1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/swap.h> 20 #include <linux/swapops.h> 21 #include <linux/kmemleak.h> 22 #include <asm/pgalloc.h> 23 #include <asm/tlb.h> 24 #include <asm/setup.h> 25 #include <asm/hugetlb.h> 26 #include <asm/pte-walk.h> 27 28 bool hugetlb_disabled = false; 29 30 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 31 32 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \ 33 __builtin_ffs(sizeof(void *))) 34 35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 36 { 37 /* 38 * Only called for hugetlbfs pages, hence can ignore THP and the 39 * irq disabled walk. 40 */ 41 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 42 } 43 44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 45 unsigned long address, unsigned int pdshift, 46 unsigned int pshift, spinlock_t *ptl) 47 { 48 struct kmem_cache *cachep; 49 pte_t *new; 50 int i; 51 int num_hugepd; 52 53 if (pshift >= pdshift) { 54 cachep = PGT_CACHE(PTE_T_ORDER); 55 num_hugepd = 1 << (pshift - pdshift); 56 } else { 57 cachep = PGT_CACHE(pdshift - pshift); 58 num_hugepd = 1; 59 } 60 61 if (!cachep) { 62 WARN_ONCE(1, "No page table cache created for hugetlb tables"); 63 return -ENOMEM; 64 } 65 66 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 67 68 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 69 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 70 71 if (!new) 72 return -ENOMEM; 73 74 /* 75 * Make sure other cpus find the hugepd set only after a 76 * properly initialized page table is visible to them. 77 * For more details look for comment in __pte_alloc(). 78 */ 79 smp_wmb(); 80 81 spin_lock(ptl); 82 /* 83 * We have multiple higher-level entries that point to the same 84 * actual pte location. Fill in each as we go and backtrack on error. 85 * We need all of these so the DTLB pgtable walk code can find the 86 * right higher-level entry without knowing if it's a hugepage or not. 87 */ 88 for (i = 0; i < num_hugepd; i++, hpdp++) { 89 if (unlikely(!hugepd_none(*hpdp))) 90 break; 91 hugepd_populate(hpdp, new, pshift); 92 } 93 /* If we bailed from the for loop early, an error occurred, clean up */ 94 if (i < num_hugepd) { 95 for (i = i - 1 ; i >= 0; i--, hpdp--) 96 *hpdp = __hugepd(0); 97 kmem_cache_free(cachep, new); 98 } else { 99 kmemleak_ignore(new); 100 } 101 spin_unlock(ptl); 102 return 0; 103 } 104 105 /* 106 * At this point we do the placement change only for BOOK3S 64. This would 107 * possibly work on other subarchs. 108 */ 109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 110 { 111 pgd_t *pg; 112 p4d_t *p4; 113 pud_t *pu; 114 pmd_t *pm; 115 hugepd_t *hpdp = NULL; 116 unsigned pshift = __ffs(sz); 117 unsigned pdshift = PGDIR_SHIFT; 118 spinlock_t *ptl; 119 120 addr &= ~(sz-1); 121 pg = pgd_offset(mm, addr); 122 p4 = p4d_offset(pg, addr); 123 124 #ifdef CONFIG_PPC_BOOK3S_64 125 if (pshift == PGDIR_SHIFT) 126 /* 16GB huge page */ 127 return (pte_t *) p4; 128 else if (pshift > PUD_SHIFT) { 129 /* 130 * We need to use hugepd table 131 */ 132 ptl = &mm->page_table_lock; 133 hpdp = (hugepd_t *)p4; 134 } else { 135 pdshift = PUD_SHIFT; 136 pu = pud_alloc(mm, p4, addr); 137 if (!pu) 138 return NULL; 139 if (pshift == PUD_SHIFT) 140 return (pte_t *)pu; 141 else if (pshift > PMD_SHIFT) { 142 ptl = pud_lockptr(mm, pu); 143 hpdp = (hugepd_t *)pu; 144 } else { 145 pdshift = PMD_SHIFT; 146 pm = pmd_alloc(mm, pu, addr); 147 if (!pm) 148 return NULL; 149 if (pshift == PMD_SHIFT) 150 /* 16MB hugepage */ 151 return (pte_t *)pm; 152 else { 153 ptl = pmd_lockptr(mm, pm); 154 hpdp = (hugepd_t *)pm; 155 } 156 } 157 } 158 #else 159 if (pshift >= PGDIR_SHIFT) { 160 ptl = &mm->page_table_lock; 161 hpdp = (hugepd_t *)p4; 162 } else { 163 pdshift = PUD_SHIFT; 164 pu = pud_alloc(mm, p4, addr); 165 if (!pu) 166 return NULL; 167 if (pshift >= PUD_SHIFT) { 168 ptl = pud_lockptr(mm, pu); 169 hpdp = (hugepd_t *)pu; 170 } else { 171 pdshift = PMD_SHIFT; 172 pm = pmd_alloc(mm, pu, addr); 173 if (!pm) 174 return NULL; 175 ptl = pmd_lockptr(mm, pm); 176 hpdp = (hugepd_t *)pm; 177 } 178 } 179 #endif 180 if (!hpdp) 181 return NULL; 182 183 if (IS_ENABLED(CONFIG_PPC_8xx) && sz == SZ_512K) 184 return pte_alloc_map(mm, (pmd_t *)hpdp, addr); 185 186 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 187 188 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 189 pdshift, pshift, ptl)) 190 return NULL; 191 192 return hugepte_offset(*hpdp, addr, pdshift); 193 } 194 195 #ifdef CONFIG_PPC_BOOK3S_64 196 /* 197 * Tracks gpages after the device tree is scanned and before the 198 * huge_boot_pages list is ready on pseries. 199 */ 200 #define MAX_NUMBER_GPAGES 1024 201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 202 __initdata static unsigned nr_gpages; 203 204 /* 205 * Build list of addresses of gigantic pages. This function is used in early 206 * boot before the buddy allocator is setup. 207 */ 208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 209 { 210 if (!addr) 211 return; 212 while (number_of_pages > 0) { 213 gpage_freearray[nr_gpages] = addr; 214 nr_gpages++; 215 number_of_pages--; 216 addr += page_size; 217 } 218 } 219 220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 221 { 222 struct huge_bootmem_page *m; 223 if (nr_gpages == 0) 224 return 0; 225 m = phys_to_virt(gpage_freearray[--nr_gpages]); 226 gpage_freearray[nr_gpages] = 0; 227 list_add(&m->list, &huge_boot_pages); 228 m->hstate = hstate; 229 return 1; 230 } 231 #endif 232 233 234 int __init alloc_bootmem_huge_page(struct hstate *h) 235 { 236 237 #ifdef CONFIG_PPC_BOOK3S_64 238 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 239 return pseries_alloc_bootmem_huge_page(h); 240 #endif 241 return __alloc_bootmem_huge_page(h); 242 } 243 244 #ifndef CONFIG_PPC_BOOK3S_64 245 #define HUGEPD_FREELIST_SIZE \ 246 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 247 248 struct hugepd_freelist { 249 struct rcu_head rcu; 250 unsigned int index; 251 void *ptes[]; 252 }; 253 254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 255 256 static void hugepd_free_rcu_callback(struct rcu_head *head) 257 { 258 struct hugepd_freelist *batch = 259 container_of(head, struct hugepd_freelist, rcu); 260 unsigned int i; 261 262 for (i = 0; i < batch->index; i++) 263 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); 264 265 free_page((unsigned long)batch); 266 } 267 268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 269 { 270 struct hugepd_freelist **batchp; 271 272 batchp = &get_cpu_var(hugepd_freelist_cur); 273 274 if (atomic_read(&tlb->mm->mm_users) < 2 || 275 mm_is_thread_local(tlb->mm)) { 276 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); 277 put_cpu_var(hugepd_freelist_cur); 278 return; 279 } 280 281 if (*batchp == NULL) { 282 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 283 (*batchp)->index = 0; 284 } 285 286 (*batchp)->ptes[(*batchp)->index++] = hugepte; 287 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 288 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); 289 *batchp = NULL; 290 } 291 put_cpu_var(hugepd_freelist_cur); 292 } 293 #else 294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 295 #endif 296 297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 298 unsigned long start, unsigned long end, 299 unsigned long floor, unsigned long ceiling) 300 { 301 pte_t *hugepte = hugepd_page(*hpdp); 302 int i; 303 304 unsigned long pdmask = ~((1UL << pdshift) - 1); 305 unsigned int num_hugepd = 1; 306 unsigned int shift = hugepd_shift(*hpdp); 307 308 /* Note: On fsl the hpdp may be the first of several */ 309 if (shift > pdshift) 310 num_hugepd = 1 << (shift - pdshift); 311 312 start &= pdmask; 313 if (start < floor) 314 return; 315 if (ceiling) { 316 ceiling &= pdmask; 317 if (! ceiling) 318 return; 319 } 320 if (end - 1 > ceiling - 1) 321 return; 322 323 for (i = 0; i < num_hugepd; i++, hpdp++) 324 *hpdp = __hugepd(0); 325 326 if (shift >= pdshift) 327 hugepd_free(tlb, hugepte); 328 else 329 pgtable_free_tlb(tlb, hugepte, 330 get_hugepd_cache_index(pdshift - shift)); 331 } 332 333 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) 334 { 335 pgtable_t token = pmd_pgtable(*pmd); 336 337 pmd_clear(pmd); 338 pte_free_tlb(tlb, token, addr); 339 mm_dec_nr_ptes(tlb->mm); 340 } 341 342 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 343 unsigned long addr, unsigned long end, 344 unsigned long floor, unsigned long ceiling) 345 { 346 pmd_t *pmd; 347 unsigned long next; 348 unsigned long start; 349 350 start = addr; 351 do { 352 unsigned long more; 353 354 pmd = pmd_offset(pud, addr); 355 next = pmd_addr_end(addr, end); 356 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 357 if (pmd_none_or_clear_bad(pmd)) 358 continue; 359 360 /* 361 * if it is not hugepd pointer, we should already find 362 * it cleared. 363 */ 364 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx)); 365 366 hugetlb_free_pte_range(tlb, pmd, addr); 367 368 continue; 369 } 370 /* 371 * Increment next by the size of the huge mapping since 372 * there may be more than one entry at this level for a 373 * single hugepage, but all of them point to 374 * the same kmem cache that holds the hugepte. 375 */ 376 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 377 if (more > next) 378 next = more; 379 380 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 381 addr, next, floor, ceiling); 382 } while (addr = next, addr != end); 383 384 start &= PUD_MASK; 385 if (start < floor) 386 return; 387 if (ceiling) { 388 ceiling &= PUD_MASK; 389 if (!ceiling) 390 return; 391 } 392 if (end - 1 > ceiling - 1) 393 return; 394 395 pmd = pmd_offset(pud, start); 396 pud_clear(pud); 397 pmd_free_tlb(tlb, pmd, start); 398 mm_dec_nr_pmds(tlb->mm); 399 } 400 401 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 402 unsigned long addr, unsigned long end, 403 unsigned long floor, unsigned long ceiling) 404 { 405 pud_t *pud; 406 unsigned long next; 407 unsigned long start; 408 409 start = addr; 410 do { 411 pud = pud_offset(p4d, addr); 412 next = pud_addr_end(addr, end); 413 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 414 if (pud_none_or_clear_bad(pud)) 415 continue; 416 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 417 ceiling); 418 } else { 419 unsigned long more; 420 /* 421 * Increment next by the size of the huge mapping since 422 * there may be more than one entry at this level for a 423 * single hugepage, but all of them point to 424 * the same kmem cache that holds the hugepte. 425 */ 426 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 427 if (more > next) 428 next = more; 429 430 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 431 addr, next, floor, ceiling); 432 } 433 } while (addr = next, addr != end); 434 435 start &= PGDIR_MASK; 436 if (start < floor) 437 return; 438 if (ceiling) { 439 ceiling &= PGDIR_MASK; 440 if (!ceiling) 441 return; 442 } 443 if (end - 1 > ceiling - 1) 444 return; 445 446 pud = pud_offset(p4d, start); 447 p4d_clear(p4d); 448 pud_free_tlb(tlb, pud, start); 449 mm_dec_nr_puds(tlb->mm); 450 } 451 452 /* 453 * This function frees user-level page tables of a process. 454 */ 455 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 456 unsigned long addr, unsigned long end, 457 unsigned long floor, unsigned long ceiling) 458 { 459 pgd_t *pgd; 460 p4d_t *p4d; 461 unsigned long next; 462 463 /* 464 * Because there are a number of different possible pagetable 465 * layouts for hugepage ranges, we limit knowledge of how 466 * things should be laid out to the allocation path 467 * (huge_pte_alloc(), above). Everything else works out the 468 * structure as it goes from information in the hugepd 469 * pointers. That means that we can't here use the 470 * optimization used in the normal page free_pgd_range(), of 471 * checking whether we're actually covering a large enough 472 * range to have to do anything at the top level of the walk 473 * instead of at the bottom. 474 * 475 * To make sense of this, you should probably go read the big 476 * block comment at the top of the normal free_pgd_range(), 477 * too. 478 */ 479 480 do { 481 next = pgd_addr_end(addr, end); 482 pgd = pgd_offset(tlb->mm, addr); 483 p4d = p4d_offset(pgd, addr); 484 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 485 if (p4d_none_or_clear_bad(p4d)) 486 continue; 487 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling); 488 } else { 489 unsigned long more; 490 /* 491 * Increment next by the size of the huge mapping since 492 * there may be more than one entry at the pgd level 493 * for a single hugepage, but all of them point to the 494 * same kmem cache that holds the hugepte. 495 */ 496 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 497 if (more > next) 498 next = more; 499 500 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT, 501 addr, next, floor, ceiling); 502 } 503 } while (addr = next, addr != end); 504 } 505 506 struct page *follow_huge_pd(struct vm_area_struct *vma, 507 unsigned long address, hugepd_t hpd, 508 int flags, int pdshift) 509 { 510 pte_t *ptep; 511 spinlock_t *ptl; 512 struct page *page = NULL; 513 unsigned long mask; 514 int shift = hugepd_shift(hpd); 515 struct mm_struct *mm = vma->vm_mm; 516 517 retry: 518 /* 519 * hugepage directory entries are protected by mm->page_table_lock 520 * Use this instead of huge_pte_lockptr 521 */ 522 ptl = &mm->page_table_lock; 523 spin_lock(ptl); 524 525 ptep = hugepte_offset(hpd, address, pdshift); 526 if (pte_present(*ptep)) { 527 mask = (1UL << shift) - 1; 528 page = pte_page(*ptep); 529 page += ((address & mask) >> PAGE_SHIFT); 530 if (flags & FOLL_GET) 531 get_page(page); 532 } else { 533 if (is_hugetlb_entry_migration(*ptep)) { 534 spin_unlock(ptl); 535 __migration_entry_wait(mm, ptep, ptl); 536 goto retry; 537 } 538 } 539 spin_unlock(ptl); 540 return page; 541 } 542 543 #ifdef CONFIG_PPC_MM_SLICES 544 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 545 unsigned long len, unsigned long pgoff, 546 unsigned long flags) 547 { 548 struct hstate *hstate = hstate_file(file); 549 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 550 551 #ifdef CONFIG_PPC_RADIX_MMU 552 if (radix_enabled()) 553 return radix__hugetlb_get_unmapped_area(file, addr, len, 554 pgoff, flags); 555 #endif 556 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 557 } 558 #endif 559 560 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 561 { 562 /* With radix we don't use slice, so derive it from vma*/ 563 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) { 564 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 565 566 return 1UL << mmu_psize_to_shift(psize); 567 } 568 return vma_kernel_pagesize(vma); 569 } 570 571 bool __init arch_hugetlb_valid_size(unsigned long size) 572 { 573 int shift = __ffs(size); 574 int mmu_psize; 575 576 /* Check that it is a page size supported by the hardware and 577 * that it fits within pagetable and slice limits. */ 578 if (size <= PAGE_SIZE || !is_power_of_2(size)) 579 return false; 580 581 mmu_psize = check_and_get_huge_psize(shift); 582 if (mmu_psize < 0) 583 return false; 584 585 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 586 587 return true; 588 } 589 590 static int __init add_huge_page_size(unsigned long long size) 591 { 592 int shift = __ffs(size); 593 594 if (!arch_hugetlb_valid_size((unsigned long)size)) 595 return -EINVAL; 596 597 hugetlb_add_hstate(shift - PAGE_SHIFT); 598 return 0; 599 } 600 601 static int __init hugetlbpage_init(void) 602 { 603 bool configured = false; 604 int psize; 605 606 if (hugetlb_disabled) { 607 pr_info("HugeTLB support is disabled!\n"); 608 return 0; 609 } 610 611 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() && 612 !mmu_has_feature(MMU_FTR_16M_PAGE)) 613 return -ENODEV; 614 615 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 616 unsigned shift; 617 unsigned pdshift; 618 619 if (!mmu_psize_defs[psize].shift) 620 continue; 621 622 shift = mmu_psize_to_shift(psize); 623 624 #ifdef CONFIG_PPC_BOOK3S_64 625 if (shift > PGDIR_SHIFT) 626 continue; 627 else if (shift > PUD_SHIFT) 628 pdshift = PGDIR_SHIFT; 629 else if (shift > PMD_SHIFT) 630 pdshift = PUD_SHIFT; 631 else 632 pdshift = PMD_SHIFT; 633 #else 634 if (shift < PUD_SHIFT) 635 pdshift = PMD_SHIFT; 636 else if (shift < PGDIR_SHIFT) 637 pdshift = PUD_SHIFT; 638 else 639 pdshift = PGDIR_SHIFT; 640 #endif 641 642 if (add_huge_page_size(1ULL << shift) < 0) 643 continue; 644 /* 645 * if we have pdshift and shift value same, we don't 646 * use pgt cache for hugepd. 647 */ 648 if (pdshift > shift) { 649 if (!IS_ENABLED(CONFIG_PPC_8xx)) 650 pgtable_cache_add(pdshift - shift); 651 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || 652 IS_ENABLED(CONFIG_PPC_8xx)) { 653 pgtable_cache_add(PTE_T_ORDER); 654 } 655 656 configured = true; 657 } 658 659 if (configured) { 660 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) 661 hugetlbpage_init_default(); 662 } else 663 pr_info("Failed to initialize. Disabling HugeTLB"); 664 665 return 0; 666 } 667 668 arch_initcall(hugetlbpage_init); 669 670 void flush_dcache_icache_hugepage(struct page *page) 671 { 672 int i; 673 void *start; 674 675 BUG_ON(!PageCompound(page)); 676 677 for (i = 0; i < compound_nr(page); i++) { 678 if (!PageHighMem(page)) { 679 __flush_dcache_icache(page_address(page+i)); 680 } else { 681 start = kmap_atomic(page+i); 682 __flush_dcache_icache(start); 683 kunmap_atomic(start); 684 } 685 } 686 } 687 688 void __init gigantic_hugetlb_cma_reserve(void) 689 { 690 unsigned long order = 0; 691 692 if (radix_enabled()) 693 order = PUD_SHIFT - PAGE_SHIFT; 694 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift) 695 /* 696 * For pseries we do use ibm,expected#pages for reserving 16G pages. 697 */ 698 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT; 699 700 if (order) { 701 VM_WARN_ON(order < MAX_ORDER); 702 hugetlb_cma_reserve(order); 703 } 704 } 705