xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 6f4eaea2)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27 
28 bool hugetlb_disabled = false;
29 
30 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
31 
32 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
33 			 __builtin_ffs(sizeof(void *)))
34 
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 	/*
38 	 * Only called for hugetlbfs pages, hence can ignore THP and the
39 	 * irq disabled walk.
40 	 */
41 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43 
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 			   unsigned long address, unsigned int pdshift,
46 			   unsigned int pshift, spinlock_t *ptl)
47 {
48 	struct kmem_cache *cachep;
49 	pte_t *new;
50 	int i;
51 	int num_hugepd;
52 
53 	if (pshift >= pdshift) {
54 		cachep = PGT_CACHE(PTE_T_ORDER);
55 		num_hugepd = 1 << (pshift - pdshift);
56 	} else {
57 		cachep = PGT_CACHE(pdshift - pshift);
58 		num_hugepd = 1;
59 	}
60 
61 	if (!cachep) {
62 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 		return -ENOMEM;
64 	}
65 
66 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67 
68 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70 
71 	if (!new)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Make sure other cpus find the hugepd set only after a
76 	 * properly initialized page table is visible to them.
77 	 * For more details look for comment in __pte_alloc().
78 	 */
79 	smp_wmb();
80 
81 	spin_lock(ptl);
82 	/*
83 	 * We have multiple higher-level entries that point to the same
84 	 * actual pte location.  Fill in each as we go and backtrack on error.
85 	 * We need all of these so the DTLB pgtable walk code can find the
86 	 * right higher-level entry without knowing if it's a hugepage or not.
87 	 */
88 	for (i = 0; i < num_hugepd; i++, hpdp++) {
89 		if (unlikely(!hugepd_none(*hpdp)))
90 			break;
91 		hugepd_populate(hpdp, new, pshift);
92 	}
93 	/* If we bailed from the for loop early, an error occurred, clean up */
94 	if (i < num_hugepd) {
95 		for (i = i - 1 ; i >= 0; i--, hpdp--)
96 			*hpdp = __hugepd(0);
97 		kmem_cache_free(cachep, new);
98 	} else {
99 		kmemleak_ignore(new);
100 	}
101 	spin_unlock(ptl);
102 	return 0;
103 }
104 
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
110 {
111 	pgd_t *pg;
112 	p4d_t *p4;
113 	pud_t *pu;
114 	pmd_t *pm;
115 	hugepd_t *hpdp = NULL;
116 	unsigned pshift = __ffs(sz);
117 	unsigned pdshift = PGDIR_SHIFT;
118 	spinlock_t *ptl;
119 
120 	addr &= ~(sz-1);
121 	pg = pgd_offset(mm, addr);
122 	p4 = p4d_offset(pg, addr);
123 
124 #ifdef CONFIG_PPC_BOOK3S_64
125 	if (pshift == PGDIR_SHIFT)
126 		/* 16GB huge page */
127 		return (pte_t *) p4;
128 	else if (pshift > PUD_SHIFT) {
129 		/*
130 		 * We need to use hugepd table
131 		 */
132 		ptl = &mm->page_table_lock;
133 		hpdp = (hugepd_t *)p4;
134 	} else {
135 		pdshift = PUD_SHIFT;
136 		pu = pud_alloc(mm, p4, addr);
137 		if (!pu)
138 			return NULL;
139 		if (pshift == PUD_SHIFT)
140 			return (pte_t *)pu;
141 		else if (pshift > PMD_SHIFT) {
142 			ptl = pud_lockptr(mm, pu);
143 			hpdp = (hugepd_t *)pu;
144 		} else {
145 			pdshift = PMD_SHIFT;
146 			pm = pmd_alloc(mm, pu, addr);
147 			if (!pm)
148 				return NULL;
149 			if (pshift == PMD_SHIFT)
150 				/* 16MB hugepage */
151 				return (pte_t *)pm;
152 			else {
153 				ptl = pmd_lockptr(mm, pm);
154 				hpdp = (hugepd_t *)pm;
155 			}
156 		}
157 	}
158 #else
159 	if (pshift >= PGDIR_SHIFT) {
160 		ptl = &mm->page_table_lock;
161 		hpdp = (hugepd_t *)p4;
162 	} else {
163 		pdshift = PUD_SHIFT;
164 		pu = pud_alloc(mm, p4, addr);
165 		if (!pu)
166 			return NULL;
167 		if (pshift >= PUD_SHIFT) {
168 			ptl = pud_lockptr(mm, pu);
169 			hpdp = (hugepd_t *)pu;
170 		} else {
171 			pdshift = PMD_SHIFT;
172 			pm = pmd_alloc(mm, pu, addr);
173 			if (!pm)
174 				return NULL;
175 			ptl = pmd_lockptr(mm, pm);
176 			hpdp = (hugepd_t *)pm;
177 		}
178 	}
179 #endif
180 	if (!hpdp)
181 		return NULL;
182 
183 	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
184 		return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
185 
186 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
187 
188 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189 						  pdshift, pshift, ptl))
190 		return NULL;
191 
192 	return hugepte_offset(*hpdp, addr, pdshift);
193 }
194 
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197  * Tracks gpages after the device tree is scanned and before the
198  * huge_boot_pages list is ready on pseries.
199  */
200 #define MAX_NUMBER_GPAGES	1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203 
204 /*
205  * Build list of addresses of gigantic pages.  This function is used in early
206  * boot before the buddy allocator is setup.
207  */
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210 	if (!addr)
211 		return;
212 	while (number_of_pages > 0) {
213 		gpage_freearray[nr_gpages] = addr;
214 		nr_gpages++;
215 		number_of_pages--;
216 		addr += page_size;
217 	}
218 }
219 
220 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222 	struct huge_bootmem_page *m;
223 	if (nr_gpages == 0)
224 		return 0;
225 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 	gpage_freearray[nr_gpages] = 0;
227 	list_add(&m->list, &huge_boot_pages);
228 	m->hstate = hstate;
229 	return 1;
230 }
231 #endif
232 
233 
234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236 
237 #ifdef CONFIG_PPC_BOOK3S_64
238 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 		return pseries_alloc_bootmem_huge_page(h);
240 #endif
241 	return __alloc_bootmem_huge_page(h);
242 }
243 
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247 
248 struct hugepd_freelist {
249 	struct rcu_head	rcu;
250 	unsigned int index;
251 	void *ptes[];
252 };
253 
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255 
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258 	struct hugepd_freelist *batch =
259 		container_of(head, struct hugepd_freelist, rcu);
260 	unsigned int i;
261 
262 	for (i = 0; i < batch->index; i++)
263 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
264 
265 	free_page((unsigned long)batch);
266 }
267 
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270 	struct hugepd_freelist **batchp;
271 
272 	batchp = &get_cpu_var(hugepd_freelist_cur);
273 
274 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 	    mm_is_thread_local(tlb->mm)) {
276 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277 		put_cpu_var(hugepd_freelist_cur);
278 		return;
279 	}
280 
281 	if (*batchp == NULL) {
282 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 		(*batchp)->index = 0;
284 	}
285 
286 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
287 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 		*batchp = NULL;
290 	}
291 	put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296 
297 /* Return true when the entry to be freed maps more than the area being freed */
298 static bool range_is_outside_limits(unsigned long start, unsigned long end,
299 				    unsigned long floor, unsigned long ceiling,
300 				    unsigned long mask)
301 {
302 	if ((start & mask) < floor)
303 		return true;
304 	if (ceiling) {
305 		ceiling &= mask;
306 		if (!ceiling)
307 			return true;
308 	}
309 	return end - 1 > ceiling - 1;
310 }
311 
312 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
313 			      unsigned long start, unsigned long end,
314 			      unsigned long floor, unsigned long ceiling)
315 {
316 	pte_t *hugepte = hugepd_page(*hpdp);
317 	int i;
318 
319 	unsigned long pdmask = ~((1UL << pdshift) - 1);
320 	unsigned int num_hugepd = 1;
321 	unsigned int shift = hugepd_shift(*hpdp);
322 
323 	/* Note: On fsl the hpdp may be the first of several */
324 	if (shift > pdshift)
325 		num_hugepd = 1 << (shift - pdshift);
326 
327 	if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
328 		return;
329 
330 	for (i = 0; i < num_hugepd; i++, hpdp++)
331 		*hpdp = __hugepd(0);
332 
333 	if (shift >= pdshift)
334 		hugepd_free(tlb, hugepte);
335 	else
336 		pgtable_free_tlb(tlb, hugepte,
337 				 get_hugepd_cache_index(pdshift - shift));
338 }
339 
340 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
341 				   unsigned long addr, unsigned long end,
342 				   unsigned long floor, unsigned long ceiling)
343 {
344 	pgtable_t token = pmd_pgtable(*pmd);
345 
346 	if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
347 		return;
348 
349 	pmd_clear(pmd);
350 	pte_free_tlb(tlb, token, addr);
351 	mm_dec_nr_ptes(tlb->mm);
352 }
353 
354 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
355 				   unsigned long addr, unsigned long end,
356 				   unsigned long floor, unsigned long ceiling)
357 {
358 	pmd_t *pmd;
359 	unsigned long next;
360 	unsigned long start;
361 
362 	start = addr;
363 	do {
364 		unsigned long more;
365 
366 		pmd = pmd_offset(pud, addr);
367 		next = pmd_addr_end(addr, end);
368 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
369 			if (pmd_none_or_clear_bad(pmd))
370 				continue;
371 
372 			/*
373 			 * if it is not hugepd pointer, we should already find
374 			 * it cleared.
375 			 */
376 			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
377 
378 			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
379 
380 			continue;
381 		}
382 		/*
383 		 * Increment next by the size of the huge mapping since
384 		 * there may be more than one entry at this level for a
385 		 * single hugepage, but all of them point to
386 		 * the same kmem cache that holds the hugepte.
387 		 */
388 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
389 		if (more > next)
390 			next = more;
391 
392 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
393 				  addr, next, floor, ceiling);
394 	} while (addr = next, addr != end);
395 
396 	if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
397 		return;
398 
399 	pmd = pmd_offset(pud, start & PUD_MASK);
400 	pud_clear(pud);
401 	pmd_free_tlb(tlb, pmd, start & PUD_MASK);
402 	mm_dec_nr_pmds(tlb->mm);
403 }
404 
405 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
406 				   unsigned long addr, unsigned long end,
407 				   unsigned long floor, unsigned long ceiling)
408 {
409 	pud_t *pud;
410 	unsigned long next;
411 	unsigned long start;
412 
413 	start = addr;
414 	do {
415 		pud = pud_offset(p4d, addr);
416 		next = pud_addr_end(addr, end);
417 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
418 			if (pud_none_or_clear_bad(pud))
419 				continue;
420 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
421 					       ceiling);
422 		} else {
423 			unsigned long more;
424 			/*
425 			 * Increment next by the size of the huge mapping since
426 			 * there may be more than one entry at this level for a
427 			 * single hugepage, but all of them point to
428 			 * the same kmem cache that holds the hugepte.
429 			 */
430 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
431 			if (more > next)
432 				next = more;
433 
434 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
435 					  addr, next, floor, ceiling);
436 		}
437 	} while (addr = next, addr != end);
438 
439 	if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
440 		return;
441 
442 	pud = pud_offset(p4d, start & PGDIR_MASK);
443 	p4d_clear(p4d);
444 	pud_free_tlb(tlb, pud, start & PGDIR_MASK);
445 	mm_dec_nr_puds(tlb->mm);
446 }
447 
448 /*
449  * This function frees user-level page tables of a process.
450  */
451 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
452 			    unsigned long addr, unsigned long end,
453 			    unsigned long floor, unsigned long ceiling)
454 {
455 	pgd_t *pgd;
456 	p4d_t *p4d;
457 	unsigned long next;
458 
459 	/*
460 	 * Because there are a number of different possible pagetable
461 	 * layouts for hugepage ranges, we limit knowledge of how
462 	 * things should be laid out to the allocation path
463 	 * (huge_pte_alloc(), above).  Everything else works out the
464 	 * structure as it goes from information in the hugepd
465 	 * pointers.  That means that we can't here use the
466 	 * optimization used in the normal page free_pgd_range(), of
467 	 * checking whether we're actually covering a large enough
468 	 * range to have to do anything at the top level of the walk
469 	 * instead of at the bottom.
470 	 *
471 	 * To make sense of this, you should probably go read the big
472 	 * block comment at the top of the normal free_pgd_range(),
473 	 * too.
474 	 */
475 
476 	do {
477 		next = pgd_addr_end(addr, end);
478 		pgd = pgd_offset(tlb->mm, addr);
479 		p4d = p4d_offset(pgd, addr);
480 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
481 			if (p4d_none_or_clear_bad(p4d))
482 				continue;
483 			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
484 		} else {
485 			unsigned long more;
486 			/*
487 			 * Increment next by the size of the huge mapping since
488 			 * there may be more than one entry at the pgd level
489 			 * for a single hugepage, but all of them point to the
490 			 * same kmem cache that holds the hugepte.
491 			 */
492 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
493 			if (more > next)
494 				next = more;
495 
496 			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
497 					  addr, next, floor, ceiling);
498 		}
499 	} while (addr = next, addr != end);
500 }
501 
502 struct page *follow_huge_pd(struct vm_area_struct *vma,
503 			    unsigned long address, hugepd_t hpd,
504 			    int flags, int pdshift)
505 {
506 	pte_t *ptep;
507 	spinlock_t *ptl;
508 	struct page *page = NULL;
509 	unsigned long mask;
510 	int shift = hugepd_shift(hpd);
511 	struct mm_struct *mm = vma->vm_mm;
512 
513 retry:
514 	/*
515 	 * hugepage directory entries are protected by mm->page_table_lock
516 	 * Use this instead of huge_pte_lockptr
517 	 */
518 	ptl = &mm->page_table_lock;
519 	spin_lock(ptl);
520 
521 	ptep = hugepte_offset(hpd, address, pdshift);
522 	if (pte_present(*ptep)) {
523 		mask = (1UL << shift) - 1;
524 		page = pte_page(*ptep);
525 		page += ((address & mask) >> PAGE_SHIFT);
526 		if (flags & FOLL_GET)
527 			get_page(page);
528 	} else {
529 		if (is_hugetlb_entry_migration(*ptep)) {
530 			spin_unlock(ptl);
531 			__migration_entry_wait(mm, ptep, ptl);
532 			goto retry;
533 		}
534 	}
535 	spin_unlock(ptl);
536 	return page;
537 }
538 
539 #ifdef CONFIG_PPC_MM_SLICES
540 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
541 					unsigned long len, unsigned long pgoff,
542 					unsigned long flags)
543 {
544 	struct hstate *hstate = hstate_file(file);
545 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
546 
547 #ifdef CONFIG_PPC_RADIX_MMU
548 	if (radix_enabled())
549 		return radix__hugetlb_get_unmapped_area(file, addr, len,
550 						       pgoff, flags);
551 #endif
552 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
553 }
554 #endif
555 
556 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
557 {
558 	/* With radix we don't use slice, so derive it from vma*/
559 	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
560 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
561 
562 		return 1UL << mmu_psize_to_shift(psize);
563 	}
564 	return vma_kernel_pagesize(vma);
565 }
566 
567 bool __init arch_hugetlb_valid_size(unsigned long size)
568 {
569 	int shift = __ffs(size);
570 	int mmu_psize;
571 
572 	/* Check that it is a page size supported by the hardware and
573 	 * that it fits within pagetable and slice limits. */
574 	if (size <= PAGE_SIZE || !is_power_of_2(size))
575 		return false;
576 
577 	mmu_psize = check_and_get_huge_psize(shift);
578 	if (mmu_psize < 0)
579 		return false;
580 
581 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
582 
583 	return true;
584 }
585 
586 static int __init add_huge_page_size(unsigned long long size)
587 {
588 	int shift = __ffs(size);
589 
590 	if (!arch_hugetlb_valid_size((unsigned long)size))
591 		return -EINVAL;
592 
593 	hugetlb_add_hstate(shift - PAGE_SHIFT);
594 	return 0;
595 }
596 
597 static int __init hugetlbpage_init(void)
598 {
599 	bool configured = false;
600 	int psize;
601 
602 	if (hugetlb_disabled) {
603 		pr_info("HugeTLB support is disabled!\n");
604 		return 0;
605 	}
606 
607 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
608 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
609 		return -ENODEV;
610 
611 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
612 		unsigned shift;
613 		unsigned pdshift;
614 
615 		if (!mmu_psize_defs[psize].shift)
616 			continue;
617 
618 		shift = mmu_psize_to_shift(psize);
619 
620 #ifdef CONFIG_PPC_BOOK3S_64
621 		if (shift > PGDIR_SHIFT)
622 			continue;
623 		else if (shift > PUD_SHIFT)
624 			pdshift = PGDIR_SHIFT;
625 		else if (shift > PMD_SHIFT)
626 			pdshift = PUD_SHIFT;
627 		else
628 			pdshift = PMD_SHIFT;
629 #else
630 		if (shift < PUD_SHIFT)
631 			pdshift = PMD_SHIFT;
632 		else if (shift < PGDIR_SHIFT)
633 			pdshift = PUD_SHIFT;
634 		else
635 			pdshift = PGDIR_SHIFT;
636 #endif
637 
638 		if (add_huge_page_size(1ULL << shift) < 0)
639 			continue;
640 		/*
641 		 * if we have pdshift and shift value same, we don't
642 		 * use pgt cache for hugepd.
643 		 */
644 		if (pdshift > shift) {
645 			if (!IS_ENABLED(CONFIG_PPC_8xx))
646 				pgtable_cache_add(pdshift - shift);
647 		} else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
648 			   IS_ENABLED(CONFIG_PPC_8xx)) {
649 			pgtable_cache_add(PTE_T_ORDER);
650 		}
651 
652 		configured = true;
653 	}
654 
655 	if (configured) {
656 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
657 			hugetlbpage_init_default();
658 	} else
659 		pr_info("Failed to initialize. Disabling HugeTLB");
660 
661 	return 0;
662 }
663 
664 arch_initcall(hugetlbpage_init);
665 
666 void __init gigantic_hugetlb_cma_reserve(void)
667 {
668 	unsigned long order = 0;
669 
670 	if (radix_enabled())
671 		order = PUD_SHIFT - PAGE_SHIFT;
672 	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
673 		/*
674 		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
675 		 */
676 		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
677 
678 	if (order) {
679 		VM_WARN_ON(order < MAX_ORDER);
680 		hugetlb_cma_reserve(order);
681 	}
682 }
683