xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 22246614)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
26 
27 #define HPAGE_SHIFT_64K	16
28 #define HPAGE_SHIFT_16M	24
29 
30 #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32 
33 unsigned int hugepte_shift;
34 #define PTRS_PER_HUGEPTE	(1 << hugepte_shift)
35 #define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << hugepte_shift)
36 
37 #define HUGEPD_SHIFT		(HPAGE_SHIFT + hugepte_shift)
38 #define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT)
39 #define HUGEPD_MASK		(~(HUGEPD_SIZE-1))
40 
41 #define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM])
42 
43 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
44  * will choke on pointers to hugepte tables, which is handy for
45  * catching screwups early. */
46 #define HUGEPD_OK	0x1
47 
48 typedef struct { unsigned long pd; } hugepd_t;
49 
50 #define hugepd_none(hpd)	((hpd).pd == 0)
51 
52 static inline pte_t *hugepd_page(hugepd_t hpd)
53 {
54 	BUG_ON(!(hpd.pd & HUGEPD_OK));
55 	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
56 }
57 
58 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
59 {
60 	unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
61 	pte_t *dir = hugepd_page(*hpdp);
62 
63 	return dir + idx;
64 }
65 
66 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
67 			   unsigned long address)
68 {
69 	pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
70 				      GFP_KERNEL|__GFP_REPEAT);
71 
72 	if (! new)
73 		return -ENOMEM;
74 
75 	spin_lock(&mm->page_table_lock);
76 	if (!hugepd_none(*hpdp))
77 		kmem_cache_free(huge_pgtable_cache, new);
78 	else
79 		hpdp->pd = (unsigned long)new | HUGEPD_OK;
80 	spin_unlock(&mm->page_table_lock);
81 	return 0;
82 }
83 
84 /* Base page size affects how we walk hugetlb page tables */
85 #ifdef CONFIG_PPC_64K_PAGES
86 #define hpmd_offset(pud, addr)		pmd_offset(pud, addr)
87 #define hpmd_alloc(mm, pud, addr)	pmd_alloc(mm, pud, addr)
88 #else
89 static inline
90 pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
91 {
92 	if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
93 		return pmd_offset(pud, addr);
94 	else
95 		return (pmd_t *) pud;
96 }
97 static inline
98 pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
99 {
100 	if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
101 		return pmd_alloc(mm, pud, addr);
102 	else
103 		return (pmd_t *) pud;
104 }
105 #endif
106 
107 /* Modelled after find_linux_pte() */
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
109 {
110 	pgd_t *pg;
111 	pud_t *pu;
112 	pmd_t *pm;
113 
114 	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
115 
116 	addr &= HPAGE_MASK;
117 
118 	pg = pgd_offset(mm, addr);
119 	if (!pgd_none(*pg)) {
120 		pu = pud_offset(pg, addr);
121 		if (!pud_none(*pu)) {
122 			pm = hpmd_offset(pu, addr);
123 			if (!pmd_none(*pm))
124 				return hugepte_offset((hugepd_t *)pm, addr);
125 		}
126 	}
127 
128 	return NULL;
129 }
130 
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
132 {
133 	pgd_t *pg;
134 	pud_t *pu;
135 	pmd_t *pm;
136 	hugepd_t *hpdp = NULL;
137 
138 	BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
139 
140 	addr &= HPAGE_MASK;
141 
142 	pg = pgd_offset(mm, addr);
143 	pu = pud_alloc(mm, pg, addr);
144 
145 	if (pu) {
146 		pm = hpmd_alloc(mm, pu, addr);
147 		if (pm)
148 			hpdp = (hugepd_t *)pm;
149 	}
150 
151 	if (! hpdp)
152 		return NULL;
153 
154 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
155 		return NULL;
156 
157 	return hugepte_offset(hpdp, addr);
158 }
159 
160 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
161 {
162 	return 0;
163 }
164 
165 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
166 {
167 	pte_t *hugepte = hugepd_page(*hpdp);
168 
169 	hpdp->pd = 0;
170 	tlb->need_flush = 1;
171 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
172 						 PGF_CACHENUM_MASK));
173 }
174 
175 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
176 				   unsigned long addr, unsigned long end,
177 				   unsigned long floor, unsigned long ceiling)
178 {
179 	pmd_t *pmd;
180 	unsigned long next;
181 	unsigned long start;
182 
183 	start = addr;
184 	pmd = pmd_offset(pud, addr);
185 	do {
186 		next = pmd_addr_end(addr, end);
187 		if (pmd_none(*pmd))
188 			continue;
189 		free_hugepte_range(tlb, (hugepd_t *)pmd);
190 	} while (pmd++, addr = next, addr != end);
191 
192 	start &= PUD_MASK;
193 	if (start < floor)
194 		return;
195 	if (ceiling) {
196 		ceiling &= PUD_MASK;
197 		if (!ceiling)
198 			return;
199 	}
200 	if (end - 1 > ceiling - 1)
201 		return;
202 
203 	pmd = pmd_offset(pud, start);
204 	pud_clear(pud);
205 	pmd_free_tlb(tlb, pmd);
206 }
207 
208 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
209 				   unsigned long addr, unsigned long end,
210 				   unsigned long floor, unsigned long ceiling)
211 {
212 	pud_t *pud;
213 	unsigned long next;
214 	unsigned long start;
215 
216 	start = addr;
217 	pud = pud_offset(pgd, addr);
218 	do {
219 		next = pud_addr_end(addr, end);
220 #ifdef CONFIG_PPC_64K_PAGES
221 		if (pud_none_or_clear_bad(pud))
222 			continue;
223 		hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
224 #else
225 		if (HPAGE_SHIFT == HPAGE_SHIFT_64K) {
226 			if (pud_none_or_clear_bad(pud))
227 				continue;
228 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
229 		} else {
230 			if (pud_none(*pud))
231 				continue;
232 			free_hugepte_range(tlb, (hugepd_t *)pud);
233 		}
234 #endif
235 	} while (pud++, addr = next, addr != end);
236 
237 	start &= PGDIR_MASK;
238 	if (start < floor)
239 		return;
240 	if (ceiling) {
241 		ceiling &= PGDIR_MASK;
242 		if (!ceiling)
243 			return;
244 	}
245 	if (end - 1 > ceiling - 1)
246 		return;
247 
248 	pud = pud_offset(pgd, start);
249 	pgd_clear(pgd);
250 	pud_free_tlb(tlb, pud);
251 }
252 
253 /*
254  * This function frees user-level page tables of a process.
255  *
256  * Must be called with pagetable lock held.
257  */
258 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
259 			    unsigned long addr, unsigned long end,
260 			    unsigned long floor, unsigned long ceiling)
261 {
262 	pgd_t *pgd;
263 	unsigned long next;
264 	unsigned long start;
265 
266 	/*
267 	 * Comments below take from the normal free_pgd_range().  They
268 	 * apply here too.  The tests against HUGEPD_MASK below are
269 	 * essential, because we *don't* test for this at the bottom
270 	 * level.  Without them we'll attempt to free a hugepte table
271 	 * when we unmap just part of it, even if there are other
272 	 * active mappings using it.
273 	 *
274 	 * The next few lines have given us lots of grief...
275 	 *
276 	 * Why are we testing HUGEPD* at this top level?  Because
277 	 * often there will be no work to do at all, and we'd prefer
278 	 * not to go all the way down to the bottom just to discover
279 	 * that.
280 	 *
281 	 * Why all these "- 1"s?  Because 0 represents both the bottom
282 	 * of the address space and the top of it (using -1 for the
283 	 * top wouldn't help much: the masks would do the wrong thing).
284 	 * The rule is that addr 0 and floor 0 refer to the bottom of
285 	 * the address space, but end 0 and ceiling 0 refer to the top
286 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
287 	 * that end 0 case should be mythical).
288 	 *
289 	 * Wherever addr is brought up or ceiling brought down, we
290 	 * must be careful to reject "the opposite 0" before it
291 	 * confuses the subsequent tests.  But what about where end is
292 	 * brought down by HUGEPD_SIZE below? no, end can't go down to
293 	 * 0 there.
294 	 *
295 	 * Whereas we round start (addr) and ceiling down, by different
296 	 * masks at different levels, in order to test whether a table
297 	 * now has no other vmas using it, so can be freed, we don't
298 	 * bother to round floor or end up - the tests don't need that.
299 	 */
300 
301 	addr &= HUGEPD_MASK;
302 	if (addr < floor) {
303 		addr += HUGEPD_SIZE;
304 		if (!addr)
305 			return;
306 	}
307 	if (ceiling) {
308 		ceiling &= HUGEPD_MASK;
309 		if (!ceiling)
310 			return;
311 	}
312 	if (end - 1 > ceiling - 1)
313 		end -= HUGEPD_SIZE;
314 	if (addr > end - 1)
315 		return;
316 
317 	start = addr;
318 	pgd = pgd_offset((*tlb)->mm, addr);
319 	do {
320 		BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize);
321 		next = pgd_addr_end(addr, end);
322 		if (pgd_none_or_clear_bad(pgd))
323 			continue;
324 		hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
325 	} while (pgd++, addr = next, addr != end);
326 }
327 
328 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
329 		     pte_t *ptep, pte_t pte)
330 {
331 	if (pte_present(*ptep)) {
332 		/* We open-code pte_clear because we need to pass the right
333 		 * argument to hpte_need_flush (huge / !huge). Might not be
334 		 * necessary anymore if we make hpte_need_flush() get the
335 		 * page size from the slices
336 		 */
337 		pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
338 	}
339 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
340 }
341 
342 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
343 			      pte_t *ptep)
344 {
345 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
346 	return __pte(old);
347 }
348 
349 struct page *
350 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
351 {
352 	pte_t *ptep;
353 	struct page *page;
354 
355 	if (get_slice_psize(mm, address) != mmu_huge_psize)
356 		return ERR_PTR(-EINVAL);
357 
358 	ptep = huge_pte_offset(mm, address);
359 	page = pte_page(*ptep);
360 	if (page)
361 		page += (address % HPAGE_SIZE) / PAGE_SIZE;
362 
363 	return page;
364 }
365 
366 int pmd_huge(pmd_t pmd)
367 {
368 	return 0;
369 }
370 
371 struct page *
372 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
373 		pmd_t *pmd, int write)
374 {
375 	BUG();
376 	return NULL;
377 }
378 
379 
380 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
381 					unsigned long len, unsigned long pgoff,
382 					unsigned long flags)
383 {
384 	return slice_get_unmapped_area(addr, len, flags,
385 				       mmu_huge_psize, 1, 0);
386 }
387 
388 /*
389  * Called by asm hashtable.S for doing lazy icache flush
390  */
391 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
392 						  pte_t pte, int trap)
393 {
394 	struct page *page;
395 	int i;
396 
397 	if (!pfn_valid(pte_pfn(pte)))
398 		return rflags;
399 
400 	page = pte_page(pte);
401 
402 	/* page is dirty */
403 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
404 		if (trap == 0x400) {
405 			for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
406 				__flush_dcache_icache(page_address(page+i));
407 			set_bit(PG_arch_1, &page->flags);
408 		} else {
409 			rflags |= HPTE_R_N;
410 		}
411 	}
412 	return rflags;
413 }
414 
415 int hash_huge_page(struct mm_struct *mm, unsigned long access,
416 		   unsigned long ea, unsigned long vsid, int local,
417 		   unsigned long trap)
418 {
419 	pte_t *ptep;
420 	unsigned long old_pte, new_pte;
421 	unsigned long va, rflags, pa;
422 	long slot;
423 	int err = 1;
424 	int ssize = user_segment_size(ea);
425 
426 	ptep = huge_pte_offset(mm, ea);
427 
428 	/* Search the Linux page table for a match with va */
429 	va = hpt_va(ea, vsid, ssize);
430 
431 	/*
432 	 * If no pte found or not present, send the problem up to
433 	 * do_page_fault
434 	 */
435 	if (unlikely(!ptep || pte_none(*ptep)))
436 		goto out;
437 
438 	/*
439 	 * Check the user's access rights to the page.  If access should be
440 	 * prevented then send the problem up to do_page_fault.
441 	 */
442 	if (unlikely(access & ~pte_val(*ptep)))
443 		goto out;
444 	/*
445 	 * At this point, we have a pte (old_pte) which can be used to build
446 	 * or update an HPTE. There are 2 cases:
447 	 *
448 	 * 1. There is a valid (present) pte with no associated HPTE (this is
449 	 *	the most common case)
450 	 * 2. There is a valid (present) pte with an associated HPTE. The
451 	 *	current values of the pp bits in the HPTE prevent access
452 	 *	because we are doing software DIRTY bit management and the
453 	 *	page is currently not DIRTY.
454 	 */
455 
456 
457 	do {
458 		old_pte = pte_val(*ptep);
459 		if (old_pte & _PAGE_BUSY)
460 			goto out;
461 		new_pte = old_pte | _PAGE_BUSY |
462 			_PAGE_ACCESSED | _PAGE_HASHPTE;
463 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
464 					 old_pte, new_pte));
465 
466 	rflags = 0x2 | (!(new_pte & _PAGE_RW));
467  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
468 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
469 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
470 		/* No CPU has hugepages but lacks no execute, so we
471 		 * don't need to worry about that case */
472 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
473 						       trap);
474 
475 	/* Check if pte already has an hpte (case 2) */
476 	if (unlikely(old_pte & _PAGE_HASHPTE)) {
477 		/* There MIGHT be an HPTE for this pte */
478 		unsigned long hash, slot;
479 
480 		hash = hpt_hash(va, HPAGE_SHIFT, ssize);
481 		if (old_pte & _PAGE_F_SECOND)
482 			hash = ~hash;
483 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
484 		slot += (old_pte & _PAGE_F_GIX) >> 12;
485 
486 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
487 					 ssize, local) == -1)
488 			old_pte &= ~_PAGE_HPTEFLAGS;
489 	}
490 
491 	if (likely(!(old_pte & _PAGE_HASHPTE))) {
492 		unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
493 		unsigned long hpte_group;
494 
495 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
496 
497 repeat:
498 		hpte_group = ((hash & htab_hash_mask) *
499 			      HPTES_PER_GROUP) & ~0x7UL;
500 
501 		/* clear HPTE slot informations in new PTE */
502 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
503 
504 		/* Add in WIMG bits */
505 		/* XXX We should store these in the pte */
506 		/* --BenH: I think they are ... */
507 		rflags |= _PAGE_COHERENT;
508 
509 		/* Insert into the hash table, primary slot */
510 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
511 					  mmu_huge_psize, ssize);
512 
513 		/* Primary is full, try the secondary */
514 		if (unlikely(slot == -1)) {
515 			hpte_group = ((~hash & htab_hash_mask) *
516 				      HPTES_PER_GROUP) & ~0x7UL;
517 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
518 						  HPTE_V_SECONDARY,
519 						  mmu_huge_psize, ssize);
520 			if (slot == -1) {
521 				if (mftb() & 0x1)
522 					hpte_group = ((hash & htab_hash_mask) *
523 						      HPTES_PER_GROUP)&~0x7UL;
524 
525 				ppc_md.hpte_remove(hpte_group);
526 				goto repeat;
527                         }
528 		}
529 
530 		if (unlikely(slot == -2))
531 			panic("hash_huge_page: pte_insert failed\n");
532 
533 		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
534 	}
535 
536 	/*
537 	 * No need to use ldarx/stdcx here
538 	 */
539 	*ptep = __pte(new_pte & ~_PAGE_BUSY);
540 
541 	err = 0;
542 
543  out:
544 	return err;
545 }
546 
547 void set_huge_psize(int psize)
548 {
549 	/* Check that it is a page size supported by the hardware and
550 	 * that it fits within pagetable limits. */
551 	if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT &&
552 		(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
553 			mmu_psize_defs[psize].shift == HPAGE_SHIFT_64K)) {
554 		HPAGE_SHIFT = mmu_psize_defs[psize].shift;
555 		mmu_huge_psize = psize;
556 #ifdef CONFIG_PPC_64K_PAGES
557 		hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
558 #else
559 		if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
560 			hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
561 		else
562 			hugepte_shift = (PUD_SHIFT-HPAGE_SHIFT);
563 #endif
564 
565 	} else
566 		HPAGE_SHIFT = 0;
567 }
568 
569 static int __init hugepage_setup_sz(char *str)
570 {
571 	unsigned long long size;
572 	int mmu_psize = -1;
573 	int shift;
574 
575 	size = memparse(str, &str);
576 
577 	shift = __ffs(size);
578 	switch (shift) {
579 #ifndef CONFIG_PPC_64K_PAGES
580 	case HPAGE_SHIFT_64K:
581 		mmu_psize = MMU_PAGE_64K;
582 		break;
583 #endif
584 	case HPAGE_SHIFT_16M:
585 		mmu_psize = MMU_PAGE_16M;
586 		break;
587 	}
588 
589 	if (mmu_psize >=0 && mmu_psize_defs[mmu_psize].shift)
590 		set_huge_psize(mmu_psize);
591 	else
592 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
593 
594 	return 1;
595 }
596 __setup("hugepagesz=", hugepage_setup_sz);
597 
598 static void zero_ctor(struct kmem_cache *cache, void *addr)
599 {
600 	memset(addr, 0, kmem_cache_size(cache));
601 }
602 
603 static int __init hugetlbpage_init(void)
604 {
605 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
606 		return -ENODEV;
607 
608 	huge_pgtable_cache = kmem_cache_create("hugepte_cache",
609 					       HUGEPTE_TABLE_SIZE,
610 					       HUGEPTE_TABLE_SIZE,
611 					       0,
612 					       zero_ctor);
613 	if (! huge_pgtable_cache)
614 		panic("hugetlbpage_init(): could not create hugepte cache\n");
615 
616 	return 0;
617 }
618 
619 module_init(hugetlbpage_init);
620