeroes) 778 * (2) pointer to next table, as normal; bottom 6 bits == 0 779 * (3) leaf pte for huge page _PAGE_PTE set 780 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 781 * 782 * So long as we atomically load page table pointers we are safe against teardown, 783 * we can follow the address down to the the page and take a ref on it. 784 * This function need to be called with interrupts disabled. We use this variant 785 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED 786 */ 787 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 788 bool *is_thp, unsigned *hpage_shift) 789 { 790 pgd_t pgd, *pgdp; 791 pud_t pud, *pudp; 792 pmd_t pmd, *pmdp; 793 pte_t *ret_pte; 794 hugepd_t *hpdp = NULL; 795 unsigned pdshift = PGDIR_SHIFT; 796 797 if (hpage_shift) 798 *hpage_shift = 0; 799 800 if (is_thp) 801 *is_thp = false; 802 803 pgdp = pgdir + pgd_index(ea); 804 pgd = READ_ONCE(*pgdp); 805 /* 806 * Always operate on the local stack value. This make sure the 807 * value don't get updated by a parallel THP split/collapse, 808 * page fault or a page unmap. The return pte_t * is still not 809 * stable. So should be checked there for above conditions. 810 */ 811 if (pgd_none(pgd)) 812 return NULL; 813 else if (pgd_huge(pgd)) { 814 ret_pte = (pte_t *) pgdp; 815 goto out; 816 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 817 hpdp = (hugepd_t *)&pgd; 818 else { 819 /* 820 * Even if we end up with an unmap, the pgtable will not 821 * be freed, because we do an rcu free and here we are 822 * irq disabled 823 */ 824 pdshift = PUD_SHIFT; 825 pudp = pud_offset(&pgd, ea); 826 pud = READ_ONCE(*pudp); 827 828 if (pud_none(pud)) 829 return NULL; 830 else if (pud_huge(pud)) { 831 ret_pte = (pte_t *) pudp; 832 goto out; 833 } else if (is_hugepd(__hugepd(pud_val(pud)))) 834 hpdp = (hugepd_t *)&pud; 835 else { 836 pdshift = PMD_SHIFT; 837 pmdp = pmd_offset(&pud, ea); 838 pmd = READ_ONCE(*pmdp); 839 /* 840 * A hugepage collapse is captured by pmd_none, because 841 * it mark the pmd none and do a hpte invalidate. 842 */ 843 if (pmd_none(pmd)) 844 return NULL; 845 846 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 847 if (is_thp) 848 *is_thp = true; 849 ret_pte = (pte_t *) pmdp; 850 goto out; 851 } 852 853 if (pmd_huge(pmd)) { 854 ret_pte = (pte_t *) pmdp; 855 goto out; 856 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 857 hpdp = (hugepd_t *)&pmd; 858 else 859 return pte_offset_kernel(&pmd, ea); 860 } 861 } 862 if (!hpdp) 863 return NULL; 864 865 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 866 pdshift = hugepd_shift(*hpdp); 867 out: 868 if (hpage_shift) 869 *hpage_shift = pdshift; 870 return ret_pte; 871 } 872 EXPORT_SYMBOL_GPL(__find_linux_pte); 873 874 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 875 unsigned long end, int write, struct page **pages, int *nr) 876 { 877 unsigned long pte_end; 878 struct page *head, *page; 879 pte_t pte; 880 int refs; 881 882 pte_end = (addr + sz) & ~(sz-1); 883 if (pte_end < end) 884 end = pte_end; 885 886 pte = READ_ONCE(*ptep); 887 888 if (!pte_access_permitted(pte, write)) 889 return 0; 890 891 /* hugepages are never "special" */ 892 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 893 894 refs = 0; 895 head = pte_page(pte); 896 897 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 898 do { 899 VM_BUG_ON(compound_head(page) != head); 900 pages[*nr] = page; 901 (*nr)++; 902 page++; 903 refs++; 904 } while (addr += PAGE_SIZE, addr != end); 905 906 if (!page_cache_add_speculative(head, refs)) { 907 *nr -= refs; 908 return 0; 909 } 910 911 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 912 /* Could be optimized better */ 913 *nr -= refs; 914 while (refs--) 915 put_page(head); 916 return 0; 917 } 918 919 return 1; 920 } 921