1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/swap.h> 20 #include <linux/swapops.h> 21 #include <linux/kmemleak.h> 22 #include <asm/pgalloc.h> 23 #include <asm/tlb.h> 24 #include <asm/setup.h> 25 #include <asm/hugetlb.h> 26 #include <asm/pte-walk.h> 27 #include <asm/firmware.h> 28 29 bool hugetlb_disabled = false; 30 31 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 32 33 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \ 34 __builtin_ffs(sizeof(void *))) 35 36 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 37 { 38 /* 39 * Only called for hugetlbfs pages, hence can ignore THP and the 40 * irq disabled walk. 41 */ 42 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 43 } 44 45 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 46 unsigned long address, unsigned int pdshift, 47 unsigned int pshift, spinlock_t *ptl) 48 { 49 struct kmem_cache *cachep; 50 pte_t *new; 51 int i; 52 int num_hugepd; 53 54 if (pshift >= pdshift) { 55 cachep = PGT_CACHE(PTE_T_ORDER); 56 num_hugepd = 1 << (pshift - pdshift); 57 } else { 58 cachep = PGT_CACHE(pdshift - pshift); 59 num_hugepd = 1; 60 } 61 62 if (!cachep) { 63 WARN_ONCE(1, "No page table cache created for hugetlb tables"); 64 return -ENOMEM; 65 } 66 67 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 68 69 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 70 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 71 72 if (!new) 73 return -ENOMEM; 74 75 /* 76 * Make sure other cpus find the hugepd set only after a 77 * properly initialized page table is visible to them. 78 * For more details look for comment in __pte_alloc(). 79 */ 80 smp_wmb(); 81 82 spin_lock(ptl); 83 /* 84 * We have multiple higher-level entries that point to the same 85 * actual pte location. Fill in each as we go and backtrack on error. 86 * We need all of these so the DTLB pgtable walk code can find the 87 * right higher-level entry without knowing if it's a hugepage or not. 88 */ 89 for (i = 0; i < num_hugepd; i++, hpdp++) { 90 if (unlikely(!hugepd_none(*hpdp))) 91 break; 92 hugepd_populate(hpdp, new, pshift); 93 } 94 /* If we bailed from the for loop early, an error occurred, clean up */ 95 if (i < num_hugepd) { 96 for (i = i - 1 ; i >= 0; i--, hpdp--) 97 *hpdp = __hugepd(0); 98 kmem_cache_free(cachep, new); 99 } else { 100 kmemleak_ignore(new); 101 } 102 spin_unlock(ptl); 103 return 0; 104 } 105 106 /* 107 * At this point we do the placement change only for BOOK3S 64. This would 108 * possibly work on other subarchs. 109 */ 110 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 111 unsigned long addr, unsigned long sz) 112 { 113 pgd_t *pg; 114 p4d_t *p4; 115 pud_t *pu; 116 pmd_t *pm; 117 hugepd_t *hpdp = NULL; 118 unsigned pshift = __ffs(sz); 119 unsigned pdshift = PGDIR_SHIFT; 120 spinlock_t *ptl; 121 122 addr &= ~(sz-1); 123 pg = pgd_offset(mm, addr); 124 p4 = p4d_offset(pg, addr); 125 126 #ifdef CONFIG_PPC_BOOK3S_64 127 if (pshift == PGDIR_SHIFT) 128 /* 16GB huge page */ 129 return (pte_t *) p4; 130 else if (pshift > PUD_SHIFT) { 131 /* 132 * We need to use hugepd table 133 */ 134 ptl = &mm->page_table_lock; 135 hpdp = (hugepd_t *)p4; 136 } else { 137 pdshift = PUD_SHIFT; 138 pu = pud_alloc(mm, p4, addr); 139 if (!pu) 140 return NULL; 141 if (pshift == PUD_SHIFT) 142 return (pte_t *)pu; 143 else if (pshift > PMD_SHIFT) { 144 ptl = pud_lockptr(mm, pu); 145 hpdp = (hugepd_t *)pu; 146 } else { 147 pdshift = PMD_SHIFT; 148 pm = pmd_alloc(mm, pu, addr); 149 if (!pm) 150 return NULL; 151 if (pshift == PMD_SHIFT) 152 /* 16MB hugepage */ 153 return (pte_t *)pm; 154 else { 155 ptl = pmd_lockptr(mm, pm); 156 hpdp = (hugepd_t *)pm; 157 } 158 } 159 } 160 #else 161 if (pshift >= PGDIR_SHIFT) { 162 ptl = &mm->page_table_lock; 163 hpdp = (hugepd_t *)p4; 164 } else { 165 pdshift = PUD_SHIFT; 166 pu = pud_alloc(mm, p4, addr); 167 if (!pu) 168 return NULL; 169 if (pshift >= PUD_SHIFT) { 170 ptl = pud_lockptr(mm, pu); 171 hpdp = (hugepd_t *)pu; 172 } else { 173 pdshift = PMD_SHIFT; 174 pm = pmd_alloc(mm, pu, addr); 175 if (!pm) 176 return NULL; 177 ptl = pmd_lockptr(mm, pm); 178 hpdp = (hugepd_t *)pm; 179 } 180 } 181 #endif 182 if (!hpdp) 183 return NULL; 184 185 if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT) 186 return pte_alloc_map(mm, (pmd_t *)hpdp, addr); 187 188 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 189 190 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 191 pdshift, pshift, ptl)) 192 return NULL; 193 194 return hugepte_offset(*hpdp, addr, pdshift); 195 } 196 197 #ifdef CONFIG_PPC_BOOK3S_64 198 /* 199 * Tracks gpages after the device tree is scanned and before the 200 * huge_boot_pages list is ready on pseries. 201 */ 202 #define MAX_NUMBER_GPAGES 1024 203 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 204 __initdata static unsigned nr_gpages; 205 206 /* 207 * Build list of addresses of gigantic pages. This function is used in early 208 * boot before the buddy allocator is setup. 209 */ 210 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 211 { 212 if (!addr) 213 return; 214 while (number_of_pages > 0) { 215 gpage_freearray[nr_gpages] = addr; 216 nr_gpages++; 217 number_of_pages--; 218 addr += page_size; 219 } 220 } 221 222 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 223 { 224 struct huge_bootmem_page *m; 225 if (nr_gpages == 0) 226 return 0; 227 m = phys_to_virt(gpage_freearray[--nr_gpages]); 228 gpage_freearray[nr_gpages] = 0; 229 list_add(&m->list, &huge_boot_pages); 230 m->hstate = hstate; 231 return 1; 232 } 233 234 bool __init hugetlb_node_alloc_supported(void) 235 { 236 return false; 237 } 238 #endif 239 240 241 int __init alloc_bootmem_huge_page(struct hstate *h, int nid) 242 { 243 244 #ifdef CONFIG_PPC_BOOK3S_64 245 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 246 return pseries_alloc_bootmem_huge_page(h); 247 #endif 248 return __alloc_bootmem_huge_page(h, nid); 249 } 250 251 #ifndef CONFIG_PPC_BOOK3S_64 252 #define HUGEPD_FREELIST_SIZE \ 253 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 254 255 struct hugepd_freelist { 256 struct rcu_head rcu; 257 unsigned int index; 258 void *ptes[]; 259 }; 260 261 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 262 263 static void hugepd_free_rcu_callback(struct rcu_head *head) 264 { 265 struct hugepd_freelist *batch = 266 container_of(head, struct hugepd_freelist, rcu); 267 unsigned int i; 268 269 for (i = 0; i < batch->index; i++) 270 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); 271 272 free_page((unsigned long)batch); 273 } 274 275 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 276 { 277 struct hugepd_freelist **batchp; 278 279 batchp = &get_cpu_var(hugepd_freelist_cur); 280 281 if (atomic_read(&tlb->mm->mm_users) < 2 || 282 mm_is_thread_local(tlb->mm)) { 283 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); 284 put_cpu_var(hugepd_freelist_cur); 285 return; 286 } 287 288 if (*batchp == NULL) { 289 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 290 (*batchp)->index = 0; 291 } 292 293 (*batchp)->ptes[(*batchp)->index++] = hugepte; 294 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 295 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); 296 *batchp = NULL; 297 } 298 put_cpu_var(hugepd_freelist_cur); 299 } 300 #else 301 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 302 #endif 303 304 /* Return true when the entry to be freed maps more than the area being freed */ 305 static bool range_is_outside_limits(unsigned long start, unsigned long end, 306 unsigned long floor, unsigned long ceiling, 307 unsigned long mask) 308 { 309 if ((start & mask) < floor) 310 return true; 311 if (ceiling) { 312 ceiling &= mask; 313 if (!ceiling) 314 return true; 315 } 316 return end - 1 > ceiling - 1; 317 } 318 319 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 320 unsigned long start, unsigned long end, 321 unsigned long floor, unsigned long ceiling) 322 { 323 pte_t *hugepte = hugepd_page(*hpdp); 324 int i; 325 326 unsigned long pdmask = ~((1UL << pdshift) - 1); 327 unsigned int num_hugepd = 1; 328 unsigned int shift = hugepd_shift(*hpdp); 329 330 /* Note: On fsl the hpdp may be the first of several */ 331 if (shift > pdshift) 332 num_hugepd = 1 << (shift - pdshift); 333 334 if (range_is_outside_limits(start, end, floor, ceiling, pdmask)) 335 return; 336 337 for (i = 0; i < num_hugepd; i++, hpdp++) 338 *hpdp = __hugepd(0); 339 340 if (shift >= pdshift) 341 hugepd_free(tlb, hugepte); 342 else 343 pgtable_free_tlb(tlb, hugepte, 344 get_hugepd_cache_index(pdshift - shift)); 345 } 346 347 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 348 unsigned long addr, unsigned long end, 349 unsigned long floor, unsigned long ceiling) 350 { 351 pgtable_t token = pmd_pgtable(*pmd); 352 353 if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK)) 354 return; 355 356 pmd_clear(pmd); 357 pte_free_tlb(tlb, token, addr); 358 mm_dec_nr_ptes(tlb->mm); 359 } 360 361 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 362 unsigned long addr, unsigned long end, 363 unsigned long floor, unsigned long ceiling) 364 { 365 pmd_t *pmd; 366 unsigned long next; 367 unsigned long start; 368 369 start = addr; 370 do { 371 unsigned long more; 372 373 pmd = pmd_offset(pud, addr); 374 next = pmd_addr_end(addr, end); 375 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 376 if (pmd_none_or_clear_bad(pmd)) 377 continue; 378 379 /* 380 * if it is not hugepd pointer, we should already find 381 * it cleared. 382 */ 383 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx)); 384 385 hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling); 386 387 continue; 388 } 389 /* 390 * Increment next by the size of the huge mapping since 391 * there may be more than one entry at this level for a 392 * single hugepage, but all of them point to 393 * the same kmem cache that holds the hugepte. 394 */ 395 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pmd)); 396 if (more > next) 397 next = more; 398 399 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 400 addr, next, floor, ceiling); 401 } while (addr = next, addr != end); 402 403 if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK)) 404 return; 405 406 pmd = pmd_offset(pud, start & PUD_MASK); 407 pud_clear(pud); 408 pmd_free_tlb(tlb, pmd, start & PUD_MASK); 409 mm_dec_nr_pmds(tlb->mm); 410 } 411 412 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 413 unsigned long addr, unsigned long end, 414 unsigned long floor, unsigned long ceiling) 415 { 416 pud_t *pud; 417 unsigned long next; 418 unsigned long start; 419 420 start = addr; 421 do { 422 pud = pud_offset(p4d, addr); 423 next = pud_addr_end(addr, end); 424 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 425 if (pud_none_or_clear_bad(pud)) 426 continue; 427 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 428 ceiling); 429 } else { 430 unsigned long more; 431 /* 432 * Increment next by the size of the huge mapping since 433 * there may be more than one entry at this level for a 434 * single hugepage, but all of them point to 435 * the same kmem cache that holds the hugepte. 436 */ 437 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pud)); 438 if (more > next) 439 next = more; 440 441 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 442 addr, next, floor, ceiling); 443 } 444 } while (addr = next, addr != end); 445 446 if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK)) 447 return; 448 449 pud = pud_offset(p4d, start & PGDIR_MASK); 450 p4d_clear(p4d); 451 pud_free_tlb(tlb, pud, start & PGDIR_MASK); 452 mm_dec_nr_puds(tlb->mm); 453 } 454 455 /* 456 * This function frees user-level page tables of a process. 457 */ 458 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 459 unsigned long addr, unsigned long end, 460 unsigned long floor, unsigned long ceiling) 461 { 462 pgd_t *pgd; 463 p4d_t *p4d; 464 unsigned long next; 465 466 /* 467 * Because there are a number of different possible pagetable 468 * layouts for hugepage ranges, we limit knowledge of how 469 * things should be laid out to the allocation path 470 * (huge_pte_alloc(), above). Everything else works out the 471 * structure as it goes from information in the hugepd 472 * pointers. That means that we can't here use the 473 * optimization used in the normal page free_pgd_range(), of 474 * checking whether we're actually covering a large enough 475 * range to have to do anything at the top level of the walk 476 * instead of at the bottom. 477 * 478 * To make sense of this, you should probably go read the big 479 * block comment at the top of the normal free_pgd_range(), 480 * too. 481 */ 482 483 do { 484 next = pgd_addr_end(addr, end); 485 pgd = pgd_offset(tlb->mm, addr); 486 p4d = p4d_offset(pgd, addr); 487 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 488 if (p4d_none_or_clear_bad(p4d)) 489 continue; 490 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling); 491 } else { 492 unsigned long more; 493 /* 494 * Increment next by the size of the huge mapping since 495 * there may be more than one entry at the pgd level 496 * for a single hugepage, but all of them point to the 497 * same kmem cache that holds the hugepte. 498 */ 499 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pgd)); 500 if (more > next) 501 next = more; 502 503 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT, 504 addr, next, floor, ceiling); 505 } 506 } while (addr = next, addr != end); 507 } 508 509 struct page *follow_huge_pd(struct vm_area_struct *vma, 510 unsigned long address, hugepd_t hpd, 511 int flags, int pdshift) 512 { 513 pte_t *ptep; 514 spinlock_t *ptl; 515 struct page *page = NULL; 516 unsigned long mask; 517 int shift = hugepd_shift(hpd); 518 struct mm_struct *mm = vma->vm_mm; 519 520 retry: 521 /* 522 * hugepage directory entries are protected by mm->page_table_lock 523 * Use this instead of huge_pte_lockptr 524 */ 525 ptl = &mm->page_table_lock; 526 spin_lock(ptl); 527 528 ptep = hugepte_offset(hpd, address, pdshift); 529 if (pte_present(*ptep)) { 530 mask = (1UL << shift) - 1; 531 page = pte_page(*ptep); 532 page += ((address & mask) >> PAGE_SHIFT); 533 if (flags & FOLL_GET) 534 get_page(page); 535 } else { 536 if (is_hugetlb_entry_migration(*ptep)) { 537 spin_unlock(ptl); 538 __migration_entry_wait(mm, ptep, ptl); 539 goto retry; 540 } 541 } 542 spin_unlock(ptl); 543 return page; 544 } 545 546 bool __init arch_hugetlb_valid_size(unsigned long size) 547 { 548 int shift = __ffs(size); 549 int mmu_psize; 550 551 /* Check that it is a page size supported by the hardware and 552 * that it fits within pagetable and slice limits. */ 553 if (size <= PAGE_SIZE || !is_power_of_2(size)) 554 return false; 555 556 mmu_psize = check_and_get_huge_psize(shift); 557 if (mmu_psize < 0) 558 return false; 559 560 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 561 562 return true; 563 } 564 565 static int __init add_huge_page_size(unsigned long long size) 566 { 567 int shift = __ffs(size); 568 569 if (!arch_hugetlb_valid_size((unsigned long)size)) 570 return -EINVAL; 571 572 hugetlb_add_hstate(shift - PAGE_SHIFT); 573 return 0; 574 } 575 576 static int __init hugetlbpage_init(void) 577 { 578 bool configured = false; 579 int psize; 580 581 if (hugetlb_disabled) { 582 pr_info("HugeTLB support is disabled!\n"); 583 return 0; 584 } 585 586 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() && 587 !mmu_has_feature(MMU_FTR_16M_PAGE)) 588 return -ENODEV; 589 590 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 591 unsigned shift; 592 unsigned pdshift; 593 594 if (!mmu_psize_defs[psize].shift) 595 continue; 596 597 shift = mmu_psize_to_shift(psize); 598 599 #ifdef CONFIG_PPC_BOOK3S_64 600 if (shift > PGDIR_SHIFT) 601 continue; 602 else if (shift > PUD_SHIFT) 603 pdshift = PGDIR_SHIFT; 604 else if (shift > PMD_SHIFT) 605 pdshift = PUD_SHIFT; 606 else 607 pdshift = PMD_SHIFT; 608 #else 609 if (shift < PUD_SHIFT) 610 pdshift = PMD_SHIFT; 611 else if (shift < PGDIR_SHIFT) 612 pdshift = PUD_SHIFT; 613 else 614 pdshift = PGDIR_SHIFT; 615 #endif 616 617 if (add_huge_page_size(1ULL << shift) < 0) 618 continue; 619 /* 620 * if we have pdshift and shift value same, we don't 621 * use pgt cache for hugepd. 622 */ 623 if (pdshift > shift) { 624 if (!IS_ENABLED(CONFIG_PPC_8xx)) 625 pgtable_cache_add(pdshift - shift); 626 } else if (IS_ENABLED(CONFIG_PPC_E500) || 627 IS_ENABLED(CONFIG_PPC_8xx)) { 628 pgtable_cache_add(PTE_T_ORDER); 629 } 630 631 configured = true; 632 } 633 634 if (!configured) 635 pr_info("Failed to initialize. Disabling HugeTLB"); 636 637 return 0; 638 } 639 640 arch_initcall(hugetlbpage_init); 641 642 void __init gigantic_hugetlb_cma_reserve(void) 643 { 644 unsigned long order = 0; 645 646 if (radix_enabled()) 647 order = PUD_SHIFT - PAGE_SHIFT; 648 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift) 649 /* 650 * For pseries we do use ibm,expected#pages for reserving 16G pages. 651 */ 652 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT; 653 654 if (order) { 655 VM_WARN_ON(order < MAX_ORDER); 656 hugetlb_cma_reserve(order); 657 } 658 } 659