1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/swap.h> 20 #include <linux/swapops.h> 21 #include <linux/kmemleak.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 bool hugetlb_disabled = false; 30 31 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 32 33 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *))) 34 35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 36 { 37 /* 38 * Only called for hugetlbfs pages, hence can ignore THP and the 39 * irq disabled walk. 40 */ 41 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 42 } 43 44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 45 unsigned long address, unsigned int pdshift, 46 unsigned int pshift, spinlock_t *ptl) 47 { 48 struct kmem_cache *cachep; 49 pte_t *new; 50 int i; 51 int num_hugepd; 52 53 if (pshift >= pdshift) { 54 cachep = PGT_CACHE(PTE_T_ORDER); 55 num_hugepd = 1 << (pshift - pdshift); 56 new = NULL; 57 } else if (IS_ENABLED(CONFIG_PPC_8xx)) { 58 cachep = NULL; 59 num_hugepd = 1; 60 new = pte_alloc_one(mm); 61 } else { 62 cachep = PGT_CACHE(pdshift - pshift); 63 num_hugepd = 1; 64 new = NULL; 65 } 66 67 if (!cachep && !new) { 68 WARN_ONCE(1, "No page table cache created for hugetlb tables"); 69 return -ENOMEM; 70 } 71 72 if (cachep) 73 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 74 75 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 76 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 77 78 if (!new) 79 return -ENOMEM; 80 81 /* 82 * Make sure other cpus find the hugepd set only after a 83 * properly initialized page table is visible to them. 84 * For more details look for comment in __pte_alloc(). 85 */ 86 smp_wmb(); 87 88 spin_lock(ptl); 89 /* 90 * We have multiple higher-level entries that point to the same 91 * actual pte location. Fill in each as we go and backtrack on error. 92 * We need all of these so the DTLB pgtable walk code can find the 93 * right higher-level entry without knowing if it's a hugepage or not. 94 */ 95 for (i = 0; i < num_hugepd; i++, hpdp++) { 96 if (unlikely(!hugepd_none(*hpdp))) 97 break; 98 hugepd_populate(hpdp, new, pshift); 99 } 100 /* If we bailed from the for loop early, an error occurred, clean up */ 101 if (i < num_hugepd) { 102 for (i = i - 1 ; i >= 0; i--, hpdp--) 103 *hpdp = __hugepd(0); 104 if (cachep) 105 kmem_cache_free(cachep, new); 106 else 107 pte_free(mm, new); 108 } else { 109 kmemleak_ignore(new); 110 } 111 spin_unlock(ptl); 112 return 0; 113 } 114 115 /* 116 * At this point we do the placement change only for BOOK3S 64. This would 117 * possibly work on other subarchs. 118 */ 119 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 120 { 121 pgd_t *pg; 122 pud_t *pu; 123 pmd_t *pm; 124 hugepd_t *hpdp = NULL; 125 unsigned pshift = __ffs(sz); 126 unsigned pdshift = PGDIR_SHIFT; 127 spinlock_t *ptl; 128 129 addr &= ~(sz-1); 130 pg = pgd_offset(mm, addr); 131 132 #ifdef CONFIG_PPC_BOOK3S_64 133 if (pshift == PGDIR_SHIFT) 134 /* 16GB huge page */ 135 return (pte_t *) pg; 136 else if (pshift > PUD_SHIFT) { 137 /* 138 * We need to use hugepd table 139 */ 140 ptl = &mm->page_table_lock; 141 hpdp = (hugepd_t *)pg; 142 } else { 143 pdshift = PUD_SHIFT; 144 pu = pud_alloc(mm, pg, addr); 145 if (!pu) 146 return NULL; 147 if (pshift == PUD_SHIFT) 148 return (pte_t *)pu; 149 else if (pshift > PMD_SHIFT) { 150 ptl = pud_lockptr(mm, pu); 151 hpdp = (hugepd_t *)pu; 152 } else { 153 pdshift = PMD_SHIFT; 154 pm = pmd_alloc(mm, pu, addr); 155 if (!pm) 156 return NULL; 157 if (pshift == PMD_SHIFT) 158 /* 16MB hugepage */ 159 return (pte_t *)pm; 160 else { 161 ptl = pmd_lockptr(mm, pm); 162 hpdp = (hugepd_t *)pm; 163 } 164 } 165 } 166 #else 167 if (pshift >= PGDIR_SHIFT) { 168 ptl = &mm->page_table_lock; 169 hpdp = (hugepd_t *)pg; 170 } else { 171 pdshift = PUD_SHIFT; 172 pu = pud_alloc(mm, pg, addr); 173 if (!pu) 174 return NULL; 175 if (pshift >= PUD_SHIFT) { 176 ptl = pud_lockptr(mm, pu); 177 hpdp = (hugepd_t *)pu; 178 } else { 179 pdshift = PMD_SHIFT; 180 pm = pmd_alloc(mm, pu, addr); 181 if (!pm) 182 return NULL; 183 ptl = pmd_lockptr(mm, pm); 184 hpdp = (hugepd_t *)pm; 185 } 186 } 187 #endif 188 if (!hpdp) 189 return NULL; 190 191 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 192 193 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 194 pdshift, pshift, ptl)) 195 return NULL; 196 197 return hugepte_offset(*hpdp, addr, pdshift); 198 } 199 200 #ifdef CONFIG_PPC_BOOK3S_64 201 /* 202 * Tracks gpages after the device tree is scanned and before the 203 * huge_boot_pages list is ready on pseries. 204 */ 205 #define MAX_NUMBER_GPAGES 1024 206 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 207 __initdata static unsigned nr_gpages; 208 209 /* 210 * Build list of addresses of gigantic pages. This function is used in early 211 * boot before the buddy allocator is setup. 212 */ 213 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 214 { 215 if (!addr) 216 return; 217 while (number_of_pages > 0) { 218 gpage_freearray[nr_gpages] = addr; 219 nr_gpages++; 220 number_of_pages--; 221 addr += page_size; 222 } 223 } 224 225 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 226 { 227 struct huge_bootmem_page *m; 228 if (nr_gpages == 0) 229 return 0; 230 m = phys_to_virt(gpage_freearray[--nr_gpages]); 231 gpage_freearray[nr_gpages] = 0; 232 list_add(&m->list, &huge_boot_pages); 233 m->hstate = hstate; 234 return 1; 235 } 236 #endif 237 238 239 int __init alloc_bootmem_huge_page(struct hstate *h) 240 { 241 242 #ifdef CONFIG_PPC_BOOK3S_64 243 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 244 return pseries_alloc_bootmem_huge_page(h); 245 #endif 246 return __alloc_bootmem_huge_page(h); 247 } 248 249 #ifndef CONFIG_PPC_BOOK3S_64 250 #define HUGEPD_FREELIST_SIZE \ 251 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 252 253 struct hugepd_freelist { 254 struct rcu_head rcu; 255 unsigned int index; 256 void *ptes[0]; 257 }; 258 259 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 260 261 static void hugepd_free_rcu_callback(struct rcu_head *head) 262 { 263 struct hugepd_freelist *batch = 264 container_of(head, struct hugepd_freelist, rcu); 265 unsigned int i; 266 267 for (i = 0; i < batch->index; i++) 268 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); 269 270 free_page((unsigned long)batch); 271 } 272 273 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 274 { 275 struct hugepd_freelist **batchp; 276 277 batchp = &get_cpu_var(hugepd_freelist_cur); 278 279 if (atomic_read(&tlb->mm->mm_users) < 2 || 280 mm_is_thread_local(tlb->mm)) { 281 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); 282 put_cpu_var(hugepd_freelist_cur); 283 return; 284 } 285 286 if (*batchp == NULL) { 287 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 288 (*batchp)->index = 0; 289 } 290 291 (*batchp)->ptes[(*batchp)->index++] = hugepte; 292 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 293 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); 294 *batchp = NULL; 295 } 296 put_cpu_var(hugepd_freelist_cur); 297 } 298 #else 299 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 300 #endif 301 302 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 303 unsigned long start, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pte_t *hugepte = hugepd_page(*hpdp); 307 int i; 308 309 unsigned long pdmask = ~((1UL << pdshift) - 1); 310 unsigned int num_hugepd = 1; 311 unsigned int shift = hugepd_shift(*hpdp); 312 313 /* Note: On fsl the hpdp may be the first of several */ 314 if (shift > pdshift) 315 num_hugepd = 1 << (shift - pdshift); 316 317 start &= pdmask; 318 if (start < floor) 319 return; 320 if (ceiling) { 321 ceiling &= pdmask; 322 if (! ceiling) 323 return; 324 } 325 if (end - 1 > ceiling - 1) 326 return; 327 328 for (i = 0; i < num_hugepd; i++, hpdp++) 329 *hpdp = __hugepd(0); 330 331 if (shift >= pdshift) 332 hugepd_free(tlb, hugepte); 333 else if (IS_ENABLED(CONFIG_PPC_8xx)) 334 pgtable_free_tlb(tlb, hugepte, 0); 335 else 336 pgtable_free_tlb(tlb, hugepte, 337 get_hugepd_cache_index(pdshift - shift)); 338 } 339 340 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 341 unsigned long addr, unsigned long end, 342 unsigned long floor, unsigned long ceiling) 343 { 344 pmd_t *pmd; 345 unsigned long next; 346 unsigned long start; 347 348 start = addr; 349 do { 350 unsigned long more; 351 352 pmd = pmd_offset(pud, addr); 353 next = pmd_addr_end(addr, end); 354 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 355 /* 356 * if it is not hugepd pointer, we should already find 357 * it cleared. 358 */ 359 WARN_ON(!pmd_none_or_clear_bad(pmd)); 360 continue; 361 } 362 /* 363 * Increment next by the size of the huge mapping since 364 * there may be more than one entry at this level for a 365 * single hugepage, but all of them point to 366 * the same kmem cache that holds the hugepte. 367 */ 368 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 369 if (more > next) 370 next = more; 371 372 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 373 addr, next, floor, ceiling); 374 } while (addr = next, addr != end); 375 376 start &= PUD_MASK; 377 if (start < floor) 378 return; 379 if (ceiling) { 380 ceiling &= PUD_MASK; 381 if (!ceiling) 382 return; 383 } 384 if (end - 1 > ceiling - 1) 385 return; 386 387 pmd = pmd_offset(pud, start); 388 pud_clear(pud); 389 pmd_free_tlb(tlb, pmd, start); 390 mm_dec_nr_pmds(tlb->mm); 391 } 392 393 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 394 unsigned long addr, unsigned long end, 395 unsigned long floor, unsigned long ceiling) 396 { 397 pud_t *pud; 398 unsigned long next; 399 unsigned long start; 400 401 start = addr; 402 do { 403 pud = pud_offset(pgd, addr); 404 next = pud_addr_end(addr, end); 405 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 406 if (pud_none_or_clear_bad(pud)) 407 continue; 408 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 409 ceiling); 410 } else { 411 unsigned long more; 412 /* 413 * Increment next by the size of the huge mapping since 414 * there may be more than one entry at this level for a 415 * single hugepage, but all of them point to 416 * the same kmem cache that holds the hugepte. 417 */ 418 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 419 if (more > next) 420 next = more; 421 422 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 423 addr, next, floor, ceiling); 424 } 425 } while (addr = next, addr != end); 426 427 start &= PGDIR_MASK; 428 if (start < floor) 429 return; 430 if (ceiling) { 431 ceiling &= PGDIR_MASK; 432 if (!ceiling) 433 return; 434 } 435 if (end - 1 > ceiling - 1) 436 return; 437 438 pud = pud_offset(pgd, start); 439 pgd_clear(pgd); 440 pud_free_tlb(tlb, pud, start); 441 mm_dec_nr_puds(tlb->mm); 442 } 443 444 /* 445 * This function frees user-level page tables of a process. 446 */ 447 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 448 unsigned long addr, unsigned long end, 449 unsigned long floor, unsigned long ceiling) 450 { 451 pgd_t *pgd; 452 unsigned long next; 453 454 /* 455 * Because there are a number of different possible pagetable 456 * layouts for hugepage ranges, we limit knowledge of how 457 * things should be laid out to the allocation path 458 * (huge_pte_alloc(), above). Everything else works out the 459 * structure as it goes from information in the hugepd 460 * pointers. That means that we can't here use the 461 * optimization used in the normal page free_pgd_range(), of 462 * checking whether we're actually covering a large enough 463 * range to have to do anything at the top level of the walk 464 * instead of at the bottom. 465 * 466 * To make sense of this, you should probably go read the big 467 * block comment at the top of the normal free_pgd_range(), 468 * too. 469 */ 470 471 do { 472 next = pgd_addr_end(addr, end); 473 pgd = pgd_offset(tlb->mm, addr); 474 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 475 if (pgd_none_or_clear_bad(pgd)) 476 continue; 477 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 478 } else { 479 unsigned long more; 480 /* 481 * Increment next by the size of the huge mapping since 482 * there may be more than one entry at the pgd level 483 * for a single hugepage, but all of them point to the 484 * same kmem cache that holds the hugepte. 485 */ 486 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 487 if (more > next) 488 next = more; 489 490 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 491 addr, next, floor, ceiling); 492 } 493 } while (addr = next, addr != end); 494 } 495 496 struct page *follow_huge_pd(struct vm_area_struct *vma, 497 unsigned long address, hugepd_t hpd, 498 int flags, int pdshift) 499 { 500 pte_t *ptep; 501 spinlock_t *ptl; 502 struct page *page = NULL; 503 unsigned long mask; 504 int shift = hugepd_shift(hpd); 505 struct mm_struct *mm = vma->vm_mm; 506 507 retry: 508 /* 509 * hugepage directory entries are protected by mm->page_table_lock 510 * Use this instead of huge_pte_lockptr 511 */ 512 ptl = &mm->page_table_lock; 513 spin_lock(ptl); 514 515 ptep = hugepte_offset(hpd, address, pdshift); 516 if (pte_present(*ptep)) { 517 mask = (1UL << shift) - 1; 518 page = pte_page(*ptep); 519 page += ((address & mask) >> PAGE_SHIFT); 520 if (flags & FOLL_GET) 521 get_page(page); 522 } else { 523 if (is_hugetlb_entry_migration(*ptep)) { 524 spin_unlock(ptl); 525 __migration_entry_wait(mm, ptep, ptl); 526 goto retry; 527 } 528 } 529 spin_unlock(ptl); 530 return page; 531 } 532 533 #ifdef CONFIG_PPC_MM_SLICES 534 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 535 unsigned long len, unsigned long pgoff, 536 unsigned long flags) 537 { 538 struct hstate *hstate = hstate_file(file); 539 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 540 541 #ifdef CONFIG_PPC_RADIX_MMU 542 if (radix_enabled()) 543 return radix__hugetlb_get_unmapped_area(file, addr, len, 544 pgoff, flags); 545 #endif 546 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 547 } 548 #endif 549 550 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 551 { 552 /* With radix we don't use slice, so derive it from vma*/ 553 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) { 554 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 555 556 return 1UL << mmu_psize_to_shift(psize); 557 } 558 return vma_kernel_pagesize(vma); 559 } 560 561 static int __init add_huge_page_size(unsigned long long size) 562 { 563 int shift = __ffs(size); 564 int mmu_psize; 565 566 /* Check that it is a page size supported by the hardware and 567 * that it fits within pagetable and slice limits. */ 568 if (size <= PAGE_SIZE || !is_power_of_2(size)) 569 return -EINVAL; 570 571 mmu_psize = check_and_get_huge_psize(shift); 572 if (mmu_psize < 0) 573 return -EINVAL; 574 575 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 576 577 /* Return if huge page size has already been setup */ 578 if (size_to_hstate(size)) 579 return 0; 580 581 hugetlb_add_hstate(shift - PAGE_SHIFT); 582 583 return 0; 584 } 585 586 static int __init hugepage_setup_sz(char *str) 587 { 588 unsigned long long size; 589 590 size = memparse(str, &str); 591 592 if (add_huge_page_size(size) != 0) { 593 hugetlb_bad_size(); 594 pr_err("Invalid huge page size specified(%llu)\n", size); 595 } 596 597 return 1; 598 } 599 __setup("hugepagesz=", hugepage_setup_sz); 600 601 static int __init hugetlbpage_init(void) 602 { 603 bool configured = false; 604 int psize; 605 606 if (hugetlb_disabled) { 607 pr_info("HugeTLB support is disabled!\n"); 608 return 0; 609 } 610 611 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() && 612 !mmu_has_feature(MMU_FTR_16M_PAGE)) 613 return -ENODEV; 614 615 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 616 unsigned shift; 617 unsigned pdshift; 618 619 if (!mmu_psize_defs[psize].shift) 620 continue; 621 622 shift = mmu_psize_to_shift(psize); 623 624 #ifdef CONFIG_PPC_BOOK3S_64 625 if (shift > PGDIR_SHIFT) 626 continue; 627 else if (shift > PUD_SHIFT) 628 pdshift = PGDIR_SHIFT; 629 else if (shift > PMD_SHIFT) 630 pdshift = PUD_SHIFT; 631 else 632 pdshift = PMD_SHIFT; 633 #else 634 if (shift < PUD_SHIFT) 635 pdshift = PMD_SHIFT; 636 else if (shift < PGDIR_SHIFT) 637 pdshift = PUD_SHIFT; 638 else 639 pdshift = PGDIR_SHIFT; 640 #endif 641 642 if (add_huge_page_size(1ULL << shift) < 0) 643 continue; 644 /* 645 * if we have pdshift and shift value same, we don't 646 * use pgt cache for hugepd. 647 */ 648 if (pdshift > shift) { 649 if (!IS_ENABLED(CONFIG_PPC_8xx)) 650 pgtable_cache_add(pdshift - shift); 651 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || 652 IS_ENABLED(CONFIG_PPC_8xx)) { 653 pgtable_cache_add(PTE_T_ORDER); 654 } 655 656 configured = true; 657 } 658 659 if (configured) { 660 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) 661 hugetlbpage_init_default(); 662 } else 663 pr_info("Failed to initialize. Disabling HugeTLB"); 664 665 return 0; 666 } 667 668 arch_initcall(hugetlbpage_init); 669 670 void flush_dcache_icache_hugepage(struct page *page) 671 { 672 int i; 673 void *start; 674 675 BUG_ON(!PageCompound(page)); 676 677 for (i = 0; i < compound_nr(page); i++) { 678 if (!PageHighMem(page)) { 679 __flush_dcache_icache(page_address(page+i)); 680 } else { 681 start = kmap_atomic(page+i); 682 __flush_dcache_icache(start); 683 kunmap_atomic(start); 684 } 685 } 686 } 687