xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 62e59c4e)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28 
29 
30 #ifdef CONFIG_HUGETLB_PAGE
31 
32 #define PAGE_SHIFT_64K	16
33 #define PAGE_SHIFT_512K	19
34 #define PAGE_SHIFT_8M	23
35 #define PAGE_SHIFT_16M	24
36 #define PAGE_SHIFT_16G	34
37 
38 bool hugetlb_disabled = false;
39 
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
42 
43 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
44 
45 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
46 
47 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
48 {
49 	/*
50 	 * Only called for hugetlbfs pages, hence can ignore THP and the
51 	 * irq disabled walk.
52 	 */
53 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
54 }
55 
56 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
57 			   unsigned long address, unsigned int pdshift,
58 			   unsigned int pshift, spinlock_t *ptl)
59 {
60 	struct kmem_cache *cachep;
61 	pte_t *new;
62 	int i;
63 	int num_hugepd;
64 
65 	if (pshift >= pdshift) {
66 		cachep = PGT_CACHE(PTE_T_ORDER);
67 		num_hugepd = 1 << (pshift - pdshift);
68 	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
69 		cachep = PGT_CACHE(PTE_INDEX_SIZE);
70 		num_hugepd = 1;
71 	} else {
72 		cachep = PGT_CACHE(pdshift - pshift);
73 		num_hugepd = 1;
74 	}
75 
76 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
77 
78 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
80 
81 	if (! new)
82 		return -ENOMEM;
83 
84 	/*
85 	 * Make sure other cpus find the hugepd set only after a
86 	 * properly initialized page table is visible to them.
87 	 * For more details look for comment in __pte_alloc().
88 	 */
89 	smp_wmb();
90 
91 	spin_lock(ptl);
92 	/*
93 	 * We have multiple higher-level entries that point to the same
94 	 * actual pte location.  Fill in each as we go and backtrack on error.
95 	 * We need all of these so the DTLB pgtable walk code can find the
96 	 * right higher-level entry without knowing if it's a hugepage or not.
97 	 */
98 	for (i = 0; i < num_hugepd; i++, hpdp++) {
99 		if (unlikely(!hugepd_none(*hpdp)))
100 			break;
101 		else {
102 #ifdef CONFIG_PPC_BOOK3S_64
103 			*hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS |
104 					 (shift_to_mmu_psize(pshift) << 2));
105 #elif defined(CONFIG_PPC_8xx)
106 			*hpdp = __hugepd(__pa(new) | _PMD_USER |
107 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
108 					  _PMD_PAGE_512K) | _PMD_PRESENT);
109 #else
110 			/* We use the old format for PPC_FSL_BOOK3E */
111 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
112 #endif
113 		}
114 	}
115 	/* If we bailed from the for loop early, an error occurred, clean up */
116 	if (i < num_hugepd) {
117 		for (i = i - 1 ; i >= 0; i--, hpdp--)
118 			*hpdp = __hugepd(0);
119 		kmem_cache_free(cachep, new);
120 	} else {
121 		kmemleak_ignore(new);
122 	}
123 	spin_unlock(ptl);
124 	return 0;
125 }
126 
127 /*
128  * At this point we do the placement change only for BOOK3S 64. This would
129  * possibly work on other subarchs.
130  */
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
132 {
133 	pgd_t *pg;
134 	pud_t *pu;
135 	pmd_t *pm;
136 	hugepd_t *hpdp = NULL;
137 	unsigned pshift = __ffs(sz);
138 	unsigned pdshift = PGDIR_SHIFT;
139 	spinlock_t *ptl;
140 
141 	addr &= ~(sz-1);
142 	pg = pgd_offset(mm, addr);
143 
144 #ifdef CONFIG_PPC_BOOK3S_64
145 	if (pshift == PGDIR_SHIFT)
146 		/* 16GB huge page */
147 		return (pte_t *) pg;
148 	else if (pshift > PUD_SHIFT) {
149 		/*
150 		 * We need to use hugepd table
151 		 */
152 		ptl = &mm->page_table_lock;
153 		hpdp = (hugepd_t *)pg;
154 	} else {
155 		pdshift = PUD_SHIFT;
156 		pu = pud_alloc(mm, pg, addr);
157 		if (pshift == PUD_SHIFT)
158 			return (pte_t *)pu;
159 		else if (pshift > PMD_SHIFT) {
160 			ptl = pud_lockptr(mm, pu);
161 			hpdp = (hugepd_t *)pu;
162 		} else {
163 			pdshift = PMD_SHIFT;
164 			pm = pmd_alloc(mm, pu, addr);
165 			if (pshift == PMD_SHIFT)
166 				/* 16MB hugepage */
167 				return (pte_t *)pm;
168 			else {
169 				ptl = pmd_lockptr(mm, pm);
170 				hpdp = (hugepd_t *)pm;
171 			}
172 		}
173 	}
174 #else
175 	if (pshift >= PGDIR_SHIFT) {
176 		ptl = &mm->page_table_lock;
177 		hpdp = (hugepd_t *)pg;
178 	} else {
179 		pdshift = PUD_SHIFT;
180 		pu = pud_alloc(mm, pg, addr);
181 		if (pshift >= PUD_SHIFT) {
182 			ptl = pud_lockptr(mm, pu);
183 			hpdp = (hugepd_t *)pu;
184 		} else {
185 			pdshift = PMD_SHIFT;
186 			pm = pmd_alloc(mm, pu, addr);
187 			ptl = pmd_lockptr(mm, pm);
188 			hpdp = (hugepd_t *)pm;
189 		}
190 	}
191 #endif
192 	if (!hpdp)
193 		return NULL;
194 
195 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
196 
197 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
198 						  pdshift, pshift, ptl))
199 		return NULL;
200 
201 	return hugepte_offset(*hpdp, addr, pdshift);
202 }
203 
204 #ifdef CONFIG_PPC_BOOK3S_64
205 /*
206  * Tracks gpages after the device tree is scanned and before the
207  * huge_boot_pages list is ready on pseries.
208  */
209 #define MAX_NUMBER_GPAGES	1024
210 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
211 __initdata static unsigned nr_gpages;
212 
213 /*
214  * Build list of addresses of gigantic pages.  This function is used in early
215  * boot before the buddy allocator is setup.
216  */
217 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
218 {
219 	if (!addr)
220 		return;
221 	while (number_of_pages > 0) {
222 		gpage_freearray[nr_gpages] = addr;
223 		nr_gpages++;
224 		number_of_pages--;
225 		addr += page_size;
226 	}
227 }
228 
229 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
230 {
231 	struct huge_bootmem_page *m;
232 	if (nr_gpages == 0)
233 		return 0;
234 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
235 	gpage_freearray[nr_gpages] = 0;
236 	list_add(&m->list, &huge_boot_pages);
237 	m->hstate = hstate;
238 	return 1;
239 }
240 #endif
241 
242 
243 int __init alloc_bootmem_huge_page(struct hstate *h)
244 {
245 
246 #ifdef CONFIG_PPC_BOOK3S_64
247 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
248 		return pseries_alloc_bootmem_huge_page(h);
249 #endif
250 	return __alloc_bootmem_huge_page(h);
251 }
252 
253 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
254 #define HUGEPD_FREELIST_SIZE \
255 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
256 
257 struct hugepd_freelist {
258 	struct rcu_head	rcu;
259 	unsigned int index;
260 	void *ptes[0];
261 };
262 
263 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
264 
265 static void hugepd_free_rcu_callback(struct rcu_head *head)
266 {
267 	struct hugepd_freelist *batch =
268 		container_of(head, struct hugepd_freelist, rcu);
269 	unsigned int i;
270 
271 	for (i = 0; i < batch->index; i++)
272 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
273 
274 	free_page((unsigned long)batch);
275 }
276 
277 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
278 {
279 	struct hugepd_freelist **batchp;
280 
281 	batchp = &get_cpu_var(hugepd_freelist_cur);
282 
283 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
284 	    mm_is_thread_local(tlb->mm)) {
285 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
286 		put_cpu_var(hugepd_freelist_cur);
287 		return;
288 	}
289 
290 	if (*batchp == NULL) {
291 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
292 		(*batchp)->index = 0;
293 	}
294 
295 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
296 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
297 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
298 		*batchp = NULL;
299 	}
300 	put_cpu_var(hugepd_freelist_cur);
301 }
302 #else
303 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
304 #endif
305 
306 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
307 			      unsigned long start, unsigned long end,
308 			      unsigned long floor, unsigned long ceiling)
309 {
310 	pte_t *hugepte = hugepd_page(*hpdp);
311 	int i;
312 
313 	unsigned long pdmask = ~((1UL << pdshift) - 1);
314 	unsigned int num_hugepd = 1;
315 	unsigned int shift = hugepd_shift(*hpdp);
316 
317 	/* Note: On fsl the hpdp may be the first of several */
318 	if (shift > pdshift)
319 		num_hugepd = 1 << (shift - pdshift);
320 
321 	start &= pdmask;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= pdmask;
326 		if (! ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	for (i = 0; i < num_hugepd; i++, hpdp++)
333 		*hpdp = __hugepd(0);
334 
335 	if (shift >= pdshift)
336 		hugepd_free(tlb, hugepte);
337 	else if (IS_ENABLED(CONFIG_PPC_8xx))
338 		pgtable_free_tlb(tlb, hugepte,
339 				 get_hugepd_cache_index(PTE_INDEX_SIZE));
340 	else
341 		pgtable_free_tlb(tlb, hugepte,
342 				 get_hugepd_cache_index(pdshift - shift));
343 }
344 
345 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
346 				   unsigned long addr, unsigned long end,
347 				   unsigned long floor, unsigned long ceiling)
348 {
349 	pmd_t *pmd;
350 	unsigned long next;
351 	unsigned long start;
352 
353 	start = addr;
354 	do {
355 		unsigned long more;
356 
357 		pmd = pmd_offset(pud, addr);
358 		next = pmd_addr_end(addr, end);
359 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
360 			/*
361 			 * if it is not hugepd pointer, we should already find
362 			 * it cleared.
363 			 */
364 			WARN_ON(!pmd_none_or_clear_bad(pmd));
365 			continue;
366 		}
367 		/*
368 		 * Increment next by the size of the huge mapping since
369 		 * there may be more than one entry at this level for a
370 		 * single hugepage, but all of them point to
371 		 * the same kmem cache that holds the hugepte.
372 		 */
373 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
374 		if (more > next)
375 			next = more;
376 
377 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
378 				  addr, next, floor, ceiling);
379 	} while (addr = next, addr != end);
380 
381 	start &= PUD_MASK;
382 	if (start < floor)
383 		return;
384 	if (ceiling) {
385 		ceiling &= PUD_MASK;
386 		if (!ceiling)
387 			return;
388 	}
389 	if (end - 1 > ceiling - 1)
390 		return;
391 
392 	pmd = pmd_offset(pud, start);
393 	pud_clear(pud);
394 	pmd_free_tlb(tlb, pmd, start);
395 	mm_dec_nr_pmds(tlb->mm);
396 }
397 
398 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
399 				   unsigned long addr, unsigned long end,
400 				   unsigned long floor, unsigned long ceiling)
401 {
402 	pud_t *pud;
403 	unsigned long next;
404 	unsigned long start;
405 
406 	start = addr;
407 	do {
408 		pud = pud_offset(pgd, addr);
409 		next = pud_addr_end(addr, end);
410 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
411 			if (pud_none_or_clear_bad(pud))
412 				continue;
413 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
414 					       ceiling);
415 		} else {
416 			unsigned long more;
417 			/*
418 			 * Increment next by the size of the huge mapping since
419 			 * there may be more than one entry at this level for a
420 			 * single hugepage, but all of them point to
421 			 * the same kmem cache that holds the hugepte.
422 			 */
423 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
424 			if (more > next)
425 				next = more;
426 
427 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
428 					  addr, next, floor, ceiling);
429 		}
430 	} while (addr = next, addr != end);
431 
432 	start &= PGDIR_MASK;
433 	if (start < floor)
434 		return;
435 	if (ceiling) {
436 		ceiling &= PGDIR_MASK;
437 		if (!ceiling)
438 			return;
439 	}
440 	if (end - 1 > ceiling - 1)
441 		return;
442 
443 	pud = pud_offset(pgd, start);
444 	pgd_clear(pgd);
445 	pud_free_tlb(tlb, pud, start);
446 	mm_dec_nr_puds(tlb->mm);
447 }
448 
449 /*
450  * This function frees user-level page tables of a process.
451  */
452 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
453 			    unsigned long addr, unsigned long end,
454 			    unsigned long floor, unsigned long ceiling)
455 {
456 	pgd_t *pgd;
457 	unsigned long next;
458 
459 	/*
460 	 * Because there are a number of different possible pagetable
461 	 * layouts for hugepage ranges, we limit knowledge of how
462 	 * things should be laid out to the allocation path
463 	 * (huge_pte_alloc(), above).  Everything else works out the
464 	 * structure as it goes from information in the hugepd
465 	 * pointers.  That means that we can't here use the
466 	 * optimization used in the normal page free_pgd_range(), of
467 	 * checking whether we're actually covering a large enough
468 	 * range to have to do anything at the top level of the walk
469 	 * instead of at the bottom.
470 	 *
471 	 * To make sense of this, you should probably go read the big
472 	 * block comment at the top of the normal free_pgd_range(),
473 	 * too.
474 	 */
475 
476 	do {
477 		next = pgd_addr_end(addr, end);
478 		pgd = pgd_offset(tlb->mm, addr);
479 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
480 			if (pgd_none_or_clear_bad(pgd))
481 				continue;
482 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
483 		} else {
484 			unsigned long more;
485 			/*
486 			 * Increment next by the size of the huge mapping since
487 			 * there may be more than one entry at the pgd level
488 			 * for a single hugepage, but all of them point to the
489 			 * same kmem cache that holds the hugepte.
490 			 */
491 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
492 			if (more > next)
493 				next = more;
494 
495 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
496 					  addr, next, floor, ceiling);
497 		}
498 	} while (addr = next, addr != end);
499 }
500 
501 struct page *follow_huge_pd(struct vm_area_struct *vma,
502 			    unsigned long address, hugepd_t hpd,
503 			    int flags, int pdshift)
504 {
505 	pte_t *ptep;
506 	spinlock_t *ptl;
507 	struct page *page = NULL;
508 	unsigned long mask;
509 	int shift = hugepd_shift(hpd);
510 	struct mm_struct *mm = vma->vm_mm;
511 
512 retry:
513 	/*
514 	 * hugepage directory entries are protected by mm->page_table_lock
515 	 * Use this instead of huge_pte_lockptr
516 	 */
517 	ptl = &mm->page_table_lock;
518 	spin_lock(ptl);
519 
520 	ptep = hugepte_offset(hpd, address, pdshift);
521 	if (pte_present(*ptep)) {
522 		mask = (1UL << shift) - 1;
523 		page = pte_page(*ptep);
524 		page += ((address & mask) >> PAGE_SHIFT);
525 		if (flags & FOLL_GET)
526 			get_page(page);
527 	} else {
528 		if (is_hugetlb_entry_migration(*ptep)) {
529 			spin_unlock(ptl);
530 			__migration_entry_wait(mm, ptep, ptl);
531 			goto retry;
532 		}
533 	}
534 	spin_unlock(ptl);
535 	return page;
536 }
537 
538 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
539 				      unsigned long sz)
540 {
541 	unsigned long __boundary = (addr + sz) & ~(sz-1);
542 	return (__boundary - 1 < end - 1) ? __boundary : end;
543 }
544 
545 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
546 		unsigned long end, int write, struct page **pages, int *nr)
547 {
548 	pte_t *ptep;
549 	unsigned long sz = 1UL << hugepd_shift(hugepd);
550 	unsigned long next;
551 
552 	ptep = hugepte_offset(hugepd, addr, pdshift);
553 	do {
554 		next = hugepte_addr_end(addr, end, sz);
555 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
556 			return 0;
557 	} while (ptep++, addr = next, addr != end);
558 
559 	return 1;
560 }
561 
562 #ifdef CONFIG_PPC_MM_SLICES
563 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
564 					unsigned long len, unsigned long pgoff,
565 					unsigned long flags)
566 {
567 	struct hstate *hstate = hstate_file(file);
568 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
569 
570 #ifdef CONFIG_PPC_RADIX_MMU
571 	if (radix_enabled())
572 		return radix__hugetlb_get_unmapped_area(file, addr, len,
573 						       pgoff, flags);
574 #endif
575 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
576 }
577 #endif
578 
579 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
580 {
581 #ifdef CONFIG_PPC_MM_SLICES
582 	/* With radix we don't use slice, so derive it from vma*/
583 	if (!radix_enabled()) {
584 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
585 
586 		return 1UL << mmu_psize_to_shift(psize);
587 	}
588 #endif
589 	return vma_kernel_pagesize(vma);
590 }
591 
592 static inline bool is_power_of_4(unsigned long x)
593 {
594 	if (is_power_of_2(x))
595 		return (__ilog2(x) % 2) ? false : true;
596 	return false;
597 }
598 
599 static int __init add_huge_page_size(unsigned long long size)
600 {
601 	int shift = __ffs(size);
602 	int mmu_psize;
603 
604 	/* Check that it is a page size supported by the hardware and
605 	 * that it fits within pagetable and slice limits. */
606 	if (size <= PAGE_SIZE)
607 		return -EINVAL;
608 #if defined(CONFIG_PPC_FSL_BOOK3E)
609 	if (!is_power_of_4(size))
610 		return -EINVAL;
611 #elif !defined(CONFIG_PPC_8xx)
612 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
613 		return -EINVAL;
614 #endif
615 
616 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
617 		return -EINVAL;
618 
619 #ifdef CONFIG_PPC_BOOK3S_64
620 	/*
621 	 * We need to make sure that for different page sizes reported by
622 	 * firmware we only add hugetlb support for page sizes that can be
623 	 * supported by linux page table layout.
624 	 * For now we have
625 	 * Radix: 2M and 1G
626 	 * Hash: 16M and 16G
627 	 */
628 	if (radix_enabled()) {
629 		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
630 			return -EINVAL;
631 	} else {
632 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
633 			return -EINVAL;
634 	}
635 #endif
636 
637 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
638 
639 	/* Return if huge page size has already been setup */
640 	if (size_to_hstate(size))
641 		return 0;
642 
643 	hugetlb_add_hstate(shift - PAGE_SHIFT);
644 
645 	return 0;
646 }
647 
648 static int __init hugepage_setup_sz(char *str)
649 {
650 	unsigned long long size;
651 
652 	size = memparse(str, &str);
653 
654 	if (add_huge_page_size(size) != 0) {
655 		hugetlb_bad_size();
656 		pr_err("Invalid huge page size specified(%llu)\n", size);
657 	}
658 
659 	return 1;
660 }
661 __setup("hugepagesz=", hugepage_setup_sz);
662 
663 static int __init hugetlbpage_init(void)
664 {
665 	int psize;
666 
667 	if (hugetlb_disabled) {
668 		pr_info("HugeTLB support is disabled!\n");
669 		return 0;
670 	}
671 
672 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
673 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
674 		return -ENODEV;
675 #endif
676 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
677 		unsigned shift;
678 		unsigned pdshift;
679 
680 		if (!mmu_psize_defs[psize].shift)
681 			continue;
682 
683 		shift = mmu_psize_to_shift(psize);
684 
685 #ifdef CONFIG_PPC_BOOK3S_64
686 		if (shift > PGDIR_SHIFT)
687 			continue;
688 		else if (shift > PUD_SHIFT)
689 			pdshift = PGDIR_SHIFT;
690 		else if (shift > PMD_SHIFT)
691 			pdshift = PUD_SHIFT;
692 		else
693 			pdshift = PMD_SHIFT;
694 #else
695 		if (shift < PUD_SHIFT)
696 			pdshift = PMD_SHIFT;
697 		else if (shift < PGDIR_SHIFT)
698 			pdshift = PUD_SHIFT;
699 		else
700 			pdshift = PGDIR_SHIFT;
701 #endif
702 
703 		if (add_huge_page_size(1ULL << shift) < 0)
704 			continue;
705 		/*
706 		 * if we have pdshift and shift value same, we don't
707 		 * use pgt cache for hugepd.
708 		 */
709 		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
710 			pgtable_cache_add(PTE_INDEX_SIZE);
711 		else if (pdshift > shift)
712 			pgtable_cache_add(pdshift - shift);
713 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
714 		else
715 			pgtable_cache_add(PTE_T_ORDER);
716 #endif
717 	}
718 
719 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
720 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
721 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
722 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
723 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
724 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
725 #else
726 	/* Set default large page size. Currently, we pick 16M or 1M
727 	 * depending on what is available
728 	 */
729 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
730 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
731 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
732 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
733 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
734 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
735 #endif
736 	return 0;
737 }
738 
739 arch_initcall(hugetlbpage_init);
740 
741 void flush_dcache_icache_hugepage(struct page *page)
742 {
743 	int i;
744 	void *start;
745 
746 	BUG_ON(!PageCompound(page));
747 
748 	for (i = 0; i < (1UL << compound_order(page)); i++) {
749 		if (!PageHighMem(page)) {
750 			__flush_dcache_icache(page_address(page+i));
751 		} else {
752 			start = kmap_atomic(page+i);
753 			__flush_dcache_icache(start);
754 			kunmap_atomic(start);
755 		}
756 	}
757 }
758 
759 #endif /* CONFIG_HUGETLB_PAGE */
760 
761 /*
762  * We have 4 cases for pgds and pmds:
763  * (1) invalid (all zeroes)
764  * (2) pointer to next table, as normal; bottom 6 bits == 0
765  * (3) leaf pte for huge page _PAGE_PTE set
766  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
767  *
768  * So long as we atomically load page table pointers we are safe against teardown,
769  * we can follow the address down to the the page and take a ref on it.
770  * This function need to be called with interrupts disabled. We use this variant
771  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
772  */
773 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
774 			bool *is_thp, unsigned *hpage_shift)
775 {
776 	pgd_t pgd, *pgdp;
777 	pud_t pud, *pudp;
778 	pmd_t pmd, *pmdp;
779 	pte_t *ret_pte;
780 	hugepd_t *hpdp = NULL;
781 	unsigned pdshift = PGDIR_SHIFT;
782 
783 	if (hpage_shift)
784 		*hpage_shift = 0;
785 
786 	if (is_thp)
787 		*is_thp = false;
788 
789 	pgdp = pgdir + pgd_index(ea);
790 	pgd  = READ_ONCE(*pgdp);
791 	/*
792 	 * Always operate on the local stack value. This make sure the
793 	 * value don't get updated by a parallel THP split/collapse,
794 	 * page fault or a page unmap. The return pte_t * is still not
795 	 * stable. So should be checked there for above conditions.
796 	 */
797 	if (pgd_none(pgd))
798 		return NULL;
799 	else if (pgd_huge(pgd)) {
800 		ret_pte = (pte_t *) pgdp;
801 		goto out;
802 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
803 		hpdp = (hugepd_t *)&pgd;
804 	else {
805 		/*
806 		 * Even if we end up with an unmap, the pgtable will not
807 		 * be freed, because we do an rcu free and here we are
808 		 * irq disabled
809 		 */
810 		pdshift = PUD_SHIFT;
811 		pudp = pud_offset(&pgd, ea);
812 		pud  = READ_ONCE(*pudp);
813 
814 		if (pud_none(pud))
815 			return NULL;
816 		else if (pud_huge(pud)) {
817 			ret_pte = (pte_t *) pudp;
818 			goto out;
819 		} else if (is_hugepd(__hugepd(pud_val(pud))))
820 			hpdp = (hugepd_t *)&pud;
821 		else {
822 			pdshift = PMD_SHIFT;
823 			pmdp = pmd_offset(&pud, ea);
824 			pmd  = READ_ONCE(*pmdp);
825 			/*
826 			 * A hugepage collapse is captured by pmd_none, because
827 			 * it mark the pmd none and do a hpte invalidate.
828 			 */
829 			if (pmd_none(pmd))
830 				return NULL;
831 
832 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
833 				if (is_thp)
834 					*is_thp = true;
835 				ret_pte = (pte_t *) pmdp;
836 				goto out;
837 			}
838 			/*
839 			 * pmd_large check below will handle the swap pmd pte
840 			 * we need to do both the check because they are config
841 			 * dependent.
842 			 */
843 			if (pmd_huge(pmd) || pmd_large(pmd)) {
844 				ret_pte = (pte_t *) pmdp;
845 				goto out;
846 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
847 				hpdp = (hugepd_t *)&pmd;
848 			else
849 				return pte_offset_kernel(&pmd, ea);
850 		}
851 	}
852 	if (!hpdp)
853 		return NULL;
854 
855 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
856 	pdshift = hugepd_shift(*hpdp);
857 out:
858 	if (hpage_shift)
859 		*hpage_shift = pdshift;
860 	return ret_pte;
861 }
862 EXPORT_SYMBOL_GPL(__find_linux_pte);
863 
864 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
865 		unsigned long end, int write, struct page **pages, int *nr)
866 {
867 	unsigned long pte_end;
868 	struct page *head, *page;
869 	pte_t pte;
870 	int refs;
871 
872 	pte_end = (addr + sz) & ~(sz-1);
873 	if (pte_end < end)
874 		end = pte_end;
875 
876 	pte = READ_ONCE(*ptep);
877 
878 	if (!pte_access_permitted(pte, write))
879 		return 0;
880 
881 	/* hugepages are never "special" */
882 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
883 
884 	refs = 0;
885 	head = pte_page(pte);
886 
887 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
888 	do {
889 		VM_BUG_ON(compound_head(page) != head);
890 		pages[*nr] = page;
891 		(*nr)++;
892 		page++;
893 		refs++;
894 	} while (addr += PAGE_SIZE, addr != end);
895 
896 	if (!page_cache_add_speculative(head, refs)) {
897 		*nr -= refs;
898 		return 0;
899 	}
900 
901 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
902 		/* Could be optimized better */
903 		*nr -= refs;
904 		while (refs--)
905 			put_page(head);
906 		return 0;
907 	}
908 
909 	return 1;
910 }
911