xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 2359ccdd)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28 
29 
30 #ifdef CONFIG_HUGETLB_PAGE
31 
32 #define PAGE_SHIFT_64K	16
33 #define PAGE_SHIFT_512K	19
34 #define PAGE_SHIFT_8M	23
35 #define PAGE_SHIFT_16M	24
36 #define PAGE_SHIFT_16G	34
37 
38 unsigned int HPAGE_SHIFT;
39 EXPORT_SYMBOL(HPAGE_SHIFT);
40 
41 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
42 
43 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
44 {
45 	/*
46 	 * Only called for hugetlbfs pages, hence can ignore THP and the
47 	 * irq disabled walk.
48 	 */
49 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
50 }
51 
52 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
53 			   unsigned long address, unsigned pdshift, unsigned pshift)
54 {
55 	struct kmem_cache *cachep;
56 	pte_t *new;
57 	int i;
58 	int num_hugepd;
59 
60 	if (pshift >= pdshift) {
61 		cachep = hugepte_cache;
62 		num_hugepd = 1 << (pshift - pdshift);
63 	} else {
64 		cachep = PGT_CACHE(pdshift - pshift);
65 		num_hugepd = 1;
66 	}
67 
68 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
69 
70 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
71 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
72 
73 	if (! new)
74 		return -ENOMEM;
75 
76 	/*
77 	 * Make sure other cpus find the hugepd set only after a
78 	 * properly initialized page table is visible to them.
79 	 * For more details look for comment in __pte_alloc().
80 	 */
81 	smp_wmb();
82 
83 	spin_lock(&mm->page_table_lock);
84 
85 	/*
86 	 * We have multiple higher-level entries that point to the same
87 	 * actual pte location.  Fill in each as we go and backtrack on error.
88 	 * We need all of these so the DTLB pgtable walk code can find the
89 	 * right higher-level entry without knowing if it's a hugepage or not.
90 	 */
91 	for (i = 0; i < num_hugepd; i++, hpdp++) {
92 		if (unlikely(!hugepd_none(*hpdp)))
93 			break;
94 		else {
95 #ifdef CONFIG_PPC_BOOK3S_64
96 			*hpdp = __hugepd(__pa(new) |
97 					 (shift_to_mmu_psize(pshift) << 2));
98 #elif defined(CONFIG_PPC_8xx)
99 			*hpdp = __hugepd(__pa(new) | _PMD_USER |
100 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
101 					  _PMD_PAGE_512K) | _PMD_PRESENT);
102 #else
103 			/* We use the old format for PPC_FSL_BOOK3E */
104 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
105 #endif
106 		}
107 	}
108 	/* If we bailed from the for loop early, an error occurred, clean up */
109 	if (i < num_hugepd) {
110 		for (i = i - 1 ; i >= 0; i--, hpdp--)
111 			*hpdp = __hugepd(0);
112 		kmem_cache_free(cachep, new);
113 	}
114 	spin_unlock(&mm->page_table_lock);
115 	return 0;
116 }
117 
118 /*
119  * These macros define how to determine which level of the page table holds
120  * the hpdp.
121  */
122 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
123 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
124 #define HUGEPD_PUD_SHIFT PUD_SHIFT
125 #endif
126 
127 /*
128  * At this point we do the placement change only for BOOK3S 64. This would
129  * possibly work on other subarchs.
130  */
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
132 {
133 	pgd_t *pg;
134 	pud_t *pu;
135 	pmd_t *pm;
136 	hugepd_t *hpdp = NULL;
137 	unsigned pshift = __ffs(sz);
138 	unsigned pdshift = PGDIR_SHIFT;
139 
140 	addr &= ~(sz-1);
141 	pg = pgd_offset(mm, addr);
142 
143 #ifdef CONFIG_PPC_BOOK3S_64
144 	if (pshift == PGDIR_SHIFT)
145 		/* 16GB huge page */
146 		return (pte_t *) pg;
147 	else if (pshift > PUD_SHIFT)
148 		/*
149 		 * We need to use hugepd table
150 		 */
151 		hpdp = (hugepd_t *)pg;
152 	else {
153 		pdshift = PUD_SHIFT;
154 		pu = pud_alloc(mm, pg, addr);
155 		if (pshift == PUD_SHIFT)
156 			return (pte_t *)pu;
157 		else if (pshift > PMD_SHIFT)
158 			hpdp = (hugepd_t *)pu;
159 		else {
160 			pdshift = PMD_SHIFT;
161 			pm = pmd_alloc(mm, pu, addr);
162 			if (pshift == PMD_SHIFT)
163 				/* 16MB hugepage */
164 				return (pte_t *)pm;
165 			else
166 				hpdp = (hugepd_t *)pm;
167 		}
168 	}
169 #else
170 	if (pshift >= HUGEPD_PGD_SHIFT) {
171 		hpdp = (hugepd_t *)pg;
172 	} else {
173 		pdshift = PUD_SHIFT;
174 		pu = pud_alloc(mm, pg, addr);
175 		if (pshift >= HUGEPD_PUD_SHIFT) {
176 			hpdp = (hugepd_t *)pu;
177 		} else {
178 			pdshift = PMD_SHIFT;
179 			pm = pmd_alloc(mm, pu, addr);
180 			hpdp = (hugepd_t *)pm;
181 		}
182 	}
183 #endif
184 	if (!hpdp)
185 		return NULL;
186 
187 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188 
189 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
190 		return NULL;
191 
192 	return hugepte_offset(*hpdp, addr, pdshift);
193 }
194 
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197  * Tracks gpages after the device tree is scanned and before the
198  * huge_boot_pages list is ready on pseries.
199  */
200 #define MAX_NUMBER_GPAGES	1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203 
204 /*
205  * Build list of addresses of gigantic pages.  This function is used in early
206  * boot before the buddy allocator is setup.
207  */
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210 	if (!addr)
211 		return;
212 	while (number_of_pages > 0) {
213 		gpage_freearray[nr_gpages] = addr;
214 		nr_gpages++;
215 		number_of_pages--;
216 		addr += page_size;
217 	}
218 }
219 
220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222 	struct huge_bootmem_page *m;
223 	if (nr_gpages == 0)
224 		return 0;
225 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 	gpage_freearray[nr_gpages] = 0;
227 	list_add(&m->list, &huge_boot_pages);
228 	m->hstate = hstate;
229 	return 1;
230 }
231 #endif
232 
233 
234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236 
237 #ifdef CONFIG_PPC_BOOK3S_64
238 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 		return pseries_alloc_bootmem_huge_page(h);
240 #endif
241 	return __alloc_bootmem_huge_page(h);
242 }
243 
244 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
245 #define HUGEPD_FREELIST_SIZE \
246 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247 
248 struct hugepd_freelist {
249 	struct rcu_head	rcu;
250 	unsigned int index;
251 	void *ptes[0];
252 };
253 
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255 
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258 	struct hugepd_freelist *batch =
259 		container_of(head, struct hugepd_freelist, rcu);
260 	unsigned int i;
261 
262 	for (i = 0; i < batch->index; i++)
263 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
264 
265 	free_page((unsigned long)batch);
266 }
267 
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270 	struct hugepd_freelist **batchp;
271 
272 	batchp = &get_cpu_var(hugepd_freelist_cur);
273 
274 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 	    mm_is_thread_local(tlb->mm)) {
276 		kmem_cache_free(hugepte_cache, hugepte);
277 		put_cpu_var(hugepd_freelist_cur);
278 		return;
279 	}
280 
281 	if (*batchp == NULL) {
282 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 		(*batchp)->index = 0;
284 	}
285 
286 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
287 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 		*batchp = NULL;
290 	}
291 	put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296 
297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298 			      unsigned long start, unsigned long end,
299 			      unsigned long floor, unsigned long ceiling)
300 {
301 	pte_t *hugepte = hugepd_page(*hpdp);
302 	int i;
303 
304 	unsigned long pdmask = ~((1UL << pdshift) - 1);
305 	unsigned int num_hugepd = 1;
306 	unsigned int shift = hugepd_shift(*hpdp);
307 
308 	/* Note: On fsl the hpdp may be the first of several */
309 	if (shift > pdshift)
310 		num_hugepd = 1 << (shift - pdshift);
311 
312 	start &= pdmask;
313 	if (start < floor)
314 		return;
315 	if (ceiling) {
316 		ceiling &= pdmask;
317 		if (! ceiling)
318 			return;
319 	}
320 	if (end - 1 > ceiling - 1)
321 		return;
322 
323 	for (i = 0; i < num_hugepd; i++, hpdp++)
324 		*hpdp = __hugepd(0);
325 
326 	if (shift >= pdshift)
327 		hugepd_free(tlb, hugepte);
328 	else
329 		pgtable_free_tlb(tlb, hugepte, pdshift - shift);
330 }
331 
332 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
333 				   unsigned long addr, unsigned long end,
334 				   unsigned long floor, unsigned long ceiling)
335 {
336 	pmd_t *pmd;
337 	unsigned long next;
338 	unsigned long start;
339 
340 	start = addr;
341 	do {
342 		unsigned long more;
343 
344 		pmd = pmd_offset(pud, addr);
345 		next = pmd_addr_end(addr, end);
346 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
347 			/*
348 			 * if it is not hugepd pointer, we should already find
349 			 * it cleared.
350 			 */
351 			WARN_ON(!pmd_none_or_clear_bad(pmd));
352 			continue;
353 		}
354 		/*
355 		 * Increment next by the size of the huge mapping since
356 		 * there may be more than one entry at this level for a
357 		 * single hugepage, but all of them point to
358 		 * the same kmem cache that holds the hugepte.
359 		 */
360 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
361 		if (more > next)
362 			next = more;
363 
364 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
365 				  addr, next, floor, ceiling);
366 	} while (addr = next, addr != end);
367 
368 	start &= PUD_MASK;
369 	if (start < floor)
370 		return;
371 	if (ceiling) {
372 		ceiling &= PUD_MASK;
373 		if (!ceiling)
374 			return;
375 	}
376 	if (end - 1 > ceiling - 1)
377 		return;
378 
379 	pmd = pmd_offset(pud, start);
380 	pud_clear(pud);
381 	pmd_free_tlb(tlb, pmd, start);
382 	mm_dec_nr_pmds(tlb->mm);
383 }
384 
385 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
386 				   unsigned long addr, unsigned long end,
387 				   unsigned long floor, unsigned long ceiling)
388 {
389 	pud_t *pud;
390 	unsigned long next;
391 	unsigned long start;
392 
393 	start = addr;
394 	do {
395 		pud = pud_offset(pgd, addr);
396 		next = pud_addr_end(addr, end);
397 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
398 			if (pud_none_or_clear_bad(pud))
399 				continue;
400 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
401 					       ceiling);
402 		} else {
403 			unsigned long more;
404 			/*
405 			 * Increment next by the size of the huge mapping since
406 			 * there may be more than one entry at this level for a
407 			 * single hugepage, but all of them point to
408 			 * the same kmem cache that holds the hugepte.
409 			 */
410 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
411 			if (more > next)
412 				next = more;
413 
414 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
415 					  addr, next, floor, ceiling);
416 		}
417 	} while (addr = next, addr != end);
418 
419 	start &= PGDIR_MASK;
420 	if (start < floor)
421 		return;
422 	if (ceiling) {
423 		ceiling &= PGDIR_MASK;
424 		if (!ceiling)
425 			return;
426 	}
427 	if (end - 1 > ceiling - 1)
428 		return;
429 
430 	pud = pud_offset(pgd, start);
431 	pgd_clear(pgd);
432 	pud_free_tlb(tlb, pud, start);
433 	mm_dec_nr_puds(tlb->mm);
434 }
435 
436 /*
437  * This function frees user-level page tables of a process.
438  */
439 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
440 			    unsigned long addr, unsigned long end,
441 			    unsigned long floor, unsigned long ceiling)
442 {
443 	pgd_t *pgd;
444 	unsigned long next;
445 
446 	/*
447 	 * Because there are a number of different possible pagetable
448 	 * layouts for hugepage ranges, we limit knowledge of how
449 	 * things should be laid out to the allocation path
450 	 * (huge_pte_alloc(), above).  Everything else works out the
451 	 * structure as it goes from information in the hugepd
452 	 * pointers.  That means that we can't here use the
453 	 * optimization used in the normal page free_pgd_range(), of
454 	 * checking whether we're actually covering a large enough
455 	 * range to have to do anything at the top level of the walk
456 	 * instead of at the bottom.
457 	 *
458 	 * To make sense of this, you should probably go read the big
459 	 * block comment at the top of the normal free_pgd_range(),
460 	 * too.
461 	 */
462 
463 	do {
464 		next = pgd_addr_end(addr, end);
465 		pgd = pgd_offset(tlb->mm, addr);
466 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
467 			if (pgd_none_or_clear_bad(pgd))
468 				continue;
469 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
470 		} else {
471 			unsigned long more;
472 			/*
473 			 * Increment next by the size of the huge mapping since
474 			 * there may be more than one entry at the pgd level
475 			 * for a single hugepage, but all of them point to the
476 			 * same kmem cache that holds the hugepte.
477 			 */
478 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
479 			if (more > next)
480 				next = more;
481 
482 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
483 					  addr, next, floor, ceiling);
484 		}
485 	} while (addr = next, addr != end);
486 }
487 
488 struct page *follow_huge_pd(struct vm_area_struct *vma,
489 			    unsigned long address, hugepd_t hpd,
490 			    int flags, int pdshift)
491 {
492 	pte_t *ptep;
493 	spinlock_t *ptl;
494 	struct page *page = NULL;
495 	unsigned long mask;
496 	int shift = hugepd_shift(hpd);
497 	struct mm_struct *mm = vma->vm_mm;
498 
499 retry:
500 	ptl = &mm->page_table_lock;
501 	spin_lock(ptl);
502 
503 	ptep = hugepte_offset(hpd, address, pdshift);
504 	if (pte_present(*ptep)) {
505 		mask = (1UL << shift) - 1;
506 		page = pte_page(*ptep);
507 		page += ((address & mask) >> PAGE_SHIFT);
508 		if (flags & FOLL_GET)
509 			get_page(page);
510 	} else {
511 		if (is_hugetlb_entry_migration(*ptep)) {
512 			spin_unlock(ptl);
513 			__migration_entry_wait(mm, ptep, ptl);
514 			goto retry;
515 		}
516 	}
517 	spin_unlock(ptl);
518 	return page;
519 }
520 
521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 				      unsigned long sz)
523 {
524 	unsigned long __boundary = (addr + sz) & ~(sz-1);
525 	return (__boundary - 1 < end - 1) ? __boundary : end;
526 }
527 
528 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
529 		unsigned long end, int write, struct page **pages, int *nr)
530 {
531 	pte_t *ptep;
532 	unsigned long sz = 1UL << hugepd_shift(hugepd);
533 	unsigned long next;
534 
535 	ptep = hugepte_offset(hugepd, addr, pdshift);
536 	do {
537 		next = hugepte_addr_end(addr, end, sz);
538 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
539 			return 0;
540 	} while (ptep++, addr = next, addr != end);
541 
542 	return 1;
543 }
544 
545 #ifdef CONFIG_PPC_MM_SLICES
546 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
547 					unsigned long len, unsigned long pgoff,
548 					unsigned long flags)
549 {
550 	struct hstate *hstate = hstate_file(file);
551 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
552 
553 #ifdef CONFIG_PPC_RADIX_MMU
554 	if (radix_enabled())
555 		return radix__hugetlb_get_unmapped_area(file, addr, len,
556 						       pgoff, flags);
557 #endif
558 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
559 }
560 #endif
561 
562 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
563 {
564 #ifdef CONFIG_PPC_MM_SLICES
565 	/* With radix we don't use slice, so derive it from vma*/
566 	if (!radix_enabled()) {
567 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
568 
569 		return 1UL << mmu_psize_to_shift(psize);
570 	}
571 #endif
572 	return vma_kernel_pagesize(vma);
573 }
574 
575 static inline bool is_power_of_4(unsigned long x)
576 {
577 	if (is_power_of_2(x))
578 		return (__ilog2(x) % 2) ? false : true;
579 	return false;
580 }
581 
582 static int __init add_huge_page_size(unsigned long long size)
583 {
584 	int shift = __ffs(size);
585 	int mmu_psize;
586 
587 	/* Check that it is a page size supported by the hardware and
588 	 * that it fits within pagetable and slice limits. */
589 	if (size <= PAGE_SIZE)
590 		return -EINVAL;
591 #if defined(CONFIG_PPC_FSL_BOOK3E)
592 	if (!is_power_of_4(size))
593 		return -EINVAL;
594 #elif !defined(CONFIG_PPC_8xx)
595 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
596 		return -EINVAL;
597 #endif
598 
599 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
600 		return -EINVAL;
601 
602 #ifdef CONFIG_PPC_BOOK3S_64
603 	/*
604 	 * We need to make sure that for different page sizes reported by
605 	 * firmware we only add hugetlb support for page sizes that can be
606 	 * supported by linux page table layout.
607 	 * For now we have
608 	 * Radix: 2M
609 	 * Hash: 16M and 16G
610 	 */
611 	if (radix_enabled()) {
612 		if (mmu_psize != MMU_PAGE_2M) {
613 			if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
614 			    (mmu_psize != MMU_PAGE_1G))
615 				return -EINVAL;
616 		}
617 	} else {
618 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
619 			return -EINVAL;
620 	}
621 #endif
622 
623 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
624 
625 	/* Return if huge page size has already been setup */
626 	if (size_to_hstate(size))
627 		return 0;
628 
629 	hugetlb_add_hstate(shift - PAGE_SHIFT);
630 
631 	return 0;
632 }
633 
634 static int __init hugepage_setup_sz(char *str)
635 {
636 	unsigned long long size;
637 
638 	size = memparse(str, &str);
639 
640 	if (add_huge_page_size(size) != 0) {
641 		hugetlb_bad_size();
642 		pr_err("Invalid huge page size specified(%llu)\n", size);
643 	}
644 
645 	return 1;
646 }
647 __setup("hugepagesz=", hugepage_setup_sz);
648 
649 struct kmem_cache *hugepte_cache;
650 static int __init hugetlbpage_init(void)
651 {
652 	int psize;
653 
654 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
655 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
656 		return -ENODEV;
657 #endif
658 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
659 		unsigned shift;
660 		unsigned pdshift;
661 
662 		if (!mmu_psize_defs[psize].shift)
663 			continue;
664 
665 		shift = mmu_psize_to_shift(psize);
666 
667 #ifdef CONFIG_PPC_BOOK3S_64
668 		if (shift > PGDIR_SHIFT)
669 			continue;
670 		else if (shift > PUD_SHIFT)
671 			pdshift = PGDIR_SHIFT;
672 		else if (shift > PMD_SHIFT)
673 			pdshift = PUD_SHIFT;
674 		else
675 			pdshift = PMD_SHIFT;
676 #else
677 		if (shift < HUGEPD_PUD_SHIFT)
678 			pdshift = PMD_SHIFT;
679 		else if (shift < HUGEPD_PGD_SHIFT)
680 			pdshift = PUD_SHIFT;
681 		else
682 			pdshift = PGDIR_SHIFT;
683 #endif
684 
685 		if (add_huge_page_size(1ULL << shift) < 0)
686 			continue;
687 		/*
688 		 * if we have pdshift and shift value same, we don't
689 		 * use pgt cache for hugepd.
690 		 */
691 		if (pdshift > shift)
692 			pgtable_cache_add(pdshift - shift, NULL);
693 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
694 		else if (!hugepte_cache) {
695 			/*
696 			 * Create a kmem cache for hugeptes.  The bottom bits in
697 			 * the pte have size information encoded in them, so
698 			 * align them to allow this
699 			 */
700 			hugepte_cache = kmem_cache_create("hugepte-cache",
701 							  sizeof(pte_t),
702 							  HUGEPD_SHIFT_MASK + 1,
703 							  0, NULL);
704 			if (hugepte_cache == NULL)
705 				panic("%s: Unable to create kmem cache "
706 				      "for hugeptes\n", __func__);
707 
708 		}
709 #endif
710 	}
711 
712 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
713 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
714 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
715 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
716 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
717 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
718 #else
719 	/* Set default large page size. Currently, we pick 16M or 1M
720 	 * depending on what is available
721 	 */
722 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
723 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
724 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
725 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
726 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
727 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
728 #endif
729 	return 0;
730 }
731 
732 arch_initcall(hugetlbpage_init);
733 
734 void flush_dcache_icache_hugepage(struct page *page)
735 {
736 	int i;
737 	void *start;
738 
739 	BUG_ON(!PageCompound(page));
740 
741 	for (i = 0; i < (1UL << compound_order(page)); i++) {
742 		if (!PageHighMem(page)) {
743 			__flush_dcache_icache(page_address(page+i));
744 		} else {
745 			start = kmap_atomic(page+i);
746 			__flush_dcache_icache(start);
747 			kunmap_atomic(start);
748 		}
749 	}
750 }
751 
752 #endif /* CONFIG_HUGETLB_PAGE */
753 
754 /*
755  * We have 4 cases for pgds and pmds:
756  * (1) invalid (all zeroes)
757  * (2) pointer to next table, as normal; bottom 6 bits == 0
758  * (3) leaf pte for huge page _PAGE_PTE set
759  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
760  *
761  * So long as we atomically load page table pointers we are safe against teardown,
762  * we can follow the address down to the the page and take a ref on it.
763  * This function need to be called with interrupts disabled. We use this variant
764  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
765  */
766 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
767 			bool *is_thp, unsigned *hpage_shift)
768 {
769 	pgd_t pgd, *pgdp;
770 	pud_t pud, *pudp;
771 	pmd_t pmd, *pmdp;
772 	pte_t *ret_pte;
773 	hugepd_t *hpdp = NULL;
774 	unsigned pdshift = PGDIR_SHIFT;
775 
776 	if (hpage_shift)
777 		*hpage_shift = 0;
778 
779 	if (is_thp)
780 		*is_thp = false;
781 
782 	pgdp = pgdir + pgd_index(ea);
783 	pgd  = READ_ONCE(*pgdp);
784 	/*
785 	 * Always operate on the local stack value. This make sure the
786 	 * value don't get updated by a parallel THP split/collapse,
787 	 * page fault or a page unmap. The return pte_t * is still not
788 	 * stable. So should be checked there for above conditions.
789 	 */
790 	if (pgd_none(pgd))
791 		return NULL;
792 	else if (pgd_huge(pgd)) {
793 		ret_pte = (pte_t *) pgdp;
794 		goto out;
795 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
796 		hpdp = (hugepd_t *)&pgd;
797 	else {
798 		/*
799 		 * Even if we end up with an unmap, the pgtable will not
800 		 * be freed, because we do an rcu free and here we are
801 		 * irq disabled
802 		 */
803 		pdshift = PUD_SHIFT;
804 		pudp = pud_offset(&pgd, ea);
805 		pud  = READ_ONCE(*pudp);
806 
807 		if (pud_none(pud))
808 			return NULL;
809 		else if (pud_huge(pud)) {
810 			ret_pte = (pte_t *) pudp;
811 			goto out;
812 		} else if (is_hugepd(__hugepd(pud_val(pud))))
813 			hpdp = (hugepd_t *)&pud;
814 		else {
815 			pdshift = PMD_SHIFT;
816 			pmdp = pmd_offset(&pud, ea);
817 			pmd  = READ_ONCE(*pmdp);
818 			/*
819 			 * A hugepage collapse is captured by pmd_none, because
820 			 * it mark the pmd none and do a hpte invalidate.
821 			 */
822 			if (pmd_none(pmd))
823 				return NULL;
824 
825 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
826 				if (is_thp)
827 					*is_thp = true;
828 				ret_pte = (pte_t *) pmdp;
829 				goto out;
830 			}
831 
832 			if (pmd_huge(pmd)) {
833 				ret_pte = (pte_t *) pmdp;
834 				goto out;
835 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
836 				hpdp = (hugepd_t *)&pmd;
837 			else
838 				return pte_offset_kernel(&pmd, ea);
839 		}
840 	}
841 	if (!hpdp)
842 		return NULL;
843 
844 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
845 	pdshift = hugepd_shift(*hpdp);
846 out:
847 	if (hpage_shift)
848 		*hpage_shift = pdshift;
849 	return ret_pte;
850 }
851 EXPORT_SYMBOL_GPL(__find_linux_pte);
852 
853 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
854 		unsigned long end, int write, struct page **pages, int *nr)
855 {
856 	unsigned long pte_end;
857 	struct page *head, *page;
858 	pte_t pte;
859 	int refs;
860 
861 	pte_end = (addr + sz) & ~(sz-1);
862 	if (pte_end < end)
863 		end = pte_end;
864 
865 	pte = READ_ONCE(*ptep);
866 
867 	if (!pte_access_permitted(pte, write))
868 		return 0;
869 
870 	/* hugepages are never "special" */
871 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
872 
873 	refs = 0;
874 	head = pte_page(pte);
875 
876 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
877 	do {
878 		VM_BUG_ON(compound_head(page) != head);
879 		pages[*nr] = page;
880 		(*nr)++;
881 		page++;
882 		refs++;
883 	} while (addr += PAGE_SIZE, addr != end);
884 
885 	if (!page_cache_add_speculative(head, refs)) {
886 		*nr -= refs;
887 		return 0;
888 	}
889 
890 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
891 		/* Could be optimized better */
892 		*nr -= refs;
893 		while (refs--)
894 			put_page(head);
895 		return 0;
896 	}
897 
898 	return 1;
899 }
900