xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 2209fda3)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <linux/kmemleak.h>
23 #include <asm/pgtable.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlb.h>
26 #include <asm/setup.h>
27 #include <asm/hugetlb.h>
28 #include <asm/pte-walk.h>
29 
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #define PAGE_SHIFT_64K	16
34 #define PAGE_SHIFT_512K	19
35 #define PAGE_SHIFT_8M	23
36 #define PAGE_SHIFT_16M	24
37 #define PAGE_SHIFT_16G	34
38 
39 bool hugetlb_disabled = false;
40 
41 unsigned int HPAGE_SHIFT;
42 EXPORT_SYMBOL(HPAGE_SHIFT);
43 
44 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
45 
46 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
47 {
48 	/*
49 	 * Only called for hugetlbfs pages, hence can ignore THP and the
50 	 * irq disabled walk.
51 	 */
52 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
53 }
54 
55 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
56 			   unsigned long address, unsigned int pdshift,
57 			   unsigned int pshift, spinlock_t *ptl)
58 {
59 	struct kmem_cache *cachep;
60 	pte_t *new;
61 	int i;
62 	int num_hugepd;
63 
64 	if (pshift >= pdshift) {
65 		cachep = hugepte_cache;
66 		num_hugepd = 1 << (pshift - pdshift);
67 	} else {
68 		cachep = PGT_CACHE(pdshift - pshift);
69 		num_hugepd = 1;
70 	}
71 
72 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
73 
74 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
75 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
76 
77 	if (! new)
78 		return -ENOMEM;
79 
80 	/*
81 	 * Make sure other cpus find the hugepd set only after a
82 	 * properly initialized page table is visible to them.
83 	 * For more details look for comment in __pte_alloc().
84 	 */
85 	smp_wmb();
86 
87 	spin_lock(ptl);
88 	/*
89 	 * We have multiple higher-level entries that point to the same
90 	 * actual pte location.  Fill in each as we go and backtrack on error.
91 	 * We need all of these so the DTLB pgtable walk code can find the
92 	 * right higher-level entry without knowing if it's a hugepage or not.
93 	 */
94 	for (i = 0; i < num_hugepd; i++, hpdp++) {
95 		if (unlikely(!hugepd_none(*hpdp)))
96 			break;
97 		else {
98 #ifdef CONFIG_PPC_BOOK3S_64
99 			*hpdp = __hugepd(__pa(new) | HUGEPD_VAL_BITS |
100 					 (shift_to_mmu_psize(pshift) << 2));
101 #elif defined(CONFIG_PPC_8xx)
102 			*hpdp = __hugepd(__pa(new) | _PMD_USER |
103 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
104 					  _PMD_PAGE_512K) | _PMD_PRESENT);
105 #else
106 			/* We use the old format for PPC_FSL_BOOK3E */
107 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
108 #endif
109 		}
110 	}
111 	/* If we bailed from the for loop early, an error occurred, clean up */
112 	if (i < num_hugepd) {
113 		for (i = i - 1 ; i >= 0; i--, hpdp--)
114 			*hpdp = __hugepd(0);
115 		kmem_cache_free(cachep, new);
116 	} else {
117 		kmemleak_ignore(new);
118 	}
119 	spin_unlock(ptl);
120 	return 0;
121 }
122 
123 /*
124  * At this point we do the placement change only for BOOK3S 64. This would
125  * possibly work on other subarchs.
126  */
127 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
128 {
129 	pgd_t *pg;
130 	pud_t *pu;
131 	pmd_t *pm;
132 	hugepd_t *hpdp = NULL;
133 	unsigned pshift = __ffs(sz);
134 	unsigned pdshift = PGDIR_SHIFT;
135 	spinlock_t *ptl;
136 
137 	addr &= ~(sz-1);
138 	pg = pgd_offset(mm, addr);
139 
140 #ifdef CONFIG_PPC_BOOK3S_64
141 	if (pshift == PGDIR_SHIFT)
142 		/* 16GB huge page */
143 		return (pte_t *) pg;
144 	else if (pshift > PUD_SHIFT) {
145 		/*
146 		 * We need to use hugepd table
147 		 */
148 		ptl = &mm->page_table_lock;
149 		hpdp = (hugepd_t *)pg;
150 	} else {
151 		pdshift = PUD_SHIFT;
152 		pu = pud_alloc(mm, pg, addr);
153 		if (pshift == PUD_SHIFT)
154 			return (pte_t *)pu;
155 		else if (pshift > PMD_SHIFT) {
156 			ptl = pud_lockptr(mm, pu);
157 			hpdp = (hugepd_t *)pu;
158 		} else {
159 			pdshift = PMD_SHIFT;
160 			pm = pmd_alloc(mm, pu, addr);
161 			if (pshift == PMD_SHIFT)
162 				/* 16MB hugepage */
163 				return (pte_t *)pm;
164 			else {
165 				ptl = pmd_lockptr(mm, pm);
166 				hpdp = (hugepd_t *)pm;
167 			}
168 		}
169 	}
170 #else
171 	if (pshift >= PGDIR_SHIFT) {
172 		ptl = &mm->page_table_lock;
173 		hpdp = (hugepd_t *)pg;
174 	} else {
175 		pdshift = PUD_SHIFT;
176 		pu = pud_alloc(mm, pg, addr);
177 		if (pshift >= PUD_SHIFT) {
178 			ptl = pud_lockptr(mm, pu);
179 			hpdp = (hugepd_t *)pu;
180 		} else {
181 			pdshift = PMD_SHIFT;
182 			pm = pmd_alloc(mm, pu, addr);
183 			ptl = pmd_lockptr(mm, pm);
184 			hpdp = (hugepd_t *)pm;
185 		}
186 	}
187 #endif
188 	if (!hpdp)
189 		return NULL;
190 
191 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
192 
193 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
194 						  pdshift, pshift, ptl))
195 		return NULL;
196 
197 	return hugepte_offset(*hpdp, addr, pdshift);
198 }
199 
200 #ifdef CONFIG_PPC_BOOK3S_64
201 /*
202  * Tracks gpages after the device tree is scanned and before the
203  * huge_boot_pages list is ready on pseries.
204  */
205 #define MAX_NUMBER_GPAGES	1024
206 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
207 __initdata static unsigned nr_gpages;
208 
209 /*
210  * Build list of addresses of gigantic pages.  This function is used in early
211  * boot before the buddy allocator is setup.
212  */
213 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
214 {
215 	if (!addr)
216 		return;
217 	while (number_of_pages > 0) {
218 		gpage_freearray[nr_gpages] = addr;
219 		nr_gpages++;
220 		number_of_pages--;
221 		addr += page_size;
222 	}
223 }
224 
225 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
226 {
227 	struct huge_bootmem_page *m;
228 	if (nr_gpages == 0)
229 		return 0;
230 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
231 	gpage_freearray[nr_gpages] = 0;
232 	list_add(&m->list, &huge_boot_pages);
233 	m->hstate = hstate;
234 	return 1;
235 }
236 #endif
237 
238 
239 int __init alloc_bootmem_huge_page(struct hstate *h)
240 {
241 
242 #ifdef CONFIG_PPC_BOOK3S_64
243 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
244 		return pseries_alloc_bootmem_huge_page(h);
245 #endif
246 	return __alloc_bootmem_huge_page(h);
247 }
248 
249 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
250 #define HUGEPD_FREELIST_SIZE \
251 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
252 
253 struct hugepd_freelist {
254 	struct rcu_head	rcu;
255 	unsigned int index;
256 	void *ptes[0];
257 };
258 
259 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
260 
261 static void hugepd_free_rcu_callback(struct rcu_head *head)
262 {
263 	struct hugepd_freelist *batch =
264 		container_of(head, struct hugepd_freelist, rcu);
265 	unsigned int i;
266 
267 	for (i = 0; i < batch->index; i++)
268 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
269 
270 	free_page((unsigned long)batch);
271 }
272 
273 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
274 {
275 	struct hugepd_freelist **batchp;
276 
277 	batchp = &get_cpu_var(hugepd_freelist_cur);
278 
279 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
280 	    mm_is_thread_local(tlb->mm)) {
281 		kmem_cache_free(hugepte_cache, hugepte);
282 		put_cpu_var(hugepd_freelist_cur);
283 		return;
284 	}
285 
286 	if (*batchp == NULL) {
287 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
288 		(*batchp)->index = 0;
289 	}
290 
291 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
292 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
293 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
294 		*batchp = NULL;
295 	}
296 	put_cpu_var(hugepd_freelist_cur);
297 }
298 #else
299 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
300 #endif
301 
302 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
303 			      unsigned long start, unsigned long end,
304 			      unsigned long floor, unsigned long ceiling)
305 {
306 	pte_t *hugepte = hugepd_page(*hpdp);
307 	int i;
308 
309 	unsigned long pdmask = ~((1UL << pdshift) - 1);
310 	unsigned int num_hugepd = 1;
311 	unsigned int shift = hugepd_shift(*hpdp);
312 
313 	/* Note: On fsl the hpdp may be the first of several */
314 	if (shift > pdshift)
315 		num_hugepd = 1 << (shift - pdshift);
316 
317 	start &= pdmask;
318 	if (start < floor)
319 		return;
320 	if (ceiling) {
321 		ceiling &= pdmask;
322 		if (! ceiling)
323 			return;
324 	}
325 	if (end - 1 > ceiling - 1)
326 		return;
327 
328 	for (i = 0; i < num_hugepd; i++, hpdp++)
329 		*hpdp = __hugepd(0);
330 
331 	if (shift >= pdshift)
332 		hugepd_free(tlb, hugepte);
333 	else
334 		pgtable_free_tlb(tlb, hugepte,
335 				 get_hugepd_cache_index(pdshift - shift));
336 }
337 
338 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
339 				   unsigned long addr, unsigned long end,
340 				   unsigned long floor, unsigned long ceiling)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	unsigned long start;
345 
346 	start = addr;
347 	do {
348 		unsigned long more;
349 
350 		pmd = pmd_offset(pud, addr);
351 		next = pmd_addr_end(addr, end);
352 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
353 			/*
354 			 * if it is not hugepd pointer, we should already find
355 			 * it cleared.
356 			 */
357 			WARN_ON(!pmd_none_or_clear_bad(pmd));
358 			continue;
359 		}
360 		/*
361 		 * Increment next by the size of the huge mapping since
362 		 * there may be more than one entry at this level for a
363 		 * single hugepage, but all of them point to
364 		 * the same kmem cache that holds the hugepte.
365 		 */
366 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
367 		if (more > next)
368 			next = more;
369 
370 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
371 				  addr, next, floor, ceiling);
372 	} while (addr = next, addr != end);
373 
374 	start &= PUD_MASK;
375 	if (start < floor)
376 		return;
377 	if (ceiling) {
378 		ceiling &= PUD_MASK;
379 		if (!ceiling)
380 			return;
381 	}
382 	if (end - 1 > ceiling - 1)
383 		return;
384 
385 	pmd = pmd_offset(pud, start);
386 	pud_clear(pud);
387 	pmd_free_tlb(tlb, pmd, start);
388 	mm_dec_nr_pmds(tlb->mm);
389 }
390 
391 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
392 				   unsigned long addr, unsigned long end,
393 				   unsigned long floor, unsigned long ceiling)
394 {
395 	pud_t *pud;
396 	unsigned long next;
397 	unsigned long start;
398 
399 	start = addr;
400 	do {
401 		pud = pud_offset(pgd, addr);
402 		next = pud_addr_end(addr, end);
403 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
404 			if (pud_none_or_clear_bad(pud))
405 				continue;
406 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
407 					       ceiling);
408 		} else {
409 			unsigned long more;
410 			/*
411 			 * Increment next by the size of the huge mapping since
412 			 * there may be more than one entry at this level for a
413 			 * single hugepage, but all of them point to
414 			 * the same kmem cache that holds the hugepte.
415 			 */
416 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
417 			if (more > next)
418 				next = more;
419 
420 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
421 					  addr, next, floor, ceiling);
422 		}
423 	} while (addr = next, addr != end);
424 
425 	start &= PGDIR_MASK;
426 	if (start < floor)
427 		return;
428 	if (ceiling) {
429 		ceiling &= PGDIR_MASK;
430 		if (!ceiling)
431 			return;
432 	}
433 	if (end - 1 > ceiling - 1)
434 		return;
435 
436 	pud = pud_offset(pgd, start);
437 	pgd_clear(pgd);
438 	pud_free_tlb(tlb, pud, start);
439 	mm_dec_nr_puds(tlb->mm);
440 }
441 
442 /*
443  * This function frees user-level page tables of a process.
444  */
445 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
446 			    unsigned long addr, unsigned long end,
447 			    unsigned long floor, unsigned long ceiling)
448 {
449 	pgd_t *pgd;
450 	unsigned long next;
451 
452 	/*
453 	 * Because there are a number of different possible pagetable
454 	 * layouts for hugepage ranges, we limit knowledge of how
455 	 * things should be laid out to the allocation path
456 	 * (huge_pte_alloc(), above).  Everything else works out the
457 	 * structure as it goes from information in the hugepd
458 	 * pointers.  That means that we can't here use the
459 	 * optimization used in the normal page free_pgd_range(), of
460 	 * checking whether we're actually covering a large enough
461 	 * range to have to do anything at the top level of the walk
462 	 * instead of at the bottom.
463 	 *
464 	 * To make sense of this, you should probably go read the big
465 	 * block comment at the top of the normal free_pgd_range(),
466 	 * too.
467 	 */
468 
469 	do {
470 		next = pgd_addr_end(addr, end);
471 		pgd = pgd_offset(tlb->mm, addr);
472 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
473 			if (pgd_none_or_clear_bad(pgd))
474 				continue;
475 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
476 		} else {
477 			unsigned long more;
478 			/*
479 			 * Increment next by the size of the huge mapping since
480 			 * there may be more than one entry at the pgd level
481 			 * for a single hugepage, but all of them point to the
482 			 * same kmem cache that holds the hugepte.
483 			 */
484 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
485 			if (more > next)
486 				next = more;
487 
488 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
489 					  addr, next, floor, ceiling);
490 		}
491 	} while (addr = next, addr != end);
492 }
493 
494 struct page *follow_huge_pd(struct vm_area_struct *vma,
495 			    unsigned long address, hugepd_t hpd,
496 			    int flags, int pdshift)
497 {
498 	pte_t *ptep;
499 	spinlock_t *ptl;
500 	struct page *page = NULL;
501 	unsigned long mask;
502 	int shift = hugepd_shift(hpd);
503 	struct mm_struct *mm = vma->vm_mm;
504 
505 retry:
506 	/*
507 	 * hugepage directory entries are protected by mm->page_table_lock
508 	 * Use this instead of huge_pte_lockptr
509 	 */
510 	ptl = &mm->page_table_lock;
511 	spin_lock(ptl);
512 
513 	ptep = hugepte_offset(hpd, address, pdshift);
514 	if (pte_present(*ptep)) {
515 		mask = (1UL << shift) - 1;
516 		page = pte_page(*ptep);
517 		page += ((address & mask) >> PAGE_SHIFT);
518 		if (flags & FOLL_GET)
519 			get_page(page);
520 	} else {
521 		if (is_hugetlb_entry_migration(*ptep)) {
522 			spin_unlock(ptl);
523 			__migration_entry_wait(mm, ptep, ptl);
524 			goto retry;
525 		}
526 	}
527 	spin_unlock(ptl);
528 	return page;
529 }
530 
531 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
532 				      unsigned long sz)
533 {
534 	unsigned long __boundary = (addr + sz) & ~(sz-1);
535 	return (__boundary - 1 < end - 1) ? __boundary : end;
536 }
537 
538 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
539 		unsigned long end, int write, struct page **pages, int *nr)
540 {
541 	pte_t *ptep;
542 	unsigned long sz = 1UL << hugepd_shift(hugepd);
543 	unsigned long next;
544 
545 	ptep = hugepte_offset(hugepd, addr, pdshift);
546 	do {
547 		next = hugepte_addr_end(addr, end, sz);
548 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
549 			return 0;
550 	} while (ptep++, addr = next, addr != end);
551 
552 	return 1;
553 }
554 
555 #ifdef CONFIG_PPC_MM_SLICES
556 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
557 					unsigned long len, unsigned long pgoff,
558 					unsigned long flags)
559 {
560 	struct hstate *hstate = hstate_file(file);
561 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
562 
563 #ifdef CONFIG_PPC_RADIX_MMU
564 	if (radix_enabled())
565 		return radix__hugetlb_get_unmapped_area(file, addr, len,
566 						       pgoff, flags);
567 #endif
568 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
569 }
570 #endif
571 
572 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
573 {
574 #ifdef CONFIG_PPC_MM_SLICES
575 	/* With radix we don't use slice, so derive it from vma*/
576 	if (!radix_enabled()) {
577 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
578 
579 		return 1UL << mmu_psize_to_shift(psize);
580 	}
581 #endif
582 	return vma_kernel_pagesize(vma);
583 }
584 
585 static inline bool is_power_of_4(unsigned long x)
586 {
587 	if (is_power_of_2(x))
588 		return (__ilog2(x) % 2) ? false : true;
589 	return false;
590 }
591 
592 static int __init add_huge_page_size(unsigned long long size)
593 {
594 	int shift = __ffs(size);
595 	int mmu_psize;
596 
597 	/* Check that it is a page size supported by the hardware and
598 	 * that it fits within pagetable and slice limits. */
599 	if (size <= PAGE_SIZE)
600 		return -EINVAL;
601 #if defined(CONFIG_PPC_FSL_BOOK3E)
602 	if (!is_power_of_4(size))
603 		return -EINVAL;
604 #elif !defined(CONFIG_PPC_8xx)
605 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
606 		return -EINVAL;
607 #endif
608 
609 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
610 		return -EINVAL;
611 
612 #ifdef CONFIG_PPC_BOOK3S_64
613 	/*
614 	 * We need to make sure that for different page sizes reported by
615 	 * firmware we only add hugetlb support for page sizes that can be
616 	 * supported by linux page table layout.
617 	 * For now we have
618 	 * Radix: 2M and 1G
619 	 * Hash: 16M and 16G
620 	 */
621 	if (radix_enabled()) {
622 		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
623 			return -EINVAL;
624 	} else {
625 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
626 			return -EINVAL;
627 	}
628 #endif
629 
630 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
631 
632 	/* Return if huge page size has already been setup */
633 	if (size_to_hstate(size))
634 		return 0;
635 
636 	hugetlb_add_hstate(shift - PAGE_SHIFT);
637 
638 	return 0;
639 }
640 
641 static int __init hugepage_setup_sz(char *str)
642 {
643 	unsigned long long size;
644 
645 	size = memparse(str, &str);
646 
647 	if (add_huge_page_size(size) != 0) {
648 		hugetlb_bad_size();
649 		pr_err("Invalid huge page size specified(%llu)\n", size);
650 	}
651 
652 	return 1;
653 }
654 __setup("hugepagesz=", hugepage_setup_sz);
655 
656 struct kmem_cache *hugepte_cache;
657 static int __init hugetlbpage_init(void)
658 {
659 	int psize;
660 
661 	if (hugetlb_disabled) {
662 		pr_info("HugeTLB support is disabled!\n");
663 		return 0;
664 	}
665 
666 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
667 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
668 		return -ENODEV;
669 #endif
670 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
671 		unsigned shift;
672 		unsigned pdshift;
673 
674 		if (!mmu_psize_defs[psize].shift)
675 			continue;
676 
677 		shift = mmu_psize_to_shift(psize);
678 
679 #ifdef CONFIG_PPC_BOOK3S_64
680 		if (shift > PGDIR_SHIFT)
681 			continue;
682 		else if (shift > PUD_SHIFT)
683 			pdshift = PGDIR_SHIFT;
684 		else if (shift > PMD_SHIFT)
685 			pdshift = PUD_SHIFT;
686 		else
687 			pdshift = PMD_SHIFT;
688 #else
689 		if (shift < PUD_SHIFT)
690 			pdshift = PMD_SHIFT;
691 		else if (shift < PGDIR_SHIFT)
692 			pdshift = PUD_SHIFT;
693 		else
694 			pdshift = PGDIR_SHIFT;
695 #endif
696 
697 		if (add_huge_page_size(1ULL << shift) < 0)
698 			continue;
699 		/*
700 		 * if we have pdshift and shift value same, we don't
701 		 * use pgt cache for hugepd.
702 		 */
703 		if (pdshift > shift)
704 			pgtable_cache_add(pdshift - shift, NULL);
705 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
706 		else if (!hugepte_cache) {
707 			/*
708 			 * Create a kmem cache for hugeptes.  The bottom bits in
709 			 * the pte have size information encoded in them, so
710 			 * align them to allow this
711 			 */
712 			hugepte_cache = kmem_cache_create("hugepte-cache",
713 							  sizeof(pte_t),
714 							  HUGEPD_SHIFT_MASK + 1,
715 							  0, NULL);
716 			if (hugepte_cache == NULL)
717 				panic("%s: Unable to create kmem cache "
718 				      "for hugeptes\n", __func__);
719 
720 		}
721 #endif
722 	}
723 
724 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
725 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
726 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
727 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
728 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
729 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
730 #else
731 	/* Set default large page size. Currently, we pick 16M or 1M
732 	 * depending on what is available
733 	 */
734 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
735 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
736 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
737 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
738 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
739 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
740 #endif
741 	return 0;
742 }
743 
744 arch_initcall(hugetlbpage_init);
745 
746 void flush_dcache_icache_hugepage(struct page *page)
747 {
748 	int i;
749 	void *start;
750 
751 	BUG_ON(!PageCompound(page));
752 
753 	for (i = 0; i < (1UL << compound_order(page)); i++) {
754 		if (!PageHighMem(page)) {
755 			__flush_dcache_icache(page_address(page+i));
756 		} else {
757 			start = kmap_atomic(page+i);
758 			__flush_dcache_icache(start);
759 			kunmap_atomic(start);
760 		}
761 	}
762 }
763 
764 #endif /* CONFIG_HUGETLB_PAGE */
765 
766 /*
767  * We have 4 cases for pgds and pmds:
768  * (1) invalid (all zeroes)
769  * (2) pointer to next table, as normal; bottom 6 bits == 0
770  * (3) leaf pte for huge page _PAGE_PTE set
771  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
772  *
773  * So long as we atomically load page table pointers we are safe against teardown,
774  * we can follow the address down to the the page and take a ref on it.
775  * This function need to be called with interrupts disabled. We use this variant
776  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
777  */
778 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
779 			bool *is_thp, unsigned *hpage_shift)
780 {
781 	pgd_t pgd, *pgdp;
782 	pud_t pud, *pudp;
783 	pmd_t pmd, *pmdp;
784 	pte_t *ret_pte;
785 	hugepd_t *hpdp = NULL;
786 	unsigned pdshift = PGDIR_SHIFT;
787 
788 	if (hpage_shift)
789 		*hpage_shift = 0;
790 
791 	if (is_thp)
792 		*is_thp = false;
793 
794 	pgdp = pgdir + pgd_index(ea);
795 	pgd  = READ_ONCE(*pgdp);
796 	/*
797 	 * Always operate on the local stack value. This make sure the
798 	 * value don't get updated by a parallel THP split/collapse,
799 	 * page fault or a page unmap. The return pte_t * is still not
800 	 * stable. So should be checked there for above conditions.
801 	 */
802 	if (pgd_none(pgd))
803 		return NULL;
804 	else if (pgd_huge(pgd)) {
805 		ret_pte = (pte_t *) pgdp;
806 		goto out;
807 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
808 		hpdp = (hugepd_t *)&pgd;
809 	else {
810 		/*
811 		 * Even if we end up with an unmap, the pgtable will not
812 		 * be freed, because we do an rcu free and here we are
813 		 * irq disabled
814 		 */
815 		pdshift = PUD_SHIFT;
816 		pudp = pud_offset(&pgd, ea);
817 		pud  = READ_ONCE(*pudp);
818 
819 		if (pud_none(pud))
820 			return NULL;
821 		else if (pud_huge(pud)) {
822 			ret_pte = (pte_t *) pudp;
823 			goto out;
824 		} else if (is_hugepd(__hugepd(pud_val(pud))))
825 			hpdp = (hugepd_t *)&pud;
826 		else {
827 			pdshift = PMD_SHIFT;
828 			pmdp = pmd_offset(&pud, ea);
829 			pmd  = READ_ONCE(*pmdp);
830 			/*
831 			 * A hugepage collapse is captured by pmd_none, because
832 			 * it mark the pmd none and do a hpte invalidate.
833 			 */
834 			if (pmd_none(pmd))
835 				return NULL;
836 
837 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
838 				if (is_thp)
839 					*is_thp = true;
840 				ret_pte = (pte_t *) pmdp;
841 				goto out;
842 			}
843 			/*
844 			 * pmd_large check below will handle the swap pmd pte
845 			 * we need to do both the check because they are config
846 			 * dependent.
847 			 */
848 			if (pmd_huge(pmd) || pmd_large(pmd)) {
849 				ret_pte = (pte_t *) pmdp;
850 				goto out;
851 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
852 				hpdp = (hugepd_t *)&pmd;
853 			else
854 				return pte_offset_kernel(&pmd, ea);
855 		}
856 	}
857 	if (!hpdp)
858 		return NULL;
859 
860 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
861 	pdshift = hugepd_shift(*hpdp);
862 out:
863 	if (hpage_shift)
864 		*hpage_shift = pdshift;
865 	return ret_pte;
866 }
867 EXPORT_SYMBOL_GPL(__find_linux_pte);
868 
869 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
870 		unsigned long end, int write, struct page **pages, int *nr)
871 {
872 	unsigned long pte_end;
873 	struct page *head, *page;
874 	pte_t pte;
875 	int refs;
876 
877 	pte_end = (addr + sz) & ~(sz-1);
878 	if (pte_end < end)
879 		end = pte_end;
880 
881 	pte = READ_ONCE(*ptep);
882 
883 	if (!pte_access_permitted(pte, write))
884 		return 0;
885 
886 	/* hugepages are never "special" */
887 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
888 
889 	refs = 0;
890 	head = pte_page(pte);
891 
892 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
893 	do {
894 		VM_BUG_ON(compound_head(page) != head);
895 		pages[*nr] = page;
896 		(*nr)++;
897 		page++;
898 		refs++;
899 	} while (addr += PAGE_SIZE, addr != end);
900 
901 	if (!page_cache_add_speculative(head, refs)) {
902 		*nr -= refs;
903 		return 0;
904 	}
905 
906 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
907 		/* Could be optimized better */
908 		*nr -= refs;
909 		while (refs--)
910 			put_page(head);
911 		return 0;
912 	}
913 
914 	return 1;
915 }
916