xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 52fb57e7)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58  * At this point we do the placement change only for BOOK3S 64. This would
59  * possibly work on other subarchs.
60  */
61 
62 /*
63  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65  *
66  * Defined in such a way that we can optimize away code block at build time
67  * if CONFIG_HUGETLB_PAGE=n.
68  */
69 int pmd_huge(pmd_t pmd)
70 {
71 	/*
72 	 * leaf pte for huge page, bottom two bits != 00
73 	 */
74 	return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76 
77 int pud_huge(pud_t pud)
78 {
79 	/*
80 	 * leaf pte for huge page, bottom two bits != 00
81 	 */
82 	return ((pud_val(pud) & 0x3) != 0x0);
83 }
84 
85 int pgd_huge(pgd_t pgd)
86 {
87 	/*
88 	 * leaf pte for huge page, bottom two bits != 00
89 	 */
90 	return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 #else
93 int pmd_huge(pmd_t pmd)
94 {
95 	return 0;
96 }
97 
98 int pud_huge(pud_t pud)
99 {
100 	return 0;
101 }
102 
103 int pgd_huge(pgd_t pgd)
104 {
105 	return 0;
106 }
107 #endif
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 	/* Only called for hugetlbfs pages, hence can ignore THP */
112 	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 }
114 
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 			   unsigned long address, unsigned pdshift, unsigned pshift)
117 {
118 	struct kmem_cache *cachep;
119 	pte_t *new;
120 
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 	int i;
123 	int num_hugepd = 1 << (pshift - pdshift);
124 	cachep = hugepte_cache;
125 #else
126 	cachep = PGT_CACHE(pdshift - pshift);
127 #endif
128 
129 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130 
131 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133 
134 	if (! new)
135 		return -ENOMEM;
136 
137 	spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
139 	/*
140 	 * We have multiple higher-level entries that point to the same
141 	 * actual pte location.  Fill in each as we go and backtrack on error.
142 	 * We need all of these so the DTLB pgtable walk code can find the
143 	 * right higher-level entry without knowing if it's a hugepage or not.
144 	 */
145 	for (i = 0; i < num_hugepd; i++, hpdp++) {
146 		if (unlikely(!hugepd_none(*hpdp)))
147 			break;
148 		else
149 			/* We use the old format for PPC_FSL_BOOK3E */
150 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 	}
152 	/* If we bailed from the for loop early, an error occurred, clean up */
153 	if (i < num_hugepd) {
154 		for (i = i - 1 ; i >= 0; i--, hpdp--)
155 			hpdp->pd = 0;
156 		kmem_cache_free(cachep, new);
157 	}
158 #else
159 	if (!hugepd_none(*hpdp))
160 		kmem_cache_free(cachep, new);
161 	else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 		hpdp->pd = (unsigned long)new |
164 			    (shift_to_mmu_psize(pshift) << 2);
165 #else
166 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
168 	}
169 #endif
170 	spin_unlock(&mm->page_table_lock);
171 	return 0;
172 }
173 
174 /*
175  * These macros define how to determine which level of the page table holds
176  * the hpdp.
177  */
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
185 
186 #ifdef CONFIG_PPC_BOOK3S_64
187 /*
188  * At this point we do the placement change only for BOOK3S 64. This would
189  * possibly work on other subarchs.
190  */
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192 {
193 	pgd_t *pg;
194 	pud_t *pu;
195 	pmd_t *pm;
196 	hugepd_t *hpdp = NULL;
197 	unsigned pshift = __ffs(sz);
198 	unsigned pdshift = PGDIR_SHIFT;
199 
200 	addr &= ~(sz-1);
201 	pg = pgd_offset(mm, addr);
202 
203 	if (pshift == PGDIR_SHIFT)
204 		/* 16GB huge page */
205 		return (pte_t *) pg;
206 	else if (pshift > PUD_SHIFT)
207 		/*
208 		 * We need to use hugepd table
209 		 */
210 		hpdp = (hugepd_t *)pg;
211 	else {
212 		pdshift = PUD_SHIFT;
213 		pu = pud_alloc(mm, pg, addr);
214 		if (pshift == PUD_SHIFT)
215 			return (pte_t *)pu;
216 		else if (pshift > PMD_SHIFT)
217 			hpdp = (hugepd_t *)pu;
218 		else {
219 			pdshift = PMD_SHIFT;
220 			pm = pmd_alloc(mm, pu, addr);
221 			if (pshift == PMD_SHIFT)
222 				/* 16MB hugepage */
223 				return (pte_t *)pm;
224 			else
225 				hpdp = (hugepd_t *)pm;
226 		}
227 	}
228 	if (!hpdp)
229 		return NULL;
230 
231 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232 
233 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 		return NULL;
235 
236 	return hugepte_offset(*hpdp, addr, pdshift);
237 }
238 
239 #else
240 
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
242 {
243 	pgd_t *pg;
244 	pud_t *pu;
245 	pmd_t *pm;
246 	hugepd_t *hpdp = NULL;
247 	unsigned pshift = __ffs(sz);
248 	unsigned pdshift = PGDIR_SHIFT;
249 
250 	addr &= ~(sz-1);
251 
252 	pg = pgd_offset(mm, addr);
253 
254 	if (pshift >= HUGEPD_PGD_SHIFT) {
255 		hpdp = (hugepd_t *)pg;
256 	} else {
257 		pdshift = PUD_SHIFT;
258 		pu = pud_alloc(mm, pg, addr);
259 		if (pshift >= HUGEPD_PUD_SHIFT) {
260 			hpdp = (hugepd_t *)pu;
261 		} else {
262 			pdshift = PMD_SHIFT;
263 			pm = pmd_alloc(mm, pu, addr);
264 			hpdp = (hugepd_t *)pm;
265 		}
266 	}
267 
268 	if (!hpdp)
269 		return NULL;
270 
271 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272 
273 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 		return NULL;
275 
276 	return hugepte_offset(*hpdp, addr, pdshift);
277 }
278 #endif
279 
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages.  This function is used in early
282  * boot before the buddy allocator is setup.
283  */
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285 {
286 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 	int i;
288 
289 	if (addr == 0)
290 		return;
291 
292 	gpage_freearray[idx].nr_gpages = number_of_pages;
293 
294 	for (i = 0; i < number_of_pages; i++) {
295 		gpage_freearray[idx].gpage_list[i] = addr;
296 		addr += page_size;
297 	}
298 }
299 
300 /*
301  * Moves the gigantic page addresses from the temporary list to the
302  * huge_boot_pages list.
303  */
304 int alloc_bootmem_huge_page(struct hstate *hstate)
305 {
306 	struct huge_bootmem_page *m;
307 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 	int nr_gpages = gpage_freearray[idx].nr_gpages;
309 
310 	if (nr_gpages == 0)
311 		return 0;
312 
313 #ifdef CONFIG_HIGHMEM
314 	/*
315 	 * If gpages can be in highmem we can't use the trick of storing the
316 	 * data structure in the page; allocate space for this
317 	 */
318 	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
323 
324 	list_add(&m->list, &huge_boot_pages);
325 	gpage_freearray[idx].nr_gpages = nr_gpages;
326 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 	m->hstate = hstate;
328 
329 	return 1;
330 }
331 /*
332  * Scan the command line hugepagesz= options for gigantic pages; store those in
333  * a list that we use to allocate the memory once all options are parsed.
334  */
335 
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
337 
338 static int __init do_gpage_early_setup(char *param, char *val,
339 				       const char *unused)
340 {
341 	static phys_addr_t size;
342 	unsigned long npages;
343 
344 	/*
345 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
346 	 * use the size variable to keep track of whether or not this was done
347 	 * properly and skip over instances where it is incorrect.  Other
348 	 * command-line parsing code will issue warnings, so we don't need to.
349 	 *
350 	 */
351 	if ((strcmp(param, "default_hugepagesz") == 0) ||
352 	    (strcmp(param, "hugepagesz") == 0)) {
353 		size = memparse(val, NULL);
354 	} else if (strcmp(param, "hugepages") == 0) {
355 		if (size != 0) {
356 			if (sscanf(val, "%lu", &npages) <= 0)
357 				npages = 0;
358 			if (npages > MAX_NUMBER_GPAGES) {
359 				pr_warn("MMU: %lu pages requested for page "
360 					"size %llu KB, limiting to "
361 					__stringify(MAX_NUMBER_GPAGES) "\n",
362 					npages, size / 1024);
363 				npages = MAX_NUMBER_GPAGES;
364 			}
365 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 			size = 0;
367 		}
368 	}
369 	return 0;
370 }
371 
372 
373 /*
374  * This function allocates physical space for pages that are larger than the
375  * buddy allocator can handle.  We want to allocate these in highmem because
376  * the amount of lowmem is limited.  This means that this function MUST be
377  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378  * allocate to grab highmem.
379  */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 	static __initdata char cmdline[COMMAND_LINE_SIZE];
383 	phys_addr_t size, base;
384 	int i;
385 
386 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 			&do_gpage_early_setup);
389 
390 	/*
391 	 * Walk gpage list in reverse, allocating larger page sizes first.
392 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 	 * When we reach the point in the list where pages are no longer
394 	 * considered gpages, we're done.
395 	 */
396 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 			continue;
399 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 			break;
401 
402 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 		base = memblock_alloc_base(size * gpage_npages[i], size,
404 					   MEMBLOCK_ALLOC_ANYWHERE);
405 		add_gpage(base, size, gpage_npages[i]);
406 	}
407 }
408 
409 #else /* !PPC_FSL_BOOK3E */
410 
411 /* Build list of addresses of gigantic pages.  This function is used in early
412  * boot before the buddy allocator is setup.
413  */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 	if (!addr)
417 		return;
418 	while (number_of_pages > 0) {
419 		gpage_freearray[nr_gpages] = addr;
420 		nr_gpages++;
421 		number_of_pages--;
422 		addr += page_size;
423 	}
424 }
425 
426 /* Moves the gigantic page addresses from the temporary list to the
427  * huge_boot_pages list.
428  */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 	struct huge_bootmem_page *m;
432 	if (nr_gpages == 0)
433 		return 0;
434 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 	gpage_freearray[nr_gpages] = 0;
436 	list_add(&m->list, &huge_boot_pages);
437 	m->hstate = hstate;
438 	return 1;
439 }
440 #endif
441 
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 	return 0;
445 }
446 
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450 
451 struct hugepd_freelist {
452 	struct rcu_head	rcu;
453 	unsigned int index;
454 	void *ptes[0];
455 };
456 
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458 
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 	struct hugepd_freelist *batch =
462 		container_of(head, struct hugepd_freelist, rcu);
463 	unsigned int i;
464 
465 	for (i = 0; i < batch->index; i++)
466 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
467 
468 	free_page((unsigned long)batch);
469 }
470 
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 	struct hugepd_freelist **batchp;
474 
475 	batchp = this_cpu_ptr(&hugepd_freelist_cur);
476 
477 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 	    cpumask_equal(mm_cpumask(tlb->mm),
479 			  cpumask_of(smp_processor_id()))) {
480 		kmem_cache_free(hugepte_cache, hugepte);
481         put_cpu_var(hugepd_freelist_cur);
482 		return;
483 	}
484 
485 	if (*batchp == NULL) {
486 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 		(*batchp)->index = 0;
488 	}
489 
490 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
491 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 		*batchp = NULL;
494 	}
495 	put_cpu_var(hugepd_freelist_cur);
496 }
497 #endif
498 
499 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 			      unsigned long start, unsigned long end,
501 			      unsigned long floor, unsigned long ceiling)
502 {
503 	pte_t *hugepte = hugepd_page(*hpdp);
504 	int i;
505 
506 	unsigned long pdmask = ~((1UL << pdshift) - 1);
507 	unsigned int num_hugepd = 1;
508 
509 #ifdef CONFIG_PPC_FSL_BOOK3E
510 	/* Note: On fsl the hpdp may be the first of several */
511 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
512 #else
513 	unsigned int shift = hugepd_shift(*hpdp);
514 #endif
515 
516 	start &= pdmask;
517 	if (start < floor)
518 		return;
519 	if (ceiling) {
520 		ceiling &= pdmask;
521 		if (! ceiling)
522 			return;
523 	}
524 	if (end - 1 > ceiling - 1)
525 		return;
526 
527 	for (i = 0; i < num_hugepd; i++, hpdp++)
528 		hpdp->pd = 0;
529 
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 	hugepd_free(tlb, hugepte);
532 #else
533 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
535 }
536 
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 				   unsigned long addr, unsigned long end,
539 				   unsigned long floor, unsigned long ceiling)
540 {
541 	pmd_t *pmd;
542 	unsigned long next;
543 	unsigned long start;
544 
545 	start = addr;
546 	do {
547 		pmd = pmd_offset(pud, addr);
548 		next = pmd_addr_end(addr, end);
549 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
550 			/*
551 			 * if it is not hugepd pointer, we should already find
552 			 * it cleared.
553 			 */
554 			WARN_ON(!pmd_none_or_clear_bad(pmd));
555 			continue;
556 		}
557 #ifdef CONFIG_PPC_FSL_BOOK3E
558 		/*
559 		 * Increment next by the size of the huge mapping since
560 		 * there may be more than one entry at this level for a
561 		 * single hugepage, but all of them point to
562 		 * the same kmem cache that holds the hugepte.
563 		 */
564 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 				  addr, next, floor, ceiling);
568 	} while (addr = next, addr != end);
569 
570 	start &= PUD_MASK;
571 	if (start < floor)
572 		return;
573 	if (ceiling) {
574 		ceiling &= PUD_MASK;
575 		if (!ceiling)
576 			return;
577 	}
578 	if (end - 1 > ceiling - 1)
579 		return;
580 
581 	pmd = pmd_offset(pud, start);
582 	pud_clear(pud);
583 	pmd_free_tlb(tlb, pmd, start);
584 	mm_dec_nr_pmds(tlb->mm);
585 }
586 
587 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
588 				   unsigned long addr, unsigned long end,
589 				   unsigned long floor, unsigned long ceiling)
590 {
591 	pud_t *pud;
592 	unsigned long next;
593 	unsigned long start;
594 
595 	start = addr;
596 	do {
597 		pud = pud_offset(pgd, addr);
598 		next = pud_addr_end(addr, end);
599 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
600 			if (pud_none_or_clear_bad(pud))
601 				continue;
602 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
603 					       ceiling);
604 		} else {
605 #ifdef CONFIG_PPC_FSL_BOOK3E
606 			/*
607 			 * Increment next by the size of the huge mapping since
608 			 * there may be more than one entry at this level for a
609 			 * single hugepage, but all of them point to
610 			 * the same kmem cache that holds the hugepte.
611 			 */
612 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
613 #endif
614 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
615 					  addr, next, floor, ceiling);
616 		}
617 	} while (addr = next, addr != end);
618 
619 	start &= PGDIR_MASK;
620 	if (start < floor)
621 		return;
622 	if (ceiling) {
623 		ceiling &= PGDIR_MASK;
624 		if (!ceiling)
625 			return;
626 	}
627 	if (end - 1 > ceiling - 1)
628 		return;
629 
630 	pud = pud_offset(pgd, start);
631 	pgd_clear(pgd);
632 	pud_free_tlb(tlb, pud, start);
633 }
634 
635 /*
636  * This function frees user-level page tables of a process.
637  */
638 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
639 			    unsigned long addr, unsigned long end,
640 			    unsigned long floor, unsigned long ceiling)
641 {
642 	pgd_t *pgd;
643 	unsigned long next;
644 
645 	/*
646 	 * Because there are a number of different possible pagetable
647 	 * layouts for hugepage ranges, we limit knowledge of how
648 	 * things should be laid out to the allocation path
649 	 * (huge_pte_alloc(), above).  Everything else works out the
650 	 * structure as it goes from information in the hugepd
651 	 * pointers.  That means that we can't here use the
652 	 * optimization used in the normal page free_pgd_range(), of
653 	 * checking whether we're actually covering a large enough
654 	 * range to have to do anything at the top level of the walk
655 	 * instead of at the bottom.
656 	 *
657 	 * To make sense of this, you should probably go read the big
658 	 * block comment at the top of the normal free_pgd_range(),
659 	 * too.
660 	 */
661 
662 	do {
663 		next = pgd_addr_end(addr, end);
664 		pgd = pgd_offset(tlb->mm, addr);
665 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
666 			if (pgd_none_or_clear_bad(pgd))
667 				continue;
668 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
669 		} else {
670 #ifdef CONFIG_PPC_FSL_BOOK3E
671 			/*
672 			 * Increment next by the size of the huge mapping since
673 			 * there may be more than one entry at the pgd level
674 			 * for a single hugepage, but all of them point to the
675 			 * same kmem cache that holds the hugepte.
676 			 */
677 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
678 #endif
679 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
680 					  addr, next, floor, ceiling);
681 		}
682 	} while (addr = next, addr != end);
683 }
684 
685 /*
686  * We are holding mmap_sem, so a parallel huge page collapse cannot run.
687  * To prevent hugepage split, disable irq.
688  */
689 struct page *
690 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
691 {
692 	pte_t *ptep, pte;
693 	unsigned shift;
694 	unsigned long mask, flags;
695 	struct page *page = ERR_PTR(-EINVAL);
696 
697 	local_irq_save(flags);
698 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
699 	if (!ptep)
700 		goto no_page;
701 	pte = READ_ONCE(*ptep);
702 	/*
703 	 * Verify it is a huge page else bail.
704 	 * Transparent hugepages are handled by generic code. We can skip them
705 	 * here.
706 	 */
707 	if (!shift || pmd_trans_huge(__pmd(pte_val(pte))))
708 		goto no_page;
709 
710 	if (!pte_present(pte)) {
711 		page = NULL;
712 		goto no_page;
713 	}
714 	mask = (1UL << shift) - 1;
715 	page = pte_page(pte);
716 	if (page)
717 		page += (address & mask) / PAGE_SIZE;
718 
719 no_page:
720 	local_irq_restore(flags);
721 	return page;
722 }
723 
724 struct page *
725 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
726 		pmd_t *pmd, int write)
727 {
728 	BUG();
729 	return NULL;
730 }
731 
732 struct page *
733 follow_huge_pud(struct mm_struct *mm, unsigned long address,
734 		pud_t *pud, int write)
735 {
736 	BUG();
737 	return NULL;
738 }
739 
740 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
741 				      unsigned long sz)
742 {
743 	unsigned long __boundary = (addr + sz) & ~(sz-1);
744 	return (__boundary - 1 < end - 1) ? __boundary : end;
745 }
746 
747 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
748 		unsigned long end, int write, struct page **pages, int *nr)
749 {
750 	pte_t *ptep;
751 	unsigned long sz = 1UL << hugepd_shift(hugepd);
752 	unsigned long next;
753 
754 	ptep = hugepte_offset(hugepd, addr, pdshift);
755 	do {
756 		next = hugepte_addr_end(addr, end, sz);
757 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
758 			return 0;
759 	} while (ptep++, addr = next, addr != end);
760 
761 	return 1;
762 }
763 
764 #ifdef CONFIG_PPC_MM_SLICES
765 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
766 					unsigned long len, unsigned long pgoff,
767 					unsigned long flags)
768 {
769 	struct hstate *hstate = hstate_file(file);
770 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
771 
772 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
773 }
774 #endif
775 
776 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
777 {
778 #ifdef CONFIG_PPC_MM_SLICES
779 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
780 
781 	return 1UL << mmu_psize_to_shift(psize);
782 #else
783 	if (!is_vm_hugetlb_page(vma))
784 		return PAGE_SIZE;
785 
786 	return huge_page_size(hstate_vma(vma));
787 #endif
788 }
789 
790 static inline bool is_power_of_4(unsigned long x)
791 {
792 	if (is_power_of_2(x))
793 		return (__ilog2(x) % 2) ? false : true;
794 	return false;
795 }
796 
797 static int __init add_huge_page_size(unsigned long long size)
798 {
799 	int shift = __ffs(size);
800 	int mmu_psize;
801 
802 	/* Check that it is a page size supported by the hardware and
803 	 * that it fits within pagetable and slice limits. */
804 #ifdef CONFIG_PPC_FSL_BOOK3E
805 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
806 		return -EINVAL;
807 #else
808 	if (!is_power_of_2(size)
809 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
810 		return -EINVAL;
811 #endif
812 
813 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
814 		return -EINVAL;
815 
816 #ifdef CONFIG_SPU_FS_64K_LS
817 	/* Disable support for 64K huge pages when 64K SPU local store
818 	 * support is enabled as the current implementation conflicts.
819 	 */
820 	if (shift == PAGE_SHIFT_64K)
821 		return -EINVAL;
822 #endif /* CONFIG_SPU_FS_64K_LS */
823 
824 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
825 
826 	/* Return if huge page size has already been setup */
827 	if (size_to_hstate(size))
828 		return 0;
829 
830 	hugetlb_add_hstate(shift - PAGE_SHIFT);
831 
832 	return 0;
833 }
834 
835 static int __init hugepage_setup_sz(char *str)
836 {
837 	unsigned long long size;
838 
839 	size = memparse(str, &str);
840 
841 	if (add_huge_page_size(size) != 0)
842 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
843 
844 	return 1;
845 }
846 __setup("hugepagesz=", hugepage_setup_sz);
847 
848 #ifdef CONFIG_PPC_FSL_BOOK3E
849 struct kmem_cache *hugepte_cache;
850 static int __init hugetlbpage_init(void)
851 {
852 	int psize;
853 
854 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
855 		unsigned shift;
856 
857 		if (!mmu_psize_defs[psize].shift)
858 			continue;
859 
860 		shift = mmu_psize_to_shift(psize);
861 
862 		/* Don't treat normal page sizes as huge... */
863 		if (shift != PAGE_SHIFT)
864 			if (add_huge_page_size(1ULL << shift) < 0)
865 				continue;
866 	}
867 
868 	/*
869 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
870 	 * size information encoded in them, so align them to allow this
871 	 */
872 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
873 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
874 	if (hugepte_cache == NULL)
875 		panic("%s: Unable to create kmem cache for hugeptes\n",
876 		      __func__);
877 
878 	/* Default hpage size = 4M */
879 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
880 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
881 	else
882 		panic("%s: Unable to set default huge page size\n", __func__);
883 
884 
885 	return 0;
886 }
887 #else
888 static int __init hugetlbpage_init(void)
889 {
890 	int psize;
891 
892 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
893 		return -ENODEV;
894 
895 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
896 		unsigned shift;
897 		unsigned pdshift;
898 
899 		if (!mmu_psize_defs[psize].shift)
900 			continue;
901 
902 		shift = mmu_psize_to_shift(psize);
903 
904 		if (add_huge_page_size(1ULL << shift) < 0)
905 			continue;
906 
907 		if (shift < PMD_SHIFT)
908 			pdshift = PMD_SHIFT;
909 		else if (shift < PUD_SHIFT)
910 			pdshift = PUD_SHIFT;
911 		else
912 			pdshift = PGDIR_SHIFT;
913 		/*
914 		 * if we have pdshift and shift value same, we don't
915 		 * use pgt cache for hugepd.
916 		 */
917 		if (pdshift != shift) {
918 			pgtable_cache_add(pdshift - shift, NULL);
919 			if (!PGT_CACHE(pdshift - shift))
920 				panic("hugetlbpage_init(): could not create "
921 				      "pgtable cache for %d bit pagesize\n", shift);
922 		}
923 	}
924 
925 	/* Set default large page size. Currently, we pick 16M or 1M
926 	 * depending on what is available
927 	 */
928 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
929 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
930 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
931 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
932 
933 	return 0;
934 }
935 #endif
936 module_init(hugetlbpage_init);
937 
938 void flush_dcache_icache_hugepage(struct page *page)
939 {
940 	int i;
941 	void *start;
942 
943 	BUG_ON(!PageCompound(page));
944 
945 	for (i = 0; i < (1UL << compound_order(page)); i++) {
946 		if (!PageHighMem(page)) {
947 			__flush_dcache_icache(page_address(page+i));
948 		} else {
949 			start = kmap_atomic(page+i);
950 			__flush_dcache_icache(start);
951 			kunmap_atomic(start);
952 		}
953 	}
954 }
955 
956 #endif /* CONFIG_HUGETLB_PAGE */
957 
958 /*
959  * We have 4 cases for pgds and pmds:
960  * (1) invalid (all zeroes)
961  * (2) pointer to next table, as normal; bottom 6 bits == 0
962  * (3) leaf pte for huge page, bottom two bits != 00
963  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
964  *
965  * So long as we atomically load page table pointers we are safe against teardown,
966  * we can follow the address down to the the page and take a ref on it.
967  * This function need to be called with interrupts disabled. We use this variant
968  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
969  */
970 
971 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
972 				   unsigned *shift)
973 {
974 	pgd_t pgd, *pgdp;
975 	pud_t pud, *pudp;
976 	pmd_t pmd, *pmdp;
977 	pte_t *ret_pte;
978 	hugepd_t *hpdp = NULL;
979 	unsigned pdshift = PGDIR_SHIFT;
980 
981 	if (shift)
982 		*shift = 0;
983 
984 	pgdp = pgdir + pgd_index(ea);
985 	pgd  = READ_ONCE(*pgdp);
986 	/*
987 	 * Always operate on the local stack value. This make sure the
988 	 * value don't get updated by a parallel THP split/collapse,
989 	 * page fault or a page unmap. The return pte_t * is still not
990 	 * stable. So should be checked there for above conditions.
991 	 */
992 	if (pgd_none(pgd))
993 		return NULL;
994 	else if (pgd_huge(pgd)) {
995 		ret_pte = (pte_t *) pgdp;
996 		goto out;
997 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
998 		hpdp = (hugepd_t *)&pgd;
999 	else {
1000 		/*
1001 		 * Even if we end up with an unmap, the pgtable will not
1002 		 * be freed, because we do an rcu free and here we are
1003 		 * irq disabled
1004 		 */
1005 		pdshift = PUD_SHIFT;
1006 		pudp = pud_offset(&pgd, ea);
1007 		pud  = READ_ONCE(*pudp);
1008 
1009 		if (pud_none(pud))
1010 			return NULL;
1011 		else if (pud_huge(pud)) {
1012 			ret_pte = (pte_t *) pudp;
1013 			goto out;
1014 		} else if (is_hugepd(__hugepd(pud_val(pud))))
1015 			hpdp = (hugepd_t *)&pud;
1016 		else {
1017 			pdshift = PMD_SHIFT;
1018 			pmdp = pmd_offset(&pud, ea);
1019 			pmd  = READ_ONCE(*pmdp);
1020 			/*
1021 			 * A hugepage collapse is captured by pmd_none, because
1022 			 * it mark the pmd none and do a hpte invalidate.
1023 			 *
1024 			 * We don't worry about pmd_trans_splitting here, The
1025 			 * caller if it needs to handle the splitting case
1026 			 * should check for that.
1027 			 */
1028 			if (pmd_none(pmd))
1029 				return NULL;
1030 
1031 			if (pmd_huge(pmd) || pmd_large(pmd)) {
1032 				ret_pte = (pte_t *) pmdp;
1033 				goto out;
1034 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
1035 				hpdp = (hugepd_t *)&pmd;
1036 			else
1037 				return pte_offset_kernel(&pmd, ea);
1038 		}
1039 	}
1040 	if (!hpdp)
1041 		return NULL;
1042 
1043 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1044 	pdshift = hugepd_shift(*hpdp);
1045 out:
1046 	if (shift)
1047 		*shift = pdshift;
1048 	return ret_pte;
1049 }
1050 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1051 
1052 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1053 		unsigned long end, int write, struct page **pages, int *nr)
1054 {
1055 	unsigned long mask;
1056 	unsigned long pte_end;
1057 	struct page *head, *page, *tail;
1058 	pte_t pte;
1059 	int refs;
1060 
1061 	pte_end = (addr + sz) & ~(sz-1);
1062 	if (pte_end < end)
1063 		end = pte_end;
1064 
1065 	pte = READ_ONCE(*ptep);
1066 	mask = _PAGE_PRESENT | _PAGE_USER;
1067 	if (write)
1068 		mask |= _PAGE_RW;
1069 
1070 	if ((pte_val(pte) & mask) != mask)
1071 		return 0;
1072 
1073 	/* hugepages are never "special" */
1074 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1075 
1076 	refs = 0;
1077 	head = pte_page(pte);
1078 
1079 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1080 	tail = page;
1081 	do {
1082 		VM_BUG_ON(compound_head(page) != head);
1083 		pages[*nr] = page;
1084 		(*nr)++;
1085 		page++;
1086 		refs++;
1087 	} while (addr += PAGE_SIZE, addr != end);
1088 
1089 	if (!page_cache_add_speculative(head, refs)) {
1090 		*nr -= refs;
1091 		return 0;
1092 	}
1093 
1094 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1095 		/* Could be optimized better */
1096 		*nr -= refs;
1097 		while (refs--)
1098 			put_page(head);
1099 		return 0;
1100 	}
1101 
1102 	/*
1103 	 * Any tail page need their mapcount reference taken before we
1104 	 * return.
1105 	 */
1106 	while (refs--) {
1107 		if (PageTail(tail))
1108 			get_huge_page_tail(tail);
1109 		tail++;
1110 	}
1111 
1112 	return 1;
1113 }
1114