xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 7dd65feb)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/io.h>
12 #include <linux/hugetlb.h>
13 #include <asm/pgtable.h>
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16 
17 #define PAGE_SHIFT_64K	16
18 #define PAGE_SHIFT_16M	24
19 #define PAGE_SHIFT_16G	34
20 
21 #define MAX_NUMBER_GPAGES	1024
22 
23 /* Tracks the 16G pages after the device tree is scanned and before the
24  * huge_boot_pages list is ready.  */
25 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
26 static unsigned nr_gpages;
27 
28 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
29  * will choke on pointers to hugepte tables, which is handy for
30  * catching screwups early. */
31 
32 static inline int shift_to_mmu_psize(unsigned int shift)
33 {
34 	int psize;
35 
36 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
37 		if (mmu_psize_defs[psize].shift == shift)
38 			return psize;
39 	return -1;
40 }
41 
42 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
43 {
44 	if (mmu_psize_defs[mmu_psize].shift)
45 		return mmu_psize_defs[mmu_psize].shift;
46 	BUG();
47 }
48 
49 #define hugepd_none(hpd)	((hpd).pd == 0)
50 
51 static inline pte_t *hugepd_page(hugepd_t hpd)
52 {
53 	BUG_ON(!hugepd_ok(hpd));
54 	return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
55 }
56 
57 static inline unsigned int hugepd_shift(hugepd_t hpd)
58 {
59 	return hpd.pd & HUGEPD_SHIFT_MASK;
60 }
61 
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
63 {
64 	unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
65 	pte_t *dir = hugepd_page(*hpdp);
66 
67 	return dir + idx;
68 }
69 
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71 {
72 	pgd_t *pg;
73 	pud_t *pu;
74 	pmd_t *pm;
75 	hugepd_t *hpdp = NULL;
76 	unsigned pdshift = PGDIR_SHIFT;
77 
78 	if (shift)
79 		*shift = 0;
80 
81 	pg = pgdir + pgd_index(ea);
82 	if (is_hugepd(pg)) {
83 		hpdp = (hugepd_t *)pg;
84 	} else if (!pgd_none(*pg)) {
85 		pdshift = PUD_SHIFT;
86 		pu = pud_offset(pg, ea);
87 		if (is_hugepd(pu))
88 			hpdp = (hugepd_t *)pu;
89 		else if (!pud_none(*pu)) {
90 			pdshift = PMD_SHIFT;
91 			pm = pmd_offset(pu, ea);
92 			if (is_hugepd(pm))
93 				hpdp = (hugepd_t *)pm;
94 			else if (!pmd_none(*pm)) {
95 				return pte_offset_map(pm, ea);
96 			}
97 		}
98 	}
99 
100 	if (!hpdp)
101 		return NULL;
102 
103 	if (shift)
104 		*shift = hugepd_shift(*hpdp);
105 	return hugepte_offset(hpdp, ea, pdshift);
106 }
107 
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
109 {
110 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
111 }
112 
113 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
114 			   unsigned long address, unsigned pdshift, unsigned pshift)
115 {
116 	pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
117 				       GFP_KERNEL|__GFP_REPEAT);
118 
119 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
120 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
121 
122 	if (! new)
123 		return -ENOMEM;
124 
125 	spin_lock(&mm->page_table_lock);
126 	if (!hugepd_none(*hpdp))
127 		kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
128 	else
129 		hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
130 	spin_unlock(&mm->page_table_lock);
131 	return 0;
132 }
133 
134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
135 {
136 	pgd_t *pg;
137 	pud_t *pu;
138 	pmd_t *pm;
139 	hugepd_t *hpdp = NULL;
140 	unsigned pshift = __ffs(sz);
141 	unsigned pdshift = PGDIR_SHIFT;
142 
143 	addr &= ~(sz-1);
144 
145 	pg = pgd_offset(mm, addr);
146 	if (pshift >= PUD_SHIFT) {
147 		hpdp = (hugepd_t *)pg;
148 	} else {
149 		pdshift = PUD_SHIFT;
150 		pu = pud_alloc(mm, pg, addr);
151 		if (pshift >= PMD_SHIFT) {
152 			hpdp = (hugepd_t *)pu;
153 		} else {
154 			pdshift = PMD_SHIFT;
155 			pm = pmd_alloc(mm, pu, addr);
156 			hpdp = (hugepd_t *)pm;
157 		}
158 	}
159 
160 	if (!hpdp)
161 		return NULL;
162 
163 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
164 
165 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
166 		return NULL;
167 
168 	return hugepte_offset(hpdp, addr, pdshift);
169 }
170 
171 /* Build list of addresses of gigantic pages.  This function is used in early
172  * boot before the buddy or bootmem allocator is setup.
173  */
174 void add_gpage(unsigned long addr, unsigned long page_size,
175 	unsigned long number_of_pages)
176 {
177 	if (!addr)
178 		return;
179 	while (number_of_pages > 0) {
180 		gpage_freearray[nr_gpages] = addr;
181 		nr_gpages++;
182 		number_of_pages--;
183 		addr += page_size;
184 	}
185 }
186 
187 /* Moves the gigantic page addresses from the temporary list to the
188  * huge_boot_pages list.
189  */
190 int alloc_bootmem_huge_page(struct hstate *hstate)
191 {
192 	struct huge_bootmem_page *m;
193 	if (nr_gpages == 0)
194 		return 0;
195 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
196 	gpage_freearray[nr_gpages] = 0;
197 	list_add(&m->list, &huge_boot_pages);
198 	m->hstate = hstate;
199 	return 1;
200 }
201 
202 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
203 {
204 	return 0;
205 }
206 
207 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
208 			      unsigned long start, unsigned long end,
209 			      unsigned long floor, unsigned long ceiling)
210 {
211 	pte_t *hugepte = hugepd_page(*hpdp);
212 	unsigned shift = hugepd_shift(*hpdp);
213 	unsigned long pdmask = ~((1UL << pdshift) - 1);
214 
215 	start &= pdmask;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= pdmask;
220 		if (! ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	hpdp->pd = 0;
227 	tlb->need_flush = 1;
228 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
229 }
230 
231 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
232 				   unsigned long addr, unsigned long end,
233 				   unsigned long floor, unsigned long ceiling)
234 {
235 	pmd_t *pmd;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pmd = pmd_offset(pud, addr);
241 	do {
242 		next = pmd_addr_end(addr, end);
243 		if (pmd_none(*pmd))
244 			continue;
245 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
246 				  addr, next, floor, ceiling);
247 	} while (pmd++, addr = next, addr != end);
248 
249 	start &= PUD_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= PUD_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pmd = pmd_offset(pud, start);
261 	pud_clear(pud);
262 	pmd_free_tlb(tlb, pmd, start);
263 }
264 
265 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				   unsigned long addr, unsigned long end,
267 				   unsigned long floor, unsigned long ceiling)
268 {
269 	pud_t *pud;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	pud = pud_offset(pgd, addr);
275 	do {
276 		next = pud_addr_end(addr, end);
277 		if (!is_hugepd(pud)) {
278 			if (pud_none_or_clear_bad(pud))
279 				continue;
280 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
281 					       ceiling);
282 		} else {
283 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
284 					  addr, next, floor, ceiling);
285 		}
286 	} while (pud++, addr = next, addr != end);
287 
288 	start &= PGDIR_MASK;
289 	if (start < floor)
290 		return;
291 	if (ceiling) {
292 		ceiling &= PGDIR_MASK;
293 		if (!ceiling)
294 			return;
295 	}
296 	if (end - 1 > ceiling - 1)
297 		return;
298 
299 	pud = pud_offset(pgd, start);
300 	pgd_clear(pgd);
301 	pud_free_tlb(tlb, pud, start);
302 }
303 
304 /*
305  * This function frees user-level page tables of a process.
306  *
307  * Must be called with pagetable lock held.
308  */
309 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
310 			    unsigned long addr, unsigned long end,
311 			    unsigned long floor, unsigned long ceiling)
312 {
313 	pgd_t *pgd;
314 	unsigned long next;
315 
316 	/*
317 	 * Because there are a number of different possible pagetable
318 	 * layouts for hugepage ranges, we limit knowledge of how
319 	 * things should be laid out to the allocation path
320 	 * (huge_pte_alloc(), above).  Everything else works out the
321 	 * structure as it goes from information in the hugepd
322 	 * pointers.  That means that we can't here use the
323 	 * optimization used in the normal page free_pgd_range(), of
324 	 * checking whether we're actually covering a large enough
325 	 * range to have to do anything at the top level of the walk
326 	 * instead of at the bottom.
327 	 *
328 	 * To make sense of this, you should probably go read the big
329 	 * block comment at the top of the normal free_pgd_range(),
330 	 * too.
331 	 */
332 
333 	pgd = pgd_offset(tlb->mm, addr);
334 	do {
335 		next = pgd_addr_end(addr, end);
336 		if (!is_hugepd(pgd)) {
337 			if (pgd_none_or_clear_bad(pgd))
338 				continue;
339 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
340 		} else {
341 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
342 					  addr, next, floor, ceiling);
343 		}
344 	} while (pgd++, addr = next, addr != end);
345 }
346 
347 struct page *
348 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
349 {
350 	pte_t *ptep;
351 	struct page *page;
352 	unsigned shift;
353 	unsigned long mask;
354 
355 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
356 
357 	/* Verify it is a huge page else bail. */
358 	if (!ptep || !shift)
359 		return ERR_PTR(-EINVAL);
360 
361 	mask = (1UL << shift) - 1;
362 	page = pte_page(*ptep);
363 	if (page)
364 		page += (address & mask) / PAGE_SIZE;
365 
366 	return page;
367 }
368 
369 int pmd_huge(pmd_t pmd)
370 {
371 	return 0;
372 }
373 
374 int pud_huge(pud_t pud)
375 {
376 	return 0;
377 }
378 
379 struct page *
380 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
381 		pmd_t *pmd, int write)
382 {
383 	BUG();
384 	return NULL;
385 }
386 
387 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
388 		       unsigned long end, int write, struct page **pages, int *nr)
389 {
390 	unsigned long mask;
391 	unsigned long pte_end;
392 	struct page *head, *page;
393 	pte_t pte;
394 	int refs;
395 
396 	pte_end = (addr + sz) & ~(sz-1);
397 	if (pte_end < end)
398 		end = pte_end;
399 
400 	pte = *ptep;
401 	mask = _PAGE_PRESENT | _PAGE_USER;
402 	if (write)
403 		mask |= _PAGE_RW;
404 
405 	if ((pte_val(pte) & mask) != mask)
406 		return 0;
407 
408 	/* hugepages are never "special" */
409 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
410 
411 	refs = 0;
412 	head = pte_page(pte);
413 
414 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
415 	do {
416 		VM_BUG_ON(compound_head(page) != head);
417 		pages[*nr] = page;
418 		(*nr)++;
419 		page++;
420 		refs++;
421 	} while (addr += PAGE_SIZE, addr != end);
422 
423 	if (!page_cache_add_speculative(head, refs)) {
424 		*nr -= refs;
425 		return 0;
426 	}
427 
428 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
429 		/* Could be optimized better */
430 		while (*nr) {
431 			put_page(page);
432 			(*nr)--;
433 		}
434 	}
435 
436 	return 1;
437 }
438 
439 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
440 				      unsigned long sz)
441 {
442 	unsigned long __boundary = (addr + sz) & ~(sz-1);
443 	return (__boundary - 1 < end - 1) ? __boundary : end;
444 }
445 
446 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
447 	       unsigned long addr, unsigned long end,
448 	       int write, struct page **pages, int *nr)
449 {
450 	pte_t *ptep;
451 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
452 	unsigned long next;
453 
454 	ptep = hugepte_offset(hugepd, addr, pdshift);
455 	do {
456 		next = hugepte_addr_end(addr, end, sz);
457 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
458 			return 0;
459 	} while (ptep++, addr = next, addr != end);
460 
461 	return 1;
462 }
463 
464 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
465 					unsigned long len, unsigned long pgoff,
466 					unsigned long flags)
467 {
468 	struct hstate *hstate = hstate_file(file);
469 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
470 
471 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
472 }
473 
474 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
475 {
476 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
477 
478 	return 1UL << mmu_psize_to_shift(psize);
479 }
480 
481 static int __init add_huge_page_size(unsigned long long size)
482 {
483 	int shift = __ffs(size);
484 	int mmu_psize;
485 
486 	/* Check that it is a page size supported by the hardware and
487 	 * that it fits within pagetable and slice limits. */
488 	if (!is_power_of_2(size)
489 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
490 		return -EINVAL;
491 
492 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
493 		return -EINVAL;
494 
495 #ifdef CONFIG_SPU_FS_64K_LS
496 	/* Disable support for 64K huge pages when 64K SPU local store
497 	 * support is enabled as the current implementation conflicts.
498 	 */
499 	if (shift == PAGE_SHIFT_64K)
500 		return -EINVAL;
501 #endif /* CONFIG_SPU_FS_64K_LS */
502 
503 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
504 
505 	/* Return if huge page size has already been setup */
506 	if (size_to_hstate(size))
507 		return 0;
508 
509 	hugetlb_add_hstate(shift - PAGE_SHIFT);
510 
511 	return 0;
512 }
513 
514 static int __init hugepage_setup_sz(char *str)
515 {
516 	unsigned long long size;
517 
518 	size = memparse(str, &str);
519 
520 	if (add_huge_page_size(size) != 0)
521 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
522 
523 	return 1;
524 }
525 __setup("hugepagesz=", hugepage_setup_sz);
526 
527 static int __init hugetlbpage_init(void)
528 {
529 	int psize;
530 
531 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
532 		return -ENODEV;
533 
534 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
535 		unsigned shift;
536 		unsigned pdshift;
537 
538 		if (!mmu_psize_defs[psize].shift)
539 			continue;
540 
541 		shift = mmu_psize_to_shift(psize);
542 
543 		if (add_huge_page_size(1ULL << shift) < 0)
544 			continue;
545 
546 		if (shift < PMD_SHIFT)
547 			pdshift = PMD_SHIFT;
548 		else if (shift < PUD_SHIFT)
549 			pdshift = PUD_SHIFT;
550 		else
551 			pdshift = PGDIR_SHIFT;
552 
553 		pgtable_cache_add(pdshift - shift, NULL);
554 		if (!PGT_CACHE(pdshift - shift))
555 			panic("hugetlbpage_init(): could not create "
556 			      "pgtable cache for %d bit pagesize\n", shift);
557 	}
558 
559 	/* Set default large page size. Currently, we pick 16M or 1M
560 	 * depending on what is available
561 	 */
562 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
563 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
564 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
565 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
566 
567 	return 0;
568 }
569 
570 module_init(hugetlbpage_init);
571 
572 void flush_dcache_icache_hugepage(struct page *page)
573 {
574 	int i;
575 
576 	BUG_ON(!PageCompound(page));
577 
578 	for (i = 0; i < (1UL << compound_order(page)); i++)
579 		__flush_dcache_icache(page_address(page+i));
580 }
581