1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/swap.h> 20 #include <linux/swapops.h> 21 #include <linux/kmemleak.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 bool hugetlb_disabled = false; 39 40 unsigned int HPAGE_SHIFT; 41 EXPORT_SYMBOL(HPAGE_SHIFT); 42 43 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 44 45 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *))) 46 47 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 48 { 49 /* 50 * Only called for hugetlbfs pages, hence can ignore THP and the 51 * irq disabled walk. 52 */ 53 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 54 } 55 56 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 57 unsigned long address, unsigned int pdshift, 58 unsigned int pshift, spinlock_t *ptl) 59 { 60 struct kmem_cache *cachep; 61 pte_t *new; 62 int i; 63 int num_hugepd; 64 65 if (pshift >= pdshift) { 66 cachep = PGT_CACHE(PTE_T_ORDER); 67 num_hugepd = 1 << (pshift - pdshift); 68 } else if (IS_ENABLED(CONFIG_PPC_8xx)) { 69 cachep = PGT_CACHE(PTE_INDEX_SIZE); 70 num_hugepd = 1; 71 } else { 72 cachep = PGT_CACHE(pdshift - pshift); 73 num_hugepd = 1; 74 } 75 76 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 77 78 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 80 81 if (! new) 82 return -ENOMEM; 83 84 /* 85 * Make sure other cpus find the hugepd set only after a 86 * properly initialized page table is visible to them. 87 * For more details look for comment in __pte_alloc(). 88 */ 89 smp_wmb(); 90 91 spin_lock(ptl); 92 /* 93 * We have multiple higher-level entries that point to the same 94 * actual pte location. Fill in each as we go and backtrack on error. 95 * We need all of these so the DTLB pgtable walk code can find the 96 * right higher-level entry without knowing if it's a hugepage or not. 97 */ 98 for (i = 0; i < num_hugepd; i++, hpdp++) { 99 if (unlikely(!hugepd_none(*hpdp))) 100 break; 101 else { 102 #ifdef CONFIG_PPC_BOOK3S_64 103 *hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS | 104 (shift_to_mmu_psize(pshift) << 2)); 105 #elif defined(CONFIG_PPC_8xx) 106 *hpdp = __hugepd(__pa(new) | _PMD_USER | 107 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 108 _PMD_PAGE_512K) | _PMD_PRESENT); 109 #else 110 /* We use the old format for PPC_FSL_BOOK3E */ 111 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 112 #endif 113 } 114 } 115 /* If we bailed from the for loop early, an error occurred, clean up */ 116 if (i < num_hugepd) { 117 for (i = i - 1 ; i >= 0; i--, hpdp--) 118 *hpdp = __hugepd(0); 119 kmem_cache_free(cachep, new); 120 } else { 121 kmemleak_ignore(new); 122 } 123 spin_unlock(ptl); 124 return 0; 125 } 126 127 /* 128 * At this point we do the placement change only for BOOK3S 64. This would 129 * possibly work on other subarchs. 130 */ 131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 132 { 133 pgd_t *pg; 134 pud_t *pu; 135 pmd_t *pm; 136 hugepd_t *hpdp = NULL; 137 unsigned pshift = __ffs(sz); 138 unsigned pdshift = PGDIR_SHIFT; 139 spinlock_t *ptl; 140 141 addr &= ~(sz-1); 142 pg = pgd_offset(mm, addr); 143 144 #ifdef CONFIG_PPC_BOOK3S_64 145 if (pshift == PGDIR_SHIFT) 146 /* 16GB huge page */ 147 return (pte_t *) pg; 148 else if (pshift > PUD_SHIFT) { 149 /* 150 * We need to use hugepd table 151 */ 152 ptl = &mm->page_table_lock; 153 hpdp = (hugepd_t *)pg; 154 } else { 155 pdshift = PUD_SHIFT; 156 pu = pud_alloc(mm, pg, addr); 157 if (pshift == PUD_SHIFT) 158 return (pte_t *)pu; 159 else if (pshift > PMD_SHIFT) { 160 ptl = pud_lockptr(mm, pu); 161 hpdp = (hugepd_t *)pu; 162 } else { 163 pdshift = PMD_SHIFT; 164 pm = pmd_alloc(mm, pu, addr); 165 if (pshift == PMD_SHIFT) 166 /* 16MB hugepage */ 167 return (pte_t *)pm; 168 else { 169 ptl = pmd_lockptr(mm, pm); 170 hpdp = (hugepd_t *)pm; 171 } 172 } 173 } 174 #else 175 if (pshift >= PGDIR_SHIFT) { 176 ptl = &mm->page_table_lock; 177 hpdp = (hugepd_t *)pg; 178 } else { 179 pdshift = PUD_SHIFT; 180 pu = pud_alloc(mm, pg, addr); 181 if (pshift >= PUD_SHIFT) { 182 ptl = pud_lockptr(mm, pu); 183 hpdp = (hugepd_t *)pu; 184 } else { 185 pdshift = PMD_SHIFT; 186 pm = pmd_alloc(mm, pu, addr); 187 ptl = pmd_lockptr(mm, pm); 188 hpdp = (hugepd_t *)pm; 189 } 190 } 191 #endif 192 if (!hpdp) 193 return NULL; 194 195 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 196 197 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 198 pdshift, pshift, ptl)) 199 return NULL; 200 201 return hugepte_offset(*hpdp, addr, pdshift); 202 } 203 204 #ifdef CONFIG_PPC_BOOK3S_64 205 /* 206 * Tracks gpages after the device tree is scanned and before the 207 * huge_boot_pages list is ready on pseries. 208 */ 209 #define MAX_NUMBER_GPAGES 1024 210 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 211 __initdata static unsigned nr_gpages; 212 213 /* 214 * Build list of addresses of gigantic pages. This function is used in early 215 * boot before the buddy allocator is setup. 216 */ 217 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 218 { 219 if (!addr) 220 return; 221 while (number_of_pages > 0) { 222 gpage_freearray[nr_gpages] = addr; 223 nr_gpages++; 224 number_of_pages--; 225 addr += page_size; 226 } 227 } 228 229 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 230 { 231 struct huge_bootmem_page *m; 232 if (nr_gpages == 0) 233 return 0; 234 m = phys_to_virt(gpage_freearray[--nr_gpages]); 235 gpage_freearray[nr_gpages] = 0; 236 list_add(&m->list, &huge_boot_pages); 237 m->hstate = hstate; 238 return 1; 239 } 240 #endif 241 242 243 int __init alloc_bootmem_huge_page(struct hstate *h) 244 { 245 246 #ifdef CONFIG_PPC_BOOK3S_64 247 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 248 return pseries_alloc_bootmem_huge_page(h); 249 #endif 250 return __alloc_bootmem_huge_page(h); 251 } 252 253 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 254 #define HUGEPD_FREELIST_SIZE \ 255 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 256 257 struct hugepd_freelist { 258 struct rcu_head rcu; 259 unsigned int index; 260 void *ptes[0]; 261 }; 262 263 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 264 265 static void hugepd_free_rcu_callback(struct rcu_head *head) 266 { 267 struct hugepd_freelist *batch = 268 container_of(head, struct hugepd_freelist, rcu); 269 unsigned int i; 270 271 for (i = 0; i < batch->index; i++) 272 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); 273 274 free_page((unsigned long)batch); 275 } 276 277 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 278 { 279 struct hugepd_freelist **batchp; 280 281 batchp = &get_cpu_var(hugepd_freelist_cur); 282 283 if (atomic_read(&tlb->mm->mm_users) < 2 || 284 mm_is_thread_local(tlb->mm)) { 285 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); 286 put_cpu_var(hugepd_freelist_cur); 287 return; 288 } 289 290 if (*batchp == NULL) { 291 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 292 (*batchp)->index = 0; 293 } 294 295 (*batchp)->ptes[(*batchp)->index++] = hugepte; 296 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 297 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); 298 *batchp = NULL; 299 } 300 put_cpu_var(hugepd_freelist_cur); 301 } 302 #else 303 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 304 #endif 305 306 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 307 unsigned long start, unsigned long end, 308 unsigned long floor, unsigned long ceiling) 309 { 310 pte_t *hugepte = hugepd_page(*hpdp); 311 int i; 312 313 unsigned long pdmask = ~((1UL << pdshift) - 1); 314 unsigned int num_hugepd = 1; 315 unsigned int shift = hugepd_shift(*hpdp); 316 317 /* Note: On fsl the hpdp may be the first of several */ 318 if (shift > pdshift) 319 num_hugepd = 1 << (shift - pdshift); 320 321 start &= pdmask; 322 if (start < floor) 323 return; 324 if (ceiling) { 325 ceiling &= pdmask; 326 if (! ceiling) 327 return; 328 } 329 if (end - 1 > ceiling - 1) 330 return; 331 332 for (i = 0; i < num_hugepd; i++, hpdp++) 333 *hpdp = __hugepd(0); 334 335 if (shift >= pdshift) 336 hugepd_free(tlb, hugepte); 337 else if (IS_ENABLED(CONFIG_PPC_8xx)) 338 pgtable_free_tlb(tlb, hugepte, 339 get_hugepd_cache_index(PTE_INDEX_SIZE)); 340 else 341 pgtable_free_tlb(tlb, hugepte, 342 get_hugepd_cache_index(pdshift - shift)); 343 } 344 345 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 346 unsigned long addr, unsigned long end, 347 unsigned long floor, unsigned long ceiling) 348 { 349 pmd_t *pmd; 350 unsigned long next; 351 unsigned long start; 352 353 start = addr; 354 do { 355 unsigned long more; 356 357 pmd = pmd_offset(pud, addr); 358 next = pmd_addr_end(addr, end); 359 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 360 /* 361 * if it is not hugepd pointer, we should already find 362 * it cleared. 363 */ 364 WARN_ON(!pmd_none_or_clear_bad(pmd)); 365 continue; 366 } 367 /* 368 * Increment next by the size of the huge mapping since 369 * there may be more than one entry at this level for a 370 * single hugepage, but all of them point to 371 * the same kmem cache that holds the hugepte. 372 */ 373 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 374 if (more > next) 375 next = more; 376 377 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 378 addr, next, floor, ceiling); 379 } while (addr = next, addr != end); 380 381 start &= PUD_MASK; 382 if (start < floor) 383 return; 384 if (ceiling) { 385 ceiling &= PUD_MASK; 386 if (!ceiling) 387 return; 388 } 389 if (end - 1 > ceiling - 1) 390 return; 391 392 pmd = pmd_offset(pud, start); 393 pud_clear(pud); 394 pmd_free_tlb(tlb, pmd, start); 395 mm_dec_nr_pmds(tlb->mm); 396 } 397 398 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 399 unsigned long addr, unsigned long end, 400 unsigned long floor, unsigned long ceiling) 401 { 402 pud_t *pud; 403 unsigned long next; 404 unsigned long start; 405 406 start = addr; 407 do { 408 pud = pud_offset(pgd, addr); 409 next = pud_addr_end(addr, end); 410 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 411 if (pud_none_or_clear_bad(pud)) 412 continue; 413 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 414 ceiling); 415 } else { 416 unsigned long more; 417 /* 418 * Increment next by the size of the huge mapping since 419 * there may be more than one entry at this level for a 420 * single hugepage, but all of them point to 421 * the same kmem cache that holds the hugepte. 422 */ 423 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 424 if (more > next) 425 next = more; 426 427 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 428 addr, next, floor, ceiling); 429 } 430 } while (addr = next, addr != end); 431 432 start &= PGDIR_MASK; 433 if (start < floor) 434 return; 435 if (ceiling) { 436 ceiling &= PGDIR_MASK; 437 if (!ceiling) 438 return; 439 } 440 if (end - 1 > ceiling - 1) 441 return; 442 443 pud = pud_offset(pgd, start); 444 pgd_clear(pgd); 445 pud_free_tlb(tlb, pud, start); 446 mm_dec_nr_puds(tlb->mm); 447 } 448 449 /* 450 * This function frees user-level page tables of a process. 451 */ 452 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 453 unsigned long addr, unsigned long end, 454 unsigned long floor, unsigned long ceiling) 455 { 456 pgd_t *pgd; 457 unsigned long next; 458 459 /* 460 * Because there are a number of different possible pagetable 461 * layouts for hugepage ranges, we limit knowledge of how 462 * things should be laid out to the allocation path 463 * (huge_pte_alloc(), above). Everything else works out the 464 * structure as it goes from information in the hugepd 465 * pointers. That means that we can't here use the 466 * optimization used in the normal page free_pgd_range(), of 467 * checking whether we're actually covering a large enough 468 * range to have to do anything at the top level of the walk 469 * instead of at the bottom. 470 * 471 * To make sense of this, you should probably go read the big 472 * block comment at the top of the normal free_pgd_range(), 473 * too. 474 */ 475 476 do { 477 next = pgd_addr_end(addr, end); 478 pgd = pgd_offset(tlb->mm, addr); 479 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 480 if (pgd_none_or_clear_bad(pgd)) 481 continue; 482 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 483 } else { 484 unsigned long more; 485 /* 486 * Increment next by the size of the huge mapping since 487 * there may be more than one entry at the pgd level 488 * for a single hugepage, but all of them point to the 489 * same kmem cache that holds the hugepte. 490 */ 491 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 492 if (more > next) 493 next = more; 494 495 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 496 addr, next, floor, ceiling); 497 } 498 } while (addr = next, addr != end); 499 } 500 501 struct page *follow_huge_pd(struct vm_area_struct *vma, 502 unsigned long address, hugepd_t hpd, 503 int flags, int pdshift) 504 { 505 pte_t *ptep; 506 spinlock_t *ptl; 507 struct page *page = NULL; 508 unsigned long mask; 509 int shift = hugepd_shift(hpd); 510 struct mm_struct *mm = vma->vm_mm; 511 512 retry: 513 /* 514 * hugepage directory entries are protected by mm->page_table_lock 515 * Use this instead of huge_pte_lockptr 516 */ 517 ptl = &mm->page_table_lock; 518 spin_lock(ptl); 519 520 ptep = hugepte_offset(hpd, address, pdshift); 521 if (pte_present(*ptep)) { 522 mask = (1UL << shift) - 1; 523 page = pte_page(*ptep); 524 page += ((address & mask) >> PAGE_SHIFT); 525 if (flags & FOLL_GET) 526 get_page(page); 527 } else { 528 if (is_hugetlb_entry_migration(*ptep)) { 529 spin_unlock(ptl); 530 __migration_entry_wait(mm, ptep, ptl); 531 goto retry; 532 } 533 } 534 spin_unlock(ptl); 535 return page; 536 } 537 538 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 539 unsigned long sz) 540 { 541 unsigned long __boundary = (addr + sz) & ~(sz-1); 542 return (__boundary - 1 < end - 1) ? __boundary : end; 543 } 544 545 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 546 unsigned long end, int write, struct page **pages, int *nr) 547 { 548 pte_t *ptep; 549 unsigned long sz = 1UL << hugepd_shift(hugepd); 550 unsigned long next; 551 552 ptep = hugepte_offset(hugepd, addr, pdshift); 553 do { 554 next = hugepte_addr_end(addr, end, sz); 555 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 556 return 0; 557 } while (ptep++, addr = next, addr != end); 558 559 return 1; 560 } 561 562 #ifdef CONFIG_PPC_MM_SLICES 563 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 564 unsigned long len, unsigned long pgoff, 565 unsigned long flags) 566 { 567 struct hstate *hstate = hstate_file(file); 568 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 569 570 #ifdef CONFIG_PPC_RADIX_MMU 571 if (radix_enabled()) 572 return radix__hugetlb_get_unmapped_area(file, addr, len, 573 pgoff, flags); 574 #endif 575 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 576 } 577 #endif 578 579 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 580 { 581 #ifdef CONFIG_PPC_MM_SLICES 582 /* With radix we don't use slice, so derive it from vma*/ 583 if (!radix_enabled()) { 584 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 585 586 return 1UL << mmu_psize_to_shift(psize); 587 } 588 #endif 589 return vma_kernel_pagesize(vma); 590 } 591 592 static inline bool is_power_of_4(unsigned long x) 593 { 594 if (is_power_of_2(x)) 595 return (__ilog2(x) % 2) ? false : true; 596 return false; 597 } 598 599 static int __init add_huge_page_size(unsigned long long size) 600 { 601 int shift = __ffs(size); 602 int mmu_psize; 603 604 /* Check that it is a page size supported by the hardware and 605 * that it fits within pagetable and slice limits. */ 606 if (size <= PAGE_SIZE) 607 return -EINVAL; 608 #if defined(CONFIG_PPC_FSL_BOOK3E) 609 if (!is_power_of_4(size)) 610 return -EINVAL; 611 #elif !defined(CONFIG_PPC_8xx) 612 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 613 return -EINVAL; 614 #endif 615 616 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 617 return -EINVAL; 618 619 #ifdef CONFIG_PPC_BOOK3S_64 620 /* 621 * We need to make sure that for different page sizes reported by 622 * firmware we only add hugetlb support for page sizes that can be 623 * supported by linux page table layout. 624 * For now we have 625 * Radix: 2M and 1G 626 * Hash: 16M and 16G 627 */ 628 if (radix_enabled()) { 629 if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G) 630 return -EINVAL; 631 } else { 632 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 633 return -EINVAL; 634 } 635 #endif 636 637 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 638 639 /* Return if huge page size has already been setup */ 640 if (size_to_hstate(size)) 641 return 0; 642 643 hugetlb_add_hstate(shift - PAGE_SHIFT); 644 645 return 0; 646 } 647 648 static int __init hugepage_setup_sz(char *str) 649 { 650 unsigned long long size; 651 652 size = memparse(str, &str); 653 654 if (add_huge_page_size(size) != 0) { 655 hugetlb_bad_size(); 656 pr_err("Invalid huge page size specified(%llu)\n", size); 657 } 658 659 return 1; 660 } 661 __setup("hugepagesz=", hugepage_setup_sz); 662 663 static int __init hugetlbpage_init(void) 664 { 665 int psize; 666 667 if (hugetlb_disabled) { 668 pr_info("HugeTLB support is disabled!\n"); 669 return 0; 670 } 671 672 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 673 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 674 return -ENODEV; 675 #endif 676 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 677 unsigned shift; 678 unsigned pdshift; 679 680 if (!mmu_psize_defs[psize].shift) 681 continue; 682 683 shift = mmu_psize_to_shift(psize); 684 685 #ifdef CONFIG_PPC_BOOK3S_64 686 if (shift > PGDIR_SHIFT) 687 continue; 688 else if (shift > PUD_SHIFT) 689 pdshift = PGDIR_SHIFT; 690 else if (shift > PMD_SHIFT) 691 pdshift = PUD_SHIFT; 692 else 693 pdshift = PMD_SHIFT; 694 #else 695 if (shift < PUD_SHIFT) 696 pdshift = PMD_SHIFT; 697 else if (shift < PGDIR_SHIFT) 698 pdshift = PUD_SHIFT; 699 else 700 pdshift = PGDIR_SHIFT; 701 #endif 702 703 if (add_huge_page_size(1ULL << shift) < 0) 704 continue; 705 /* 706 * if we have pdshift and shift value same, we don't 707 * use pgt cache for hugepd. 708 */ 709 if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx)) 710 pgtable_cache_add(PTE_INDEX_SIZE); 711 else if (pdshift > shift) 712 pgtable_cache_add(pdshift - shift); 713 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 714 else 715 pgtable_cache_add(PTE_T_ORDER); 716 #endif 717 } 718 719 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 720 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 721 if (mmu_psize_defs[MMU_PAGE_4M].shift) 722 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 723 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 724 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 725 #else 726 /* Set default large page size. Currently, we pick 16M or 1M 727 * depending on what is available 728 */ 729 if (mmu_psize_defs[MMU_PAGE_16M].shift) 730 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 731 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 732 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 733 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 734 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 735 #endif 736 return 0; 737 } 738 739 arch_initcall(hugetlbpage_init); 740 741 void flush_dcache_icache_hugepage(struct page *page) 742 { 743 int i; 744 void *start; 745 746 BUG_ON(!PageCompound(page)); 747 748 for (i = 0; i < (1UL << compound_order(page)); i++) { 749 if (!PageHighMem(page)) { 750 __flush_dcache_icache(page_address(page+i)); 751 } else { 752 start = kmap_atomic(page+i); 753 __flush_dcache_icache(start); 754 kunmap_atomic(start); 755 } 756 } 757 } 758 759 #endif /* CONFIG_HUGETLB_PAGE */ 760 761 /* 762 * We have 4 cases for pgds and pmds: 763 * (1) invalid (all zeroes) 764 * (2) pointer to next table, as normal; bottom 6 bits == 0 765 * (3) leaf pte for huge page _PAGE_PTE set 766 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 767 * 768 * So long as we atomically load page table pointers we are safe against teardown, 769 * we can follow the address down to the the page and take a ref on it. 770 * This function need to be called with interrupts disabled. We use this variant 771 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED 772 */ 773 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 774 bool *is_thp, unsigned *hpage_shift) 775 { 776 pgd_t pgd, *pgdp; 777 pud_t pud, *pudp; 778 pmd_t pmd, *pmdp; 779 pte_t *ret_pte; 780 hugepd_t *hpdp = NULL; 781 unsigned pdshift = PGDIR_SHIFT; 782 783 if (hpage_shift) 784 *hpage_shift = 0; 785 786 if (is_thp) 787 *is_thp = false; 788 789 pgdp = pgdir + pgd_index(ea); 790 pgd = READ_ONCE(*pgdp); 791 /* 792 * Always operate on the local stack value. This make sure the 793 * value don't get updated by a parallel THP split/collapse, 794 * page fault or a page unmap. The return pte_t * is still not 795 * stable. So should be checked there for above conditions. 796 */ 797 if (pgd_none(pgd)) 798 return NULL; 799 else if (pgd_huge(pgd)) { 800 ret_pte = (pte_t *) pgdp; 801 goto out; 802 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 803 hpdp = (hugepd_t *)&pgd; 804 else { 805 /* 806 * Even if we end up with an unmap, the pgtable will not 807 * be freed, because we do an rcu free and here we are 808 * irq disabled 809 */ 810 pdshift = PUD_SHIFT; 811 pudp = pud_offset(&pgd, ea); 812 pud = READ_ONCE(*pudp); 813 814 if (pud_none(pud)) 815 return NULL; 816 else if (pud_huge(pud)) { 817 ret_pte = (pte_t *) pudp; 818 goto out; 819 } else if (is_hugepd(__hugepd(pud_val(pud)))) 820 hpdp = (hugepd_t *)&pud; 821 else { 822 pdshift = PMD_SHIFT; 823 pmdp = pmd_offset(&pud, ea); 824 pmd = READ_ONCE(*pmdp); 825 /* 826 * A hugepage collapse is captured by pmd_none, because 827 * it mark the pmd none and do a hpte invalidate. 828 */ 829 if (pmd_none(pmd)) 830 return NULL; 831 832 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 833 if (is_thp) 834 *is_thp = true; 835 ret_pte = (pte_t *) pmdp; 836 goto out; 837 } 838 /* 839 * pmd_large check below will handle the swap pmd pte 840 * we need to do both the check because they are config 841 * dependent. 842 */ 843 if (pmd_huge(pmd) || pmd_large(pmd)) { 844 ret_pte = (pte_t *) pmdp; 845 goto out; 846 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 847 hpdp = (hugepd_t *)&pmd; 848 else 849 return pte_offset_kernel(&pmd, ea); 850 } 851 } 852 if (!hpdp) 853 return NULL; 854 855 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 856 pdshift = hugepd_shift(*hpdp); 857 out: 858 if (hpage_shift) 859 *hpage_shift = pdshift; 860 return ret_pte; 861 } 862 EXPORT_SYMBOL_GPL(__find_linux_pte); 863 864 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 865 unsigned long end, int write, struct page **pages, int *nr) 866 { 867 unsigned long pte_end; 868 struct page *head, *page; 869 pte_t pte; 870 int refs; 871 872 pte_end = (addr + sz) & ~(sz-1); 873 if (pte_end < end) 874 end = pte_end; 875 876 pte = READ_ONCE(*ptep); 877 878 if (!pte_access_permitted(pte, write)) 879 return 0; 880 881 /* hugepages are never "special" */ 882 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 883 884 refs = 0; 885 head = pte_page(pte); 886 887 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 888 do { 889 VM_BUG_ON(compound_head(page) != head); 890 pages[*nr] = page; 891 (*nr)++; 892 page++; 893 refs++; 894 } while (addr += PAGE_SIZE, addr != end); 895 896 if (!page_cache_add_speculative(head, refs)) { 897 *nr -= refs; 898 return 0; 899 } 900 901 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 902 /* Could be optimized better */ 903 *nr -= refs; 904 while (refs--) 905 put_page(head); 906 return 0; 907 } 908 909 return 1; 910 } 911