1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 #include <asm/hugetlb.h> 25 26 #ifdef CONFIG_HUGETLB_PAGE 27 28 #define PAGE_SHIFT_64K 16 29 #define PAGE_SHIFT_16M 24 30 #define PAGE_SHIFT_16G 34 31 32 unsigned int HPAGE_SHIFT; 33 34 /* 35 * Tracks gpages after the device tree is scanned and before the 36 * huge_boot_pages list is ready. On non-Freescale implementations, this is 37 * just used to track 16G pages and so is a single array. FSL-based 38 * implementations may have more than one gpage size, so we need multiple 39 * arrays 40 */ 41 #ifdef CONFIG_PPC_FSL_BOOK3E 42 #define MAX_NUMBER_GPAGES 128 43 struct psize_gpages { 44 u64 gpage_list[MAX_NUMBER_GPAGES]; 45 unsigned int nr_gpages; 46 }; 47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 48 #else 49 #define MAX_NUMBER_GPAGES 1024 50 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 51 static unsigned nr_gpages; 52 #endif 53 54 #define hugepd_none(hpd) ((hpd).pd == 0) 55 56 #ifdef CONFIG_PPC_BOOK3S_64 57 /* 58 * At this point we do the placement change only for BOOK3S 64. This would 59 * possibly work on other subarchs. 60 */ 61 62 /* 63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have 64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; 65 */ 66 int pmd_huge(pmd_t pmd) 67 { 68 /* 69 * leaf pte for huge page, bottom two bits != 00 70 */ 71 return ((pmd_val(pmd) & 0x3) != 0x0); 72 } 73 74 int pud_huge(pud_t pud) 75 { 76 /* 77 * leaf pte for huge page, bottom two bits != 00 78 */ 79 return ((pud_val(pud) & 0x3) != 0x0); 80 } 81 82 int pgd_huge(pgd_t pgd) 83 { 84 /* 85 * leaf pte for huge page, bottom two bits != 00 86 */ 87 return ((pgd_val(pgd) & 0x3) != 0x0); 88 } 89 #else 90 int pmd_huge(pmd_t pmd) 91 { 92 return 0; 93 } 94 95 int pud_huge(pud_t pud) 96 { 97 return 0; 98 } 99 100 int pgd_huge(pgd_t pgd) 101 { 102 return 0; 103 } 104 #endif 105 106 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 107 { 108 /* Only called for hugetlbfs pages, hence can ignore THP */ 109 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); 110 } 111 112 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 113 unsigned long address, unsigned pdshift, unsigned pshift) 114 { 115 struct kmem_cache *cachep; 116 pte_t *new; 117 118 #ifdef CONFIG_PPC_FSL_BOOK3E 119 int i; 120 int num_hugepd = 1 << (pshift - pdshift); 121 cachep = hugepte_cache; 122 #else 123 cachep = PGT_CACHE(pdshift - pshift); 124 #endif 125 126 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 127 128 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 130 131 if (! new) 132 return -ENOMEM; 133 134 spin_lock(&mm->page_table_lock); 135 #ifdef CONFIG_PPC_FSL_BOOK3E 136 /* 137 * We have multiple higher-level entries that point to the same 138 * actual pte location. Fill in each as we go and backtrack on error. 139 * We need all of these so the DTLB pgtable walk code can find the 140 * right higher-level entry without knowing if it's a hugepage or not. 141 */ 142 for (i = 0; i < num_hugepd; i++, hpdp++) { 143 if (unlikely(!hugepd_none(*hpdp))) 144 break; 145 else 146 /* We use the old format for PPC_FSL_BOOK3E */ 147 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 148 } 149 /* If we bailed from the for loop early, an error occurred, clean up */ 150 if (i < num_hugepd) { 151 for (i = i - 1 ; i >= 0; i--, hpdp--) 152 hpdp->pd = 0; 153 kmem_cache_free(cachep, new); 154 } 155 #else 156 if (!hugepd_none(*hpdp)) 157 kmem_cache_free(cachep, new); 158 else { 159 #ifdef CONFIG_PPC_BOOK3S_64 160 hpdp->pd = (unsigned long)new | 161 (shift_to_mmu_psize(pshift) << 2); 162 #else 163 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 164 #endif 165 } 166 #endif 167 spin_unlock(&mm->page_table_lock); 168 return 0; 169 } 170 171 /* 172 * These macros define how to determine which level of the page table holds 173 * the hpdp. 174 */ 175 #ifdef CONFIG_PPC_FSL_BOOK3E 176 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 177 #define HUGEPD_PUD_SHIFT PUD_SHIFT 178 #else 179 #define HUGEPD_PGD_SHIFT PUD_SHIFT 180 #define HUGEPD_PUD_SHIFT PMD_SHIFT 181 #endif 182 183 #ifdef CONFIG_PPC_BOOK3S_64 184 /* 185 * At this point we do the placement change only for BOOK3S 64. This would 186 * possibly work on other subarchs. 187 */ 188 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 189 { 190 pgd_t *pg; 191 pud_t *pu; 192 pmd_t *pm; 193 hugepd_t *hpdp = NULL; 194 unsigned pshift = __ffs(sz); 195 unsigned pdshift = PGDIR_SHIFT; 196 197 addr &= ~(sz-1); 198 pg = pgd_offset(mm, addr); 199 200 if (pshift == PGDIR_SHIFT) 201 /* 16GB huge page */ 202 return (pte_t *) pg; 203 else if (pshift > PUD_SHIFT) 204 /* 205 * We need to use hugepd table 206 */ 207 hpdp = (hugepd_t *)pg; 208 else { 209 pdshift = PUD_SHIFT; 210 pu = pud_alloc(mm, pg, addr); 211 if (pshift == PUD_SHIFT) 212 return (pte_t *)pu; 213 else if (pshift > PMD_SHIFT) 214 hpdp = (hugepd_t *)pu; 215 else { 216 pdshift = PMD_SHIFT; 217 pm = pmd_alloc(mm, pu, addr); 218 if (pshift == PMD_SHIFT) 219 /* 16MB hugepage */ 220 return (pte_t *)pm; 221 else 222 hpdp = (hugepd_t *)pm; 223 } 224 } 225 if (!hpdp) 226 return NULL; 227 228 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 229 230 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 231 return NULL; 232 233 return hugepte_offset(hpdp, addr, pdshift); 234 } 235 236 #else 237 238 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 239 { 240 pgd_t *pg; 241 pud_t *pu; 242 pmd_t *pm; 243 hugepd_t *hpdp = NULL; 244 unsigned pshift = __ffs(sz); 245 unsigned pdshift = PGDIR_SHIFT; 246 247 addr &= ~(sz-1); 248 249 pg = pgd_offset(mm, addr); 250 251 if (pshift >= HUGEPD_PGD_SHIFT) { 252 hpdp = (hugepd_t *)pg; 253 } else { 254 pdshift = PUD_SHIFT; 255 pu = pud_alloc(mm, pg, addr); 256 if (pshift >= HUGEPD_PUD_SHIFT) { 257 hpdp = (hugepd_t *)pu; 258 } else { 259 pdshift = PMD_SHIFT; 260 pm = pmd_alloc(mm, pu, addr); 261 hpdp = (hugepd_t *)pm; 262 } 263 } 264 265 if (!hpdp) 266 return NULL; 267 268 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 269 270 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 271 return NULL; 272 273 return hugepte_offset(hpdp, addr, pdshift); 274 } 275 #endif 276 277 #ifdef CONFIG_PPC_FSL_BOOK3E 278 /* Build list of addresses of gigantic pages. This function is used in early 279 * boot before the buddy or bootmem allocator is setup. 280 */ 281 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 282 { 283 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 284 int i; 285 286 if (addr == 0) 287 return; 288 289 gpage_freearray[idx].nr_gpages = number_of_pages; 290 291 for (i = 0; i < number_of_pages; i++) { 292 gpage_freearray[idx].gpage_list[i] = addr; 293 addr += page_size; 294 } 295 } 296 297 /* 298 * Moves the gigantic page addresses from the temporary list to the 299 * huge_boot_pages list. 300 */ 301 int alloc_bootmem_huge_page(struct hstate *hstate) 302 { 303 struct huge_bootmem_page *m; 304 int idx = shift_to_mmu_psize(huge_page_shift(hstate)); 305 int nr_gpages = gpage_freearray[idx].nr_gpages; 306 307 if (nr_gpages == 0) 308 return 0; 309 310 #ifdef CONFIG_HIGHMEM 311 /* 312 * If gpages can be in highmem we can't use the trick of storing the 313 * data structure in the page; allocate space for this 314 */ 315 m = alloc_bootmem(sizeof(struct huge_bootmem_page)); 316 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 317 #else 318 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 319 #endif 320 321 list_add(&m->list, &huge_boot_pages); 322 gpage_freearray[idx].nr_gpages = nr_gpages; 323 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 324 m->hstate = hstate; 325 326 return 1; 327 } 328 /* 329 * Scan the command line hugepagesz= options for gigantic pages; store those in 330 * a list that we use to allocate the memory once all options are parsed. 331 */ 332 333 unsigned long gpage_npages[MMU_PAGE_COUNT]; 334 335 static int __init do_gpage_early_setup(char *param, char *val, 336 const char *unused) 337 { 338 static phys_addr_t size; 339 unsigned long npages; 340 341 /* 342 * The hugepagesz and hugepages cmdline options are interleaved. We 343 * use the size variable to keep track of whether or not this was done 344 * properly and skip over instances where it is incorrect. Other 345 * command-line parsing code will issue warnings, so we don't need to. 346 * 347 */ 348 if ((strcmp(param, "default_hugepagesz") == 0) || 349 (strcmp(param, "hugepagesz") == 0)) { 350 size = memparse(val, NULL); 351 } else if (strcmp(param, "hugepages") == 0) { 352 if (size != 0) { 353 if (sscanf(val, "%lu", &npages) <= 0) 354 npages = 0; 355 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 356 size = 0; 357 } 358 } 359 return 0; 360 } 361 362 363 /* 364 * This function allocates physical space for pages that are larger than the 365 * buddy allocator can handle. We want to allocate these in highmem because 366 * the amount of lowmem is limited. This means that this function MUST be 367 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 368 * allocate to grab highmem. 369 */ 370 void __init reserve_hugetlb_gpages(void) 371 { 372 static __initdata char cmdline[COMMAND_LINE_SIZE]; 373 phys_addr_t size, base; 374 int i; 375 376 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 377 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 378 &do_gpage_early_setup); 379 380 /* 381 * Walk gpage list in reverse, allocating larger page sizes first. 382 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 383 * When we reach the point in the list where pages are no longer 384 * considered gpages, we're done. 385 */ 386 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 387 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 388 continue; 389 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 390 break; 391 392 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 393 base = memblock_alloc_base(size * gpage_npages[i], size, 394 MEMBLOCK_ALLOC_ANYWHERE); 395 add_gpage(base, size, gpage_npages[i]); 396 } 397 } 398 399 #else /* !PPC_FSL_BOOK3E */ 400 401 /* Build list of addresses of gigantic pages. This function is used in early 402 * boot before the buddy or bootmem allocator is setup. 403 */ 404 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 405 { 406 if (!addr) 407 return; 408 while (number_of_pages > 0) { 409 gpage_freearray[nr_gpages] = addr; 410 nr_gpages++; 411 number_of_pages--; 412 addr += page_size; 413 } 414 } 415 416 /* Moves the gigantic page addresses from the temporary list to the 417 * huge_boot_pages list. 418 */ 419 int alloc_bootmem_huge_page(struct hstate *hstate) 420 { 421 struct huge_bootmem_page *m; 422 if (nr_gpages == 0) 423 return 0; 424 m = phys_to_virt(gpage_freearray[--nr_gpages]); 425 gpage_freearray[nr_gpages] = 0; 426 list_add(&m->list, &huge_boot_pages); 427 m->hstate = hstate; 428 return 1; 429 } 430 #endif 431 432 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 433 { 434 return 0; 435 } 436 437 #ifdef CONFIG_PPC_FSL_BOOK3E 438 #define HUGEPD_FREELIST_SIZE \ 439 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 440 441 struct hugepd_freelist { 442 struct rcu_head rcu; 443 unsigned int index; 444 void *ptes[0]; 445 }; 446 447 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 448 449 static void hugepd_free_rcu_callback(struct rcu_head *head) 450 { 451 struct hugepd_freelist *batch = 452 container_of(head, struct hugepd_freelist, rcu); 453 unsigned int i; 454 455 for (i = 0; i < batch->index; i++) 456 kmem_cache_free(hugepte_cache, batch->ptes[i]); 457 458 free_page((unsigned long)batch); 459 } 460 461 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 462 { 463 struct hugepd_freelist **batchp; 464 465 batchp = &__get_cpu_var(hugepd_freelist_cur); 466 467 if (atomic_read(&tlb->mm->mm_users) < 2 || 468 cpumask_equal(mm_cpumask(tlb->mm), 469 cpumask_of(smp_processor_id()))) { 470 kmem_cache_free(hugepte_cache, hugepte); 471 return; 472 } 473 474 if (*batchp == NULL) { 475 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 476 (*batchp)->index = 0; 477 } 478 479 (*batchp)->ptes[(*batchp)->index++] = hugepte; 480 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 481 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 482 *batchp = NULL; 483 } 484 } 485 #endif 486 487 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 488 unsigned long start, unsigned long end, 489 unsigned long floor, unsigned long ceiling) 490 { 491 pte_t *hugepte = hugepd_page(*hpdp); 492 int i; 493 494 unsigned long pdmask = ~((1UL << pdshift) - 1); 495 unsigned int num_hugepd = 1; 496 497 #ifdef CONFIG_PPC_FSL_BOOK3E 498 /* Note: On fsl the hpdp may be the first of several */ 499 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 500 #else 501 unsigned int shift = hugepd_shift(*hpdp); 502 #endif 503 504 start &= pdmask; 505 if (start < floor) 506 return; 507 if (ceiling) { 508 ceiling &= pdmask; 509 if (! ceiling) 510 return; 511 } 512 if (end - 1 > ceiling - 1) 513 return; 514 515 for (i = 0; i < num_hugepd; i++, hpdp++) 516 hpdp->pd = 0; 517 518 tlb->need_flush = 1; 519 520 #ifdef CONFIG_PPC_FSL_BOOK3E 521 hugepd_free(tlb, hugepte); 522 #else 523 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 524 #endif 525 } 526 527 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 528 unsigned long addr, unsigned long end, 529 unsigned long floor, unsigned long ceiling) 530 { 531 pmd_t *pmd; 532 unsigned long next; 533 unsigned long start; 534 535 start = addr; 536 do { 537 pmd = pmd_offset(pud, addr); 538 next = pmd_addr_end(addr, end); 539 if (!is_hugepd(pmd)) { 540 /* 541 * if it is not hugepd pointer, we should already find 542 * it cleared. 543 */ 544 WARN_ON(!pmd_none_or_clear_bad(pmd)); 545 continue; 546 } 547 #ifdef CONFIG_PPC_FSL_BOOK3E 548 /* 549 * Increment next by the size of the huge mapping since 550 * there may be more than one entry at this level for a 551 * single hugepage, but all of them point to 552 * the same kmem cache that holds the hugepte. 553 */ 554 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 555 #endif 556 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 557 addr, next, floor, ceiling); 558 } while (addr = next, addr != end); 559 560 start &= PUD_MASK; 561 if (start < floor) 562 return; 563 if (ceiling) { 564 ceiling &= PUD_MASK; 565 if (!ceiling) 566 return; 567 } 568 if (end - 1 > ceiling - 1) 569 return; 570 571 pmd = pmd_offset(pud, start); 572 pud_clear(pud); 573 pmd_free_tlb(tlb, pmd, start); 574 } 575 576 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 577 unsigned long addr, unsigned long end, 578 unsigned long floor, unsigned long ceiling) 579 { 580 pud_t *pud; 581 unsigned long next; 582 unsigned long start; 583 584 start = addr; 585 do { 586 pud = pud_offset(pgd, addr); 587 next = pud_addr_end(addr, end); 588 if (!is_hugepd(pud)) { 589 if (pud_none_or_clear_bad(pud)) 590 continue; 591 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 592 ceiling); 593 } else { 594 #ifdef CONFIG_PPC_FSL_BOOK3E 595 /* 596 * Increment next by the size of the huge mapping since 597 * there may be more than one entry at this level for a 598 * single hugepage, but all of them point to 599 * the same kmem cache that holds the hugepte. 600 */ 601 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 602 #endif 603 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 604 addr, next, floor, ceiling); 605 } 606 } while (addr = next, addr != end); 607 608 start &= PGDIR_MASK; 609 if (start < floor) 610 return; 611 if (ceiling) { 612 ceiling &= PGDIR_MASK; 613 if (!ceiling) 614 return; 615 } 616 if (end - 1 > ceiling - 1) 617 return; 618 619 pud = pud_offset(pgd, start); 620 pgd_clear(pgd); 621 pud_free_tlb(tlb, pud, start); 622 } 623 624 /* 625 * This function frees user-level page tables of a process. 626 * 627 * Must be called with pagetable lock held. 628 */ 629 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 630 unsigned long addr, unsigned long end, 631 unsigned long floor, unsigned long ceiling) 632 { 633 pgd_t *pgd; 634 unsigned long next; 635 636 /* 637 * Because there are a number of different possible pagetable 638 * layouts for hugepage ranges, we limit knowledge of how 639 * things should be laid out to the allocation path 640 * (huge_pte_alloc(), above). Everything else works out the 641 * structure as it goes from information in the hugepd 642 * pointers. That means that we can't here use the 643 * optimization used in the normal page free_pgd_range(), of 644 * checking whether we're actually covering a large enough 645 * range to have to do anything at the top level of the walk 646 * instead of at the bottom. 647 * 648 * To make sense of this, you should probably go read the big 649 * block comment at the top of the normal free_pgd_range(), 650 * too. 651 */ 652 653 do { 654 next = pgd_addr_end(addr, end); 655 pgd = pgd_offset(tlb->mm, addr); 656 if (!is_hugepd(pgd)) { 657 if (pgd_none_or_clear_bad(pgd)) 658 continue; 659 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 660 } else { 661 #ifdef CONFIG_PPC_FSL_BOOK3E 662 /* 663 * Increment next by the size of the huge mapping since 664 * there may be more than one entry at the pgd level 665 * for a single hugepage, but all of them point to the 666 * same kmem cache that holds the hugepte. 667 */ 668 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 669 #endif 670 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 671 addr, next, floor, ceiling); 672 } 673 } while (addr = next, addr != end); 674 } 675 676 struct page * 677 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 678 { 679 pte_t *ptep; 680 struct page *page; 681 unsigned shift; 682 unsigned long mask; 683 /* 684 * Transparent hugepages are handled by generic code. We can skip them 685 * here. 686 */ 687 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); 688 689 /* Verify it is a huge page else bail. */ 690 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep)) 691 return ERR_PTR(-EINVAL); 692 693 mask = (1UL << shift) - 1; 694 page = pte_page(*ptep); 695 if (page) 696 page += (address & mask) / PAGE_SIZE; 697 698 return page; 699 } 700 701 struct page * 702 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 703 pmd_t *pmd, int write) 704 { 705 BUG(); 706 return NULL; 707 } 708 709 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 710 unsigned long sz) 711 { 712 unsigned long __boundary = (addr + sz) & ~(sz-1); 713 return (__boundary - 1 < end - 1) ? __boundary : end; 714 } 715 716 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, 717 unsigned long addr, unsigned long end, 718 int write, struct page **pages, int *nr) 719 { 720 pte_t *ptep; 721 unsigned long sz = 1UL << hugepd_shift(*hugepd); 722 unsigned long next; 723 724 ptep = hugepte_offset(hugepd, addr, pdshift); 725 do { 726 next = hugepte_addr_end(addr, end, sz); 727 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 728 return 0; 729 } while (ptep++, addr = next, addr != end); 730 731 return 1; 732 } 733 734 #ifdef CONFIG_PPC_MM_SLICES 735 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 736 unsigned long len, unsigned long pgoff, 737 unsigned long flags) 738 { 739 struct hstate *hstate = hstate_file(file); 740 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 741 742 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 743 } 744 #endif 745 746 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 747 { 748 #ifdef CONFIG_PPC_MM_SLICES 749 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 750 751 return 1UL << mmu_psize_to_shift(psize); 752 #else 753 if (!is_vm_hugetlb_page(vma)) 754 return PAGE_SIZE; 755 756 return huge_page_size(hstate_vma(vma)); 757 #endif 758 } 759 760 static inline bool is_power_of_4(unsigned long x) 761 { 762 if (is_power_of_2(x)) 763 return (__ilog2(x) % 2) ? false : true; 764 return false; 765 } 766 767 static int __init add_huge_page_size(unsigned long long size) 768 { 769 int shift = __ffs(size); 770 int mmu_psize; 771 772 /* Check that it is a page size supported by the hardware and 773 * that it fits within pagetable and slice limits. */ 774 #ifdef CONFIG_PPC_FSL_BOOK3E 775 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 776 return -EINVAL; 777 #else 778 if (!is_power_of_2(size) 779 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 780 return -EINVAL; 781 #endif 782 783 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 784 return -EINVAL; 785 786 #ifdef CONFIG_SPU_FS_64K_LS 787 /* Disable support for 64K huge pages when 64K SPU local store 788 * support is enabled as the current implementation conflicts. 789 */ 790 if (shift == PAGE_SHIFT_64K) 791 return -EINVAL; 792 #endif /* CONFIG_SPU_FS_64K_LS */ 793 794 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 795 796 /* Return if huge page size has already been setup */ 797 if (size_to_hstate(size)) 798 return 0; 799 800 hugetlb_add_hstate(shift - PAGE_SHIFT); 801 802 return 0; 803 } 804 805 static int __init hugepage_setup_sz(char *str) 806 { 807 unsigned long long size; 808 809 size = memparse(str, &str); 810 811 if (add_huge_page_size(size) != 0) 812 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 813 814 return 1; 815 } 816 __setup("hugepagesz=", hugepage_setup_sz); 817 818 #ifdef CONFIG_PPC_FSL_BOOK3E 819 struct kmem_cache *hugepte_cache; 820 static int __init hugetlbpage_init(void) 821 { 822 int psize; 823 824 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 825 unsigned shift; 826 827 if (!mmu_psize_defs[psize].shift) 828 continue; 829 830 shift = mmu_psize_to_shift(psize); 831 832 /* Don't treat normal page sizes as huge... */ 833 if (shift != PAGE_SHIFT) 834 if (add_huge_page_size(1ULL << shift) < 0) 835 continue; 836 } 837 838 /* 839 * Create a kmem cache for hugeptes. The bottom bits in the pte have 840 * size information encoded in them, so align them to allow this 841 */ 842 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 843 HUGEPD_SHIFT_MASK + 1, 0, NULL); 844 if (hugepte_cache == NULL) 845 panic("%s: Unable to create kmem cache for hugeptes\n", 846 __func__); 847 848 /* Default hpage size = 4M */ 849 if (mmu_psize_defs[MMU_PAGE_4M].shift) 850 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 851 else 852 panic("%s: Unable to set default huge page size\n", __func__); 853 854 855 return 0; 856 } 857 #else 858 static int __init hugetlbpage_init(void) 859 { 860 int psize; 861 862 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 863 return -ENODEV; 864 865 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 866 unsigned shift; 867 unsigned pdshift; 868 869 if (!mmu_psize_defs[psize].shift) 870 continue; 871 872 shift = mmu_psize_to_shift(psize); 873 874 if (add_huge_page_size(1ULL << shift) < 0) 875 continue; 876 877 if (shift < PMD_SHIFT) 878 pdshift = PMD_SHIFT; 879 else if (shift < PUD_SHIFT) 880 pdshift = PUD_SHIFT; 881 else 882 pdshift = PGDIR_SHIFT; 883 /* 884 * if we have pdshift and shift value same, we don't 885 * use pgt cache for hugepd. 886 */ 887 if (pdshift != shift) { 888 pgtable_cache_add(pdshift - shift, NULL); 889 if (!PGT_CACHE(pdshift - shift)) 890 panic("hugetlbpage_init(): could not create " 891 "pgtable cache for %d bit pagesize\n", shift); 892 } 893 } 894 895 /* Set default large page size. Currently, we pick 16M or 1M 896 * depending on what is available 897 */ 898 if (mmu_psize_defs[MMU_PAGE_16M].shift) 899 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 900 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 901 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 902 903 return 0; 904 } 905 #endif 906 module_init(hugetlbpage_init); 907 908 void flush_dcache_icache_hugepage(struct page *page) 909 { 910 int i; 911 void *start; 912 913 BUG_ON(!PageCompound(page)); 914 915 for (i = 0; i < (1UL << compound_order(page)); i++) { 916 if (!PageHighMem(page)) { 917 __flush_dcache_icache(page_address(page+i)); 918 } else { 919 start = kmap_atomic(page+i); 920 __flush_dcache_icache(start); 921 kunmap_atomic(start); 922 } 923 } 924 } 925 926 #endif /* CONFIG_HUGETLB_PAGE */ 927 928 /* 929 * We have 4 cases for pgds and pmds: 930 * (1) invalid (all zeroes) 931 * (2) pointer to next table, as normal; bottom 6 bits == 0 932 * (3) leaf pte for huge page, bottom two bits != 00 933 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table 934 * 935 * So long as we atomically load page table pointers we are safe against teardown, 936 * we can follow the address down to the the page and take a ref on it. 937 */ 938 939 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) 940 { 941 pgd_t pgd, *pgdp; 942 pud_t pud, *pudp; 943 pmd_t pmd, *pmdp; 944 pte_t *ret_pte; 945 hugepd_t *hpdp = NULL; 946 unsigned pdshift = PGDIR_SHIFT; 947 948 if (shift) 949 *shift = 0; 950 951 pgdp = pgdir + pgd_index(ea); 952 pgd = ACCESS_ONCE(*pgdp); 953 /* 954 * Always operate on the local stack value. This make sure the 955 * value don't get updated by a parallel THP split/collapse, 956 * page fault or a page unmap. The return pte_t * is still not 957 * stable. So should be checked there for above conditions. 958 */ 959 if (pgd_none(pgd)) 960 return NULL; 961 else if (pgd_huge(pgd)) { 962 ret_pte = (pte_t *) pgdp; 963 goto out; 964 } else if (is_hugepd(&pgd)) 965 hpdp = (hugepd_t *)&pgd; 966 else { 967 /* 968 * Even if we end up with an unmap, the pgtable will not 969 * be freed, because we do an rcu free and here we are 970 * irq disabled 971 */ 972 pdshift = PUD_SHIFT; 973 pudp = pud_offset(&pgd, ea); 974 pud = ACCESS_ONCE(*pudp); 975 976 if (pud_none(pud)) 977 return NULL; 978 else if (pud_huge(pud)) { 979 ret_pte = (pte_t *) pudp; 980 goto out; 981 } else if (is_hugepd(&pud)) 982 hpdp = (hugepd_t *)&pud; 983 else { 984 pdshift = PMD_SHIFT; 985 pmdp = pmd_offset(&pud, ea); 986 pmd = ACCESS_ONCE(*pmdp); 987 /* 988 * A hugepage collapse is captured by pmd_none, because 989 * it mark the pmd none and do a hpte invalidate. 990 * 991 * A hugepage split is captured by pmd_trans_splitting 992 * because we mark the pmd trans splitting and do a 993 * hpte invalidate 994 * 995 */ 996 if (pmd_none(pmd) || pmd_trans_splitting(pmd)) 997 return NULL; 998 999 if (pmd_huge(pmd) || pmd_large(pmd)) { 1000 ret_pte = (pte_t *) pmdp; 1001 goto out; 1002 } else if (is_hugepd(&pmd)) 1003 hpdp = (hugepd_t *)&pmd; 1004 else 1005 return pte_offset_kernel(&pmd, ea); 1006 } 1007 } 1008 if (!hpdp) 1009 return NULL; 1010 1011 ret_pte = hugepte_offset(hpdp, ea, pdshift); 1012 pdshift = hugepd_shift(*hpdp); 1013 out: 1014 if (shift) 1015 *shift = pdshift; 1016 return ret_pte; 1017 } 1018 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); 1019 1020 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1021 unsigned long end, int write, struct page **pages, int *nr) 1022 { 1023 unsigned long mask; 1024 unsigned long pte_end; 1025 struct page *head, *page, *tail; 1026 pte_t pte; 1027 int refs; 1028 1029 pte_end = (addr + sz) & ~(sz-1); 1030 if (pte_end < end) 1031 end = pte_end; 1032 1033 pte = ACCESS_ONCE(*ptep); 1034 mask = _PAGE_PRESENT | _PAGE_USER; 1035 if (write) 1036 mask |= _PAGE_RW; 1037 1038 if ((pte_val(pte) & mask) != mask) 1039 return 0; 1040 1041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1042 /* 1043 * check for splitting here 1044 */ 1045 if (pmd_trans_splitting(pte_pmd(pte))) 1046 return 0; 1047 #endif 1048 1049 /* hugepages are never "special" */ 1050 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1051 1052 refs = 0; 1053 head = pte_page(pte); 1054 1055 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1056 tail = page; 1057 do { 1058 VM_BUG_ON(compound_head(page) != head); 1059 pages[*nr] = page; 1060 (*nr)++; 1061 page++; 1062 refs++; 1063 } while (addr += PAGE_SIZE, addr != end); 1064 1065 if (!page_cache_add_speculative(head, refs)) { 1066 *nr -= refs; 1067 return 0; 1068 } 1069 1070 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1071 /* Could be optimized better */ 1072 *nr -= refs; 1073 while (refs--) 1074 put_page(head); 1075 return 0; 1076 } 1077 1078 /* 1079 * Any tail page need their mapcount reference taken before we 1080 * return. 1081 */ 1082 while (refs--) { 1083 if (PageTail(tail)) 1084 get_huge_page_tail(tail); 1085 tail++; 1086 } 1087 1088 return 1; 1089 } 1090