xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 1ab142d4)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <linux/moduleparam.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/setup.h>
23 
24 #define PAGE_SHIFT_64K	16
25 #define PAGE_SHIFT_16M	24
26 #define PAGE_SHIFT_16G	34
27 
28 unsigned int HPAGE_SHIFT;
29 
30 /*
31  * Tracks gpages after the device tree is scanned and before the
32  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
33  * just used to track 16G pages and so is a single array.  FSL-based
34  * implementations may have more than one gpage size, so we need multiple
35  * arrays
36  */
37 #ifdef CONFIG_PPC_FSL_BOOK3E
38 #define MAX_NUMBER_GPAGES	128
39 struct psize_gpages {
40 	u64 gpage_list[MAX_NUMBER_GPAGES];
41 	unsigned int nr_gpages;
42 };
43 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
44 #else
45 #define MAX_NUMBER_GPAGES	1024
46 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
47 static unsigned nr_gpages;
48 #endif
49 
50 static inline int shift_to_mmu_psize(unsigned int shift)
51 {
52 	int psize;
53 
54 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
55 		if (mmu_psize_defs[psize].shift == shift)
56 			return psize;
57 	return -1;
58 }
59 
60 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
61 {
62 	if (mmu_psize_defs[mmu_psize].shift)
63 		return mmu_psize_defs[mmu_psize].shift;
64 	BUG();
65 }
66 
67 #define hugepd_none(hpd)	((hpd).pd == 0)
68 
69 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
70 {
71 	pgd_t *pg;
72 	pud_t *pu;
73 	pmd_t *pm;
74 	hugepd_t *hpdp = NULL;
75 	unsigned pdshift = PGDIR_SHIFT;
76 
77 	if (shift)
78 		*shift = 0;
79 
80 	pg = pgdir + pgd_index(ea);
81 	if (is_hugepd(pg)) {
82 		hpdp = (hugepd_t *)pg;
83 	} else if (!pgd_none(*pg)) {
84 		pdshift = PUD_SHIFT;
85 		pu = pud_offset(pg, ea);
86 		if (is_hugepd(pu))
87 			hpdp = (hugepd_t *)pu;
88 		else if (!pud_none(*pu)) {
89 			pdshift = PMD_SHIFT;
90 			pm = pmd_offset(pu, ea);
91 			if (is_hugepd(pm))
92 				hpdp = (hugepd_t *)pm;
93 			else if (!pmd_none(*pm)) {
94 				return pte_offset_kernel(pm, ea);
95 			}
96 		}
97 	}
98 
99 	if (!hpdp)
100 		return NULL;
101 
102 	if (shift)
103 		*shift = hugepd_shift(*hpdp);
104 	return hugepte_offset(hpdp, ea, pdshift);
105 }
106 
107 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
108 {
109 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
110 }
111 
112 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
113 			   unsigned long address, unsigned pdshift, unsigned pshift)
114 {
115 	struct kmem_cache *cachep;
116 	pte_t *new;
117 
118 #ifdef CONFIG_PPC_FSL_BOOK3E
119 	int i;
120 	int num_hugepd = 1 << (pshift - pdshift);
121 	cachep = hugepte_cache;
122 #else
123 	cachep = PGT_CACHE(pdshift - pshift);
124 #endif
125 
126 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
127 
128 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
129 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
130 
131 	if (! new)
132 		return -ENOMEM;
133 
134 	spin_lock(&mm->page_table_lock);
135 #ifdef CONFIG_PPC_FSL_BOOK3E
136 	/*
137 	 * We have multiple higher-level entries that point to the same
138 	 * actual pte location.  Fill in each as we go and backtrack on error.
139 	 * We need all of these so the DTLB pgtable walk code can find the
140 	 * right higher-level entry without knowing if it's a hugepage or not.
141 	 */
142 	for (i = 0; i < num_hugepd; i++, hpdp++) {
143 		if (unlikely(!hugepd_none(*hpdp)))
144 			break;
145 		else
146 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
147 	}
148 	/* If we bailed from the for loop early, an error occurred, clean up */
149 	if (i < num_hugepd) {
150 		for (i = i - 1 ; i >= 0; i--, hpdp--)
151 			hpdp->pd = 0;
152 		kmem_cache_free(cachep, new);
153 	}
154 #else
155 	if (!hugepd_none(*hpdp))
156 		kmem_cache_free(cachep, new);
157 	else
158 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
159 #endif
160 	spin_unlock(&mm->page_table_lock);
161 	return 0;
162 }
163 
164 /*
165  * These macros define how to determine which level of the page table holds
166  * the hpdp.
167  */
168 #ifdef CONFIG_PPC_FSL_BOOK3E
169 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
170 #define HUGEPD_PUD_SHIFT PUD_SHIFT
171 #else
172 #define HUGEPD_PGD_SHIFT PUD_SHIFT
173 #define HUGEPD_PUD_SHIFT PMD_SHIFT
174 #endif
175 
176 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
177 {
178 	pgd_t *pg;
179 	pud_t *pu;
180 	pmd_t *pm;
181 	hugepd_t *hpdp = NULL;
182 	unsigned pshift = __ffs(sz);
183 	unsigned pdshift = PGDIR_SHIFT;
184 
185 	addr &= ~(sz-1);
186 
187 	pg = pgd_offset(mm, addr);
188 
189 	if (pshift >= HUGEPD_PGD_SHIFT) {
190 		hpdp = (hugepd_t *)pg;
191 	} else {
192 		pdshift = PUD_SHIFT;
193 		pu = pud_alloc(mm, pg, addr);
194 		if (pshift >= HUGEPD_PUD_SHIFT) {
195 			hpdp = (hugepd_t *)pu;
196 		} else {
197 			pdshift = PMD_SHIFT;
198 			pm = pmd_alloc(mm, pu, addr);
199 			hpdp = (hugepd_t *)pm;
200 		}
201 	}
202 
203 	if (!hpdp)
204 		return NULL;
205 
206 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
207 
208 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
209 		return NULL;
210 
211 	return hugepte_offset(hpdp, addr, pdshift);
212 }
213 
214 #ifdef CONFIG_PPC_FSL_BOOK3E
215 /* Build list of addresses of gigantic pages.  This function is used in early
216  * boot before the buddy or bootmem allocator is setup.
217  */
218 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
219 {
220 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
221 	int i;
222 
223 	if (addr == 0)
224 		return;
225 
226 	gpage_freearray[idx].nr_gpages = number_of_pages;
227 
228 	for (i = 0; i < number_of_pages; i++) {
229 		gpage_freearray[idx].gpage_list[i] = addr;
230 		addr += page_size;
231 	}
232 }
233 
234 /*
235  * Moves the gigantic page addresses from the temporary list to the
236  * huge_boot_pages list.
237  */
238 int alloc_bootmem_huge_page(struct hstate *hstate)
239 {
240 	struct huge_bootmem_page *m;
241 	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
242 	int nr_gpages = gpage_freearray[idx].nr_gpages;
243 
244 	if (nr_gpages == 0)
245 		return 0;
246 
247 #ifdef CONFIG_HIGHMEM
248 	/*
249 	 * If gpages can be in highmem we can't use the trick of storing the
250 	 * data structure in the page; allocate space for this
251 	 */
252 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
253 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
254 #else
255 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
256 #endif
257 
258 	list_add(&m->list, &huge_boot_pages);
259 	gpage_freearray[idx].nr_gpages = nr_gpages;
260 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
261 	m->hstate = hstate;
262 
263 	return 1;
264 }
265 /*
266  * Scan the command line hugepagesz= options for gigantic pages; store those in
267  * a list that we use to allocate the memory once all options are parsed.
268  */
269 
270 unsigned long gpage_npages[MMU_PAGE_COUNT];
271 
272 static int __init do_gpage_early_setup(char *param, char *val)
273 {
274 	static phys_addr_t size;
275 	unsigned long npages;
276 
277 	/*
278 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
279 	 * use the size variable to keep track of whether or not this was done
280 	 * properly and skip over instances where it is incorrect.  Other
281 	 * command-line parsing code will issue warnings, so we don't need to.
282 	 *
283 	 */
284 	if ((strcmp(param, "default_hugepagesz") == 0) ||
285 	    (strcmp(param, "hugepagesz") == 0)) {
286 		size = memparse(val, NULL);
287 	} else if (strcmp(param, "hugepages") == 0) {
288 		if (size != 0) {
289 			if (sscanf(val, "%lu", &npages) <= 0)
290 				npages = 0;
291 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
292 			size = 0;
293 		}
294 	}
295 	return 0;
296 }
297 
298 
299 /*
300  * This function allocates physical space for pages that are larger than the
301  * buddy allocator can handle.  We want to allocate these in highmem because
302  * the amount of lowmem is limited.  This means that this function MUST be
303  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
304  * allocate to grab highmem.
305  */
306 void __init reserve_hugetlb_gpages(void)
307 {
308 	static __initdata char cmdline[COMMAND_LINE_SIZE];
309 	phys_addr_t size, base;
310 	int i;
311 
312 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
313 	parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
314 
315 	/*
316 	 * Walk gpage list in reverse, allocating larger page sizes first.
317 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
318 	 * When we reach the point in the list where pages are no longer
319 	 * considered gpages, we're done.
320 	 */
321 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
322 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
323 			continue;
324 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
325 			break;
326 
327 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
328 		base = memblock_alloc_base(size * gpage_npages[i], size,
329 					   MEMBLOCK_ALLOC_ANYWHERE);
330 		add_gpage(base, size, gpage_npages[i]);
331 	}
332 }
333 
334 #else /* !PPC_FSL_BOOK3E */
335 
336 /* Build list of addresses of gigantic pages.  This function is used in early
337  * boot before the buddy or bootmem allocator is setup.
338  */
339 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
340 {
341 	if (!addr)
342 		return;
343 	while (number_of_pages > 0) {
344 		gpage_freearray[nr_gpages] = addr;
345 		nr_gpages++;
346 		number_of_pages--;
347 		addr += page_size;
348 	}
349 }
350 
351 /* Moves the gigantic page addresses from the temporary list to the
352  * huge_boot_pages list.
353  */
354 int alloc_bootmem_huge_page(struct hstate *hstate)
355 {
356 	struct huge_bootmem_page *m;
357 	if (nr_gpages == 0)
358 		return 0;
359 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
360 	gpage_freearray[nr_gpages] = 0;
361 	list_add(&m->list, &huge_boot_pages);
362 	m->hstate = hstate;
363 	return 1;
364 }
365 #endif
366 
367 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
368 {
369 	return 0;
370 }
371 
372 #ifdef CONFIG_PPC_FSL_BOOK3E
373 #define HUGEPD_FREELIST_SIZE \
374 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
375 
376 struct hugepd_freelist {
377 	struct rcu_head	rcu;
378 	unsigned int index;
379 	void *ptes[0];
380 };
381 
382 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
383 
384 static void hugepd_free_rcu_callback(struct rcu_head *head)
385 {
386 	struct hugepd_freelist *batch =
387 		container_of(head, struct hugepd_freelist, rcu);
388 	unsigned int i;
389 
390 	for (i = 0; i < batch->index; i++)
391 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
392 
393 	free_page((unsigned long)batch);
394 }
395 
396 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
397 {
398 	struct hugepd_freelist **batchp;
399 
400 	batchp = &__get_cpu_var(hugepd_freelist_cur);
401 
402 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
403 	    cpumask_equal(mm_cpumask(tlb->mm),
404 			  cpumask_of(smp_processor_id()))) {
405 		kmem_cache_free(hugepte_cache, hugepte);
406 		return;
407 	}
408 
409 	if (*batchp == NULL) {
410 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
411 		(*batchp)->index = 0;
412 	}
413 
414 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
415 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
416 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
417 		*batchp = NULL;
418 	}
419 }
420 #endif
421 
422 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
423 			      unsigned long start, unsigned long end,
424 			      unsigned long floor, unsigned long ceiling)
425 {
426 	pte_t *hugepte = hugepd_page(*hpdp);
427 	int i;
428 
429 	unsigned long pdmask = ~((1UL << pdshift) - 1);
430 	unsigned int num_hugepd = 1;
431 
432 #ifdef CONFIG_PPC_FSL_BOOK3E
433 	/* Note: On fsl the hpdp may be the first of several */
434 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
435 #else
436 	unsigned int shift = hugepd_shift(*hpdp);
437 #endif
438 
439 	start &= pdmask;
440 	if (start < floor)
441 		return;
442 	if (ceiling) {
443 		ceiling &= pdmask;
444 		if (! ceiling)
445 			return;
446 	}
447 	if (end - 1 > ceiling - 1)
448 		return;
449 
450 	for (i = 0; i < num_hugepd; i++, hpdp++)
451 		hpdp->pd = 0;
452 
453 	tlb->need_flush = 1;
454 
455 #ifdef CONFIG_PPC_FSL_BOOK3E
456 	hugepd_free(tlb, hugepte);
457 #else
458 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
459 #endif
460 }
461 
462 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
463 				   unsigned long addr, unsigned long end,
464 				   unsigned long floor, unsigned long ceiling)
465 {
466 	pmd_t *pmd;
467 	unsigned long next;
468 	unsigned long start;
469 
470 	start = addr;
471 	do {
472 		pmd = pmd_offset(pud, addr);
473 		next = pmd_addr_end(addr, end);
474 		if (pmd_none(*pmd))
475 			continue;
476 #ifdef CONFIG_PPC_FSL_BOOK3E
477 		/*
478 		 * Increment next by the size of the huge mapping since
479 		 * there may be more than one entry at this level for a
480 		 * single hugepage, but all of them point to
481 		 * the same kmem cache that holds the hugepte.
482 		 */
483 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
484 #endif
485 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
486 				  addr, next, floor, ceiling);
487 	} while (addr = next, addr != end);
488 
489 	start &= PUD_MASK;
490 	if (start < floor)
491 		return;
492 	if (ceiling) {
493 		ceiling &= PUD_MASK;
494 		if (!ceiling)
495 			return;
496 	}
497 	if (end - 1 > ceiling - 1)
498 		return;
499 
500 	pmd = pmd_offset(pud, start);
501 	pud_clear(pud);
502 	pmd_free_tlb(tlb, pmd, start);
503 }
504 
505 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
506 				   unsigned long addr, unsigned long end,
507 				   unsigned long floor, unsigned long ceiling)
508 {
509 	pud_t *pud;
510 	unsigned long next;
511 	unsigned long start;
512 
513 	start = addr;
514 	do {
515 		pud = pud_offset(pgd, addr);
516 		next = pud_addr_end(addr, end);
517 		if (!is_hugepd(pud)) {
518 			if (pud_none_or_clear_bad(pud))
519 				continue;
520 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
521 					       ceiling);
522 		} else {
523 #ifdef CONFIG_PPC_FSL_BOOK3E
524 			/*
525 			 * Increment next by the size of the huge mapping since
526 			 * there may be more than one entry at this level for a
527 			 * single hugepage, but all of them point to
528 			 * the same kmem cache that holds the hugepte.
529 			 */
530 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
531 #endif
532 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
533 					  addr, next, floor, ceiling);
534 		}
535 	} while (addr = next, addr != end);
536 
537 	start &= PGDIR_MASK;
538 	if (start < floor)
539 		return;
540 	if (ceiling) {
541 		ceiling &= PGDIR_MASK;
542 		if (!ceiling)
543 			return;
544 	}
545 	if (end - 1 > ceiling - 1)
546 		return;
547 
548 	pud = pud_offset(pgd, start);
549 	pgd_clear(pgd);
550 	pud_free_tlb(tlb, pud, start);
551 }
552 
553 /*
554  * This function frees user-level page tables of a process.
555  *
556  * Must be called with pagetable lock held.
557  */
558 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
559 			    unsigned long addr, unsigned long end,
560 			    unsigned long floor, unsigned long ceiling)
561 {
562 	pgd_t *pgd;
563 	unsigned long next;
564 
565 	/*
566 	 * Because there are a number of different possible pagetable
567 	 * layouts for hugepage ranges, we limit knowledge of how
568 	 * things should be laid out to the allocation path
569 	 * (huge_pte_alloc(), above).  Everything else works out the
570 	 * structure as it goes from information in the hugepd
571 	 * pointers.  That means that we can't here use the
572 	 * optimization used in the normal page free_pgd_range(), of
573 	 * checking whether we're actually covering a large enough
574 	 * range to have to do anything at the top level of the walk
575 	 * instead of at the bottom.
576 	 *
577 	 * To make sense of this, you should probably go read the big
578 	 * block comment at the top of the normal free_pgd_range(),
579 	 * too.
580 	 */
581 
582 	do {
583 		next = pgd_addr_end(addr, end);
584 		pgd = pgd_offset(tlb->mm, addr);
585 		if (!is_hugepd(pgd)) {
586 			if (pgd_none_or_clear_bad(pgd))
587 				continue;
588 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
589 		} else {
590 #ifdef CONFIG_PPC_FSL_BOOK3E
591 			/*
592 			 * Increment next by the size of the huge mapping since
593 			 * there may be more than one entry at the pgd level
594 			 * for a single hugepage, but all of them point to the
595 			 * same kmem cache that holds the hugepte.
596 			 */
597 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
598 #endif
599 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
600 					  addr, next, floor, ceiling);
601 		}
602 	} while (addr = next, addr != end);
603 }
604 
605 struct page *
606 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
607 {
608 	pte_t *ptep;
609 	struct page *page;
610 	unsigned shift;
611 	unsigned long mask;
612 
613 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
614 
615 	/* Verify it is a huge page else bail. */
616 	if (!ptep || !shift)
617 		return ERR_PTR(-EINVAL);
618 
619 	mask = (1UL << shift) - 1;
620 	page = pte_page(*ptep);
621 	if (page)
622 		page += (address & mask) / PAGE_SIZE;
623 
624 	return page;
625 }
626 
627 int pmd_huge(pmd_t pmd)
628 {
629 	return 0;
630 }
631 
632 int pud_huge(pud_t pud)
633 {
634 	return 0;
635 }
636 
637 struct page *
638 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
639 		pmd_t *pmd, int write)
640 {
641 	BUG();
642 	return NULL;
643 }
644 
645 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
646 		       unsigned long end, int write, struct page **pages, int *nr)
647 {
648 	unsigned long mask;
649 	unsigned long pte_end;
650 	struct page *head, *page, *tail;
651 	pte_t pte;
652 	int refs;
653 
654 	pte_end = (addr + sz) & ~(sz-1);
655 	if (pte_end < end)
656 		end = pte_end;
657 
658 	pte = *ptep;
659 	mask = _PAGE_PRESENT | _PAGE_USER;
660 	if (write)
661 		mask |= _PAGE_RW;
662 
663 	if ((pte_val(pte) & mask) != mask)
664 		return 0;
665 
666 	/* hugepages are never "special" */
667 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
668 
669 	refs = 0;
670 	head = pte_page(pte);
671 
672 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
673 	tail = page;
674 	do {
675 		VM_BUG_ON(compound_head(page) != head);
676 		pages[*nr] = page;
677 		(*nr)++;
678 		page++;
679 		refs++;
680 	} while (addr += PAGE_SIZE, addr != end);
681 
682 	if (!page_cache_add_speculative(head, refs)) {
683 		*nr -= refs;
684 		return 0;
685 	}
686 
687 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
688 		/* Could be optimized better */
689 		*nr -= refs;
690 		while (refs--)
691 			put_page(head);
692 		return 0;
693 	}
694 
695 	/*
696 	 * Any tail page need their mapcount reference taken before we
697 	 * return.
698 	 */
699 	while (refs--) {
700 		if (PageTail(tail))
701 			get_huge_page_tail(tail);
702 		tail++;
703 	}
704 
705 	return 1;
706 }
707 
708 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
709 				      unsigned long sz)
710 {
711 	unsigned long __boundary = (addr + sz) & ~(sz-1);
712 	return (__boundary - 1 < end - 1) ? __boundary : end;
713 }
714 
715 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
716 	       unsigned long addr, unsigned long end,
717 	       int write, struct page **pages, int *nr)
718 {
719 	pte_t *ptep;
720 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
721 	unsigned long next;
722 
723 	ptep = hugepte_offset(hugepd, addr, pdshift);
724 	do {
725 		next = hugepte_addr_end(addr, end, sz);
726 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
727 			return 0;
728 	} while (ptep++, addr = next, addr != end);
729 
730 	return 1;
731 }
732 
733 #ifdef CONFIG_PPC_MM_SLICES
734 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
735 					unsigned long len, unsigned long pgoff,
736 					unsigned long flags)
737 {
738 	struct hstate *hstate = hstate_file(file);
739 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
740 
741 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
742 }
743 #endif
744 
745 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
746 {
747 #ifdef CONFIG_PPC_MM_SLICES
748 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
749 
750 	return 1UL << mmu_psize_to_shift(psize);
751 #else
752 	if (!is_vm_hugetlb_page(vma))
753 		return PAGE_SIZE;
754 
755 	return huge_page_size(hstate_vma(vma));
756 #endif
757 }
758 
759 static inline bool is_power_of_4(unsigned long x)
760 {
761 	if (is_power_of_2(x))
762 		return (__ilog2(x) % 2) ? false : true;
763 	return false;
764 }
765 
766 static int __init add_huge_page_size(unsigned long long size)
767 {
768 	int shift = __ffs(size);
769 	int mmu_psize;
770 
771 	/* Check that it is a page size supported by the hardware and
772 	 * that it fits within pagetable and slice limits. */
773 #ifdef CONFIG_PPC_FSL_BOOK3E
774 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
775 		return -EINVAL;
776 #else
777 	if (!is_power_of_2(size)
778 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
779 		return -EINVAL;
780 #endif
781 
782 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
783 		return -EINVAL;
784 
785 #ifdef CONFIG_SPU_FS_64K_LS
786 	/* Disable support for 64K huge pages when 64K SPU local store
787 	 * support is enabled as the current implementation conflicts.
788 	 */
789 	if (shift == PAGE_SHIFT_64K)
790 		return -EINVAL;
791 #endif /* CONFIG_SPU_FS_64K_LS */
792 
793 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
794 
795 	/* Return if huge page size has already been setup */
796 	if (size_to_hstate(size))
797 		return 0;
798 
799 	hugetlb_add_hstate(shift - PAGE_SHIFT);
800 
801 	return 0;
802 }
803 
804 static int __init hugepage_setup_sz(char *str)
805 {
806 	unsigned long long size;
807 
808 	size = memparse(str, &str);
809 
810 	if (add_huge_page_size(size) != 0)
811 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
812 
813 	return 1;
814 }
815 __setup("hugepagesz=", hugepage_setup_sz);
816 
817 #ifdef CONFIG_PPC_FSL_BOOK3E
818 struct kmem_cache *hugepte_cache;
819 static int __init hugetlbpage_init(void)
820 {
821 	int psize;
822 
823 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
824 		unsigned shift;
825 
826 		if (!mmu_psize_defs[psize].shift)
827 			continue;
828 
829 		shift = mmu_psize_to_shift(psize);
830 
831 		/* Don't treat normal page sizes as huge... */
832 		if (shift != PAGE_SHIFT)
833 			if (add_huge_page_size(1ULL << shift) < 0)
834 				continue;
835 	}
836 
837 	/*
838 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
839 	 * size information encoded in them, so align them to allow this
840 	 */
841 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
842 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
843 	if (hugepte_cache == NULL)
844 		panic("%s: Unable to create kmem cache for hugeptes\n",
845 		      __func__);
846 
847 	/* Default hpage size = 4M */
848 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
849 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
850 	else
851 		panic("%s: Unable to set default huge page size\n", __func__);
852 
853 
854 	return 0;
855 }
856 #else
857 static int __init hugetlbpage_init(void)
858 {
859 	int psize;
860 
861 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
862 		return -ENODEV;
863 
864 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
865 		unsigned shift;
866 		unsigned pdshift;
867 
868 		if (!mmu_psize_defs[psize].shift)
869 			continue;
870 
871 		shift = mmu_psize_to_shift(psize);
872 
873 		if (add_huge_page_size(1ULL << shift) < 0)
874 			continue;
875 
876 		if (shift < PMD_SHIFT)
877 			pdshift = PMD_SHIFT;
878 		else if (shift < PUD_SHIFT)
879 			pdshift = PUD_SHIFT;
880 		else
881 			pdshift = PGDIR_SHIFT;
882 
883 		pgtable_cache_add(pdshift - shift, NULL);
884 		if (!PGT_CACHE(pdshift - shift))
885 			panic("hugetlbpage_init(): could not create "
886 			      "pgtable cache for %d bit pagesize\n", shift);
887 	}
888 
889 	/* Set default large page size. Currently, we pick 16M or 1M
890 	 * depending on what is available
891 	 */
892 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
893 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
894 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
895 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
896 
897 	return 0;
898 }
899 #endif
900 module_init(hugetlbpage_init);
901 
902 void flush_dcache_icache_hugepage(struct page *page)
903 {
904 	int i;
905 	void *start;
906 
907 	BUG_ON(!PageCompound(page));
908 
909 	for (i = 0; i < (1UL << compound_order(page)); i++) {
910 		if (!PageHighMem(page)) {
911 			__flush_dcache_icache(page_address(page+i));
912 		} else {
913 			start = kmap_atomic(page+i);
914 			__flush_dcache_icache(start);
915 			kunmap_atomic(start);
916 		}
917 	}
918 }
919