1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 #include <asm/hugetlb.h> 25 26 #ifdef CONFIG_HUGETLB_PAGE 27 28 #define PAGE_SHIFT_64K 16 29 #define PAGE_SHIFT_16M 24 30 #define PAGE_SHIFT_16G 34 31 32 unsigned int HPAGE_SHIFT; 33 34 /* 35 * Tracks gpages after the device tree is scanned and before the 36 * huge_boot_pages list is ready. On non-Freescale implementations, this is 37 * just used to track 16G pages and so is a single array. FSL-based 38 * implementations may have more than one gpage size, so we need multiple 39 * arrays 40 */ 41 #ifdef CONFIG_PPC_FSL_BOOK3E 42 #define MAX_NUMBER_GPAGES 128 43 struct psize_gpages { 44 u64 gpage_list[MAX_NUMBER_GPAGES]; 45 unsigned int nr_gpages; 46 }; 47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 48 #else 49 #define MAX_NUMBER_GPAGES 1024 50 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 51 static unsigned nr_gpages; 52 #endif 53 54 #define hugepd_none(hpd) ((hpd).pd == 0) 55 56 #ifdef CONFIG_PPC_BOOK3S_64 57 /* 58 * At this point we do the placement change only for BOOK3S 64. This would 59 * possibly work on other subarchs. 60 */ 61 62 /* 63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have 64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; 65 */ 66 int pmd_huge(pmd_t pmd) 67 { 68 /* 69 * leaf pte for huge page, bottom two bits != 00 70 */ 71 return ((pmd_val(pmd) & 0x3) != 0x0); 72 } 73 74 int pud_huge(pud_t pud) 75 { 76 /* 77 * leaf pte for huge page, bottom two bits != 00 78 */ 79 return ((pud_val(pud) & 0x3) != 0x0); 80 } 81 82 int pgd_huge(pgd_t pgd) 83 { 84 /* 85 * leaf pte for huge page, bottom two bits != 00 86 */ 87 return ((pgd_val(pgd) & 0x3) != 0x0); 88 } 89 90 int pmd_huge_support(void) 91 { 92 return 1; 93 } 94 #else 95 int pmd_huge(pmd_t pmd) 96 { 97 return 0; 98 } 99 100 int pud_huge(pud_t pud) 101 { 102 return 0; 103 } 104 105 int pgd_huge(pgd_t pgd) 106 { 107 return 0; 108 } 109 110 int pmd_huge_support(void) 111 { 112 return 0; 113 } 114 #endif 115 116 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 117 { 118 /* Only called for hugetlbfs pages, hence can ignore THP */ 119 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); 120 } 121 122 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 123 unsigned long address, unsigned pdshift, unsigned pshift) 124 { 125 struct kmem_cache *cachep; 126 pte_t *new; 127 128 #ifdef CONFIG_PPC_FSL_BOOK3E 129 int i; 130 int num_hugepd = 1 << (pshift - pdshift); 131 cachep = hugepte_cache; 132 #else 133 cachep = PGT_CACHE(pdshift - pshift); 134 #endif 135 136 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 137 138 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 139 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 140 141 if (! new) 142 return -ENOMEM; 143 144 spin_lock(&mm->page_table_lock); 145 #ifdef CONFIG_PPC_FSL_BOOK3E 146 /* 147 * We have multiple higher-level entries that point to the same 148 * actual pte location. Fill in each as we go and backtrack on error. 149 * We need all of these so the DTLB pgtable walk code can find the 150 * right higher-level entry without knowing if it's a hugepage or not. 151 */ 152 for (i = 0; i < num_hugepd; i++, hpdp++) { 153 if (unlikely(!hugepd_none(*hpdp))) 154 break; 155 else 156 /* We use the old format for PPC_FSL_BOOK3E */ 157 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 158 } 159 /* If we bailed from the for loop early, an error occurred, clean up */ 160 if (i < num_hugepd) { 161 for (i = i - 1 ; i >= 0; i--, hpdp--) 162 hpdp->pd = 0; 163 kmem_cache_free(cachep, new); 164 } 165 #else 166 if (!hugepd_none(*hpdp)) 167 kmem_cache_free(cachep, new); 168 else { 169 #ifdef CONFIG_PPC_BOOK3S_64 170 hpdp->pd = (unsigned long)new | 171 (shift_to_mmu_psize(pshift) << 2); 172 #else 173 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 174 #endif 175 } 176 #endif 177 spin_unlock(&mm->page_table_lock); 178 return 0; 179 } 180 181 /* 182 * These macros define how to determine which level of the page table holds 183 * the hpdp. 184 */ 185 #ifdef CONFIG_PPC_FSL_BOOK3E 186 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 187 #define HUGEPD_PUD_SHIFT PUD_SHIFT 188 #else 189 #define HUGEPD_PGD_SHIFT PUD_SHIFT 190 #define HUGEPD_PUD_SHIFT PMD_SHIFT 191 #endif 192 193 #ifdef CONFIG_PPC_BOOK3S_64 194 /* 195 * At this point we do the placement change only for BOOK3S 64. This would 196 * possibly work on other subarchs. 197 */ 198 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 199 { 200 pgd_t *pg; 201 pud_t *pu; 202 pmd_t *pm; 203 hugepd_t *hpdp = NULL; 204 unsigned pshift = __ffs(sz); 205 unsigned pdshift = PGDIR_SHIFT; 206 207 addr &= ~(sz-1); 208 pg = pgd_offset(mm, addr); 209 210 if (pshift == PGDIR_SHIFT) 211 /* 16GB huge page */ 212 return (pte_t *) pg; 213 else if (pshift > PUD_SHIFT) 214 /* 215 * We need to use hugepd table 216 */ 217 hpdp = (hugepd_t *)pg; 218 else { 219 pdshift = PUD_SHIFT; 220 pu = pud_alloc(mm, pg, addr); 221 if (pshift == PUD_SHIFT) 222 return (pte_t *)pu; 223 else if (pshift > PMD_SHIFT) 224 hpdp = (hugepd_t *)pu; 225 else { 226 pdshift = PMD_SHIFT; 227 pm = pmd_alloc(mm, pu, addr); 228 if (pshift == PMD_SHIFT) 229 /* 16MB hugepage */ 230 return (pte_t *)pm; 231 else 232 hpdp = (hugepd_t *)pm; 233 } 234 } 235 if (!hpdp) 236 return NULL; 237 238 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 239 240 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 241 return NULL; 242 243 return hugepte_offset(hpdp, addr, pdshift); 244 } 245 246 #else 247 248 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 249 { 250 pgd_t *pg; 251 pud_t *pu; 252 pmd_t *pm; 253 hugepd_t *hpdp = NULL; 254 unsigned pshift = __ffs(sz); 255 unsigned pdshift = PGDIR_SHIFT; 256 257 addr &= ~(sz-1); 258 259 pg = pgd_offset(mm, addr); 260 261 if (pshift >= HUGEPD_PGD_SHIFT) { 262 hpdp = (hugepd_t *)pg; 263 } else { 264 pdshift = PUD_SHIFT; 265 pu = pud_alloc(mm, pg, addr); 266 if (pshift >= HUGEPD_PUD_SHIFT) { 267 hpdp = (hugepd_t *)pu; 268 } else { 269 pdshift = PMD_SHIFT; 270 pm = pmd_alloc(mm, pu, addr); 271 hpdp = (hugepd_t *)pm; 272 } 273 } 274 275 if (!hpdp) 276 return NULL; 277 278 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 279 280 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 281 return NULL; 282 283 return hugepte_offset(hpdp, addr, pdshift); 284 } 285 #endif 286 287 #ifdef CONFIG_PPC_FSL_BOOK3E 288 /* Build list of addresses of gigantic pages. This function is used in early 289 * boot before the buddy or bootmem allocator is setup. 290 */ 291 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 292 { 293 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 294 int i; 295 296 if (addr == 0) 297 return; 298 299 gpage_freearray[idx].nr_gpages = number_of_pages; 300 301 for (i = 0; i < number_of_pages; i++) { 302 gpage_freearray[idx].gpage_list[i] = addr; 303 addr += page_size; 304 } 305 } 306 307 /* 308 * Moves the gigantic page addresses from the temporary list to the 309 * huge_boot_pages list. 310 */ 311 int alloc_bootmem_huge_page(struct hstate *hstate) 312 { 313 struct huge_bootmem_page *m; 314 int idx = shift_to_mmu_psize(huge_page_shift(hstate)); 315 int nr_gpages = gpage_freearray[idx].nr_gpages; 316 317 if (nr_gpages == 0) 318 return 0; 319 320 #ifdef CONFIG_HIGHMEM 321 /* 322 * If gpages can be in highmem we can't use the trick of storing the 323 * data structure in the page; allocate space for this 324 */ 325 m = alloc_bootmem(sizeof(struct huge_bootmem_page)); 326 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 327 #else 328 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 329 #endif 330 331 list_add(&m->list, &huge_boot_pages); 332 gpage_freearray[idx].nr_gpages = nr_gpages; 333 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 334 m->hstate = hstate; 335 336 return 1; 337 } 338 /* 339 * Scan the command line hugepagesz= options for gigantic pages; store those in 340 * a list that we use to allocate the memory once all options are parsed. 341 */ 342 343 unsigned long gpage_npages[MMU_PAGE_COUNT]; 344 345 static int __init do_gpage_early_setup(char *param, char *val, 346 const char *unused) 347 { 348 static phys_addr_t size; 349 unsigned long npages; 350 351 /* 352 * The hugepagesz and hugepages cmdline options are interleaved. We 353 * use the size variable to keep track of whether or not this was done 354 * properly and skip over instances where it is incorrect. Other 355 * command-line parsing code will issue warnings, so we don't need to. 356 * 357 */ 358 if ((strcmp(param, "default_hugepagesz") == 0) || 359 (strcmp(param, "hugepagesz") == 0)) { 360 size = memparse(val, NULL); 361 } else if (strcmp(param, "hugepages") == 0) { 362 if (size != 0) { 363 if (sscanf(val, "%lu", &npages) <= 0) 364 npages = 0; 365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 366 size = 0; 367 } 368 } 369 return 0; 370 } 371 372 373 /* 374 * This function allocates physical space for pages that are larger than the 375 * buddy allocator can handle. We want to allocate these in highmem because 376 * the amount of lowmem is limited. This means that this function MUST be 377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 378 * allocate to grab highmem. 379 */ 380 void __init reserve_hugetlb_gpages(void) 381 { 382 static __initdata char cmdline[COMMAND_LINE_SIZE]; 383 phys_addr_t size, base; 384 int i; 385 386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 388 &do_gpage_early_setup); 389 390 /* 391 * Walk gpage list in reverse, allocating larger page sizes first. 392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 393 * When we reach the point in the list where pages are no longer 394 * considered gpages, we're done. 395 */ 396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 398 continue; 399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 400 break; 401 402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 403 base = memblock_alloc_base(size * gpage_npages[i], size, 404 MEMBLOCK_ALLOC_ANYWHERE); 405 add_gpage(base, size, gpage_npages[i]); 406 } 407 } 408 409 #else /* !PPC_FSL_BOOK3E */ 410 411 /* Build list of addresses of gigantic pages. This function is used in early 412 * boot before the buddy or bootmem allocator is setup. 413 */ 414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 415 { 416 if (!addr) 417 return; 418 while (number_of_pages > 0) { 419 gpage_freearray[nr_gpages] = addr; 420 nr_gpages++; 421 number_of_pages--; 422 addr += page_size; 423 } 424 } 425 426 /* Moves the gigantic page addresses from the temporary list to the 427 * huge_boot_pages list. 428 */ 429 int alloc_bootmem_huge_page(struct hstate *hstate) 430 { 431 struct huge_bootmem_page *m; 432 if (nr_gpages == 0) 433 return 0; 434 m = phys_to_virt(gpage_freearray[--nr_gpages]); 435 gpage_freearray[nr_gpages] = 0; 436 list_add(&m->list, &huge_boot_pages); 437 m->hstate = hstate; 438 return 1; 439 } 440 #endif 441 442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 443 { 444 return 0; 445 } 446 447 #ifdef CONFIG_PPC_FSL_BOOK3E 448 #define HUGEPD_FREELIST_SIZE \ 449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 450 451 struct hugepd_freelist { 452 struct rcu_head rcu; 453 unsigned int index; 454 void *ptes[0]; 455 }; 456 457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 458 459 static void hugepd_free_rcu_callback(struct rcu_head *head) 460 { 461 struct hugepd_freelist *batch = 462 container_of(head, struct hugepd_freelist, rcu); 463 unsigned int i; 464 465 for (i = 0; i < batch->index; i++) 466 kmem_cache_free(hugepte_cache, batch->ptes[i]); 467 468 free_page((unsigned long)batch); 469 } 470 471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 472 { 473 struct hugepd_freelist **batchp; 474 475 batchp = &__get_cpu_var(hugepd_freelist_cur); 476 477 if (atomic_read(&tlb->mm->mm_users) < 2 || 478 cpumask_equal(mm_cpumask(tlb->mm), 479 cpumask_of(smp_processor_id()))) { 480 kmem_cache_free(hugepte_cache, hugepte); 481 return; 482 } 483 484 if (*batchp == NULL) { 485 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 486 (*batchp)->index = 0; 487 } 488 489 (*batchp)->ptes[(*batchp)->index++] = hugepte; 490 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 491 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 492 *batchp = NULL; 493 } 494 } 495 #endif 496 497 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 498 unsigned long start, unsigned long end, 499 unsigned long floor, unsigned long ceiling) 500 { 501 pte_t *hugepte = hugepd_page(*hpdp); 502 int i; 503 504 unsigned long pdmask = ~((1UL << pdshift) - 1); 505 unsigned int num_hugepd = 1; 506 507 #ifdef CONFIG_PPC_FSL_BOOK3E 508 /* Note: On fsl the hpdp may be the first of several */ 509 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 510 #else 511 unsigned int shift = hugepd_shift(*hpdp); 512 #endif 513 514 start &= pdmask; 515 if (start < floor) 516 return; 517 if (ceiling) { 518 ceiling &= pdmask; 519 if (! ceiling) 520 return; 521 } 522 if (end - 1 > ceiling - 1) 523 return; 524 525 for (i = 0; i < num_hugepd; i++, hpdp++) 526 hpdp->pd = 0; 527 528 tlb->need_flush = 1; 529 530 #ifdef CONFIG_PPC_FSL_BOOK3E 531 hugepd_free(tlb, hugepte); 532 #else 533 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 534 #endif 535 } 536 537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 538 unsigned long addr, unsigned long end, 539 unsigned long floor, unsigned long ceiling) 540 { 541 pmd_t *pmd; 542 unsigned long next; 543 unsigned long start; 544 545 start = addr; 546 do { 547 pmd = pmd_offset(pud, addr); 548 next = pmd_addr_end(addr, end); 549 if (!is_hugepd(pmd)) { 550 /* 551 * if it is not hugepd pointer, we should already find 552 * it cleared. 553 */ 554 WARN_ON(!pmd_none_or_clear_bad(pmd)); 555 continue; 556 } 557 #ifdef CONFIG_PPC_FSL_BOOK3E 558 /* 559 * Increment next by the size of the huge mapping since 560 * there may be more than one entry at this level for a 561 * single hugepage, but all of them point to 562 * the same kmem cache that holds the hugepte. 563 */ 564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 565 #endif 566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 567 addr, next, floor, ceiling); 568 } while (addr = next, addr != end); 569 570 start &= PUD_MASK; 571 if (start < floor) 572 return; 573 if (ceiling) { 574 ceiling &= PUD_MASK; 575 if (!ceiling) 576 return; 577 } 578 if (end - 1 > ceiling - 1) 579 return; 580 581 pmd = pmd_offset(pud, start); 582 pud_clear(pud); 583 pmd_free_tlb(tlb, pmd, start); 584 } 585 586 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 587 unsigned long addr, unsigned long end, 588 unsigned long floor, unsigned long ceiling) 589 { 590 pud_t *pud; 591 unsigned long next; 592 unsigned long start; 593 594 start = addr; 595 do { 596 pud = pud_offset(pgd, addr); 597 next = pud_addr_end(addr, end); 598 if (!is_hugepd(pud)) { 599 if (pud_none_or_clear_bad(pud)) 600 continue; 601 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 602 ceiling); 603 } else { 604 #ifdef CONFIG_PPC_FSL_BOOK3E 605 /* 606 * Increment next by the size of the huge mapping since 607 * there may be more than one entry at this level for a 608 * single hugepage, but all of them point to 609 * the same kmem cache that holds the hugepte. 610 */ 611 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 612 #endif 613 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 614 addr, next, floor, ceiling); 615 } 616 } while (addr = next, addr != end); 617 618 start &= PGDIR_MASK; 619 if (start < floor) 620 return; 621 if (ceiling) { 622 ceiling &= PGDIR_MASK; 623 if (!ceiling) 624 return; 625 } 626 if (end - 1 > ceiling - 1) 627 return; 628 629 pud = pud_offset(pgd, start); 630 pgd_clear(pgd); 631 pud_free_tlb(tlb, pud, start); 632 } 633 634 /* 635 * This function frees user-level page tables of a process. 636 */ 637 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 638 unsigned long addr, unsigned long end, 639 unsigned long floor, unsigned long ceiling) 640 { 641 pgd_t *pgd; 642 unsigned long next; 643 644 /* 645 * Because there are a number of different possible pagetable 646 * layouts for hugepage ranges, we limit knowledge of how 647 * things should be laid out to the allocation path 648 * (huge_pte_alloc(), above). Everything else works out the 649 * structure as it goes from information in the hugepd 650 * pointers. That means that we can't here use the 651 * optimization used in the normal page free_pgd_range(), of 652 * checking whether we're actually covering a large enough 653 * range to have to do anything at the top level of the walk 654 * instead of at the bottom. 655 * 656 * To make sense of this, you should probably go read the big 657 * block comment at the top of the normal free_pgd_range(), 658 * too. 659 */ 660 661 do { 662 next = pgd_addr_end(addr, end); 663 pgd = pgd_offset(tlb->mm, addr); 664 if (!is_hugepd(pgd)) { 665 if (pgd_none_or_clear_bad(pgd)) 666 continue; 667 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 668 } else { 669 #ifdef CONFIG_PPC_FSL_BOOK3E 670 /* 671 * Increment next by the size of the huge mapping since 672 * there may be more than one entry at the pgd level 673 * for a single hugepage, but all of them point to the 674 * same kmem cache that holds the hugepte. 675 */ 676 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 677 #endif 678 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 679 addr, next, floor, ceiling); 680 } 681 } while (addr = next, addr != end); 682 } 683 684 struct page * 685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 686 { 687 pte_t *ptep; 688 struct page *page; 689 unsigned shift; 690 unsigned long mask; 691 /* 692 * Transparent hugepages are handled by generic code. We can skip them 693 * here. 694 */ 695 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); 696 697 /* Verify it is a huge page else bail. */ 698 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep)) 699 return ERR_PTR(-EINVAL); 700 701 mask = (1UL << shift) - 1; 702 page = pte_page(*ptep); 703 if (page) 704 page += (address & mask) / PAGE_SIZE; 705 706 return page; 707 } 708 709 struct page * 710 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 711 pmd_t *pmd, int write) 712 { 713 BUG(); 714 return NULL; 715 } 716 717 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 718 unsigned long sz) 719 { 720 unsigned long __boundary = (addr + sz) & ~(sz-1); 721 return (__boundary - 1 < end - 1) ? __boundary : end; 722 } 723 724 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, 725 unsigned long addr, unsigned long end, 726 int write, struct page **pages, int *nr) 727 { 728 pte_t *ptep; 729 unsigned long sz = 1UL << hugepd_shift(*hugepd); 730 unsigned long next; 731 732 ptep = hugepte_offset(hugepd, addr, pdshift); 733 do { 734 next = hugepte_addr_end(addr, end, sz); 735 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 736 return 0; 737 } while (ptep++, addr = next, addr != end); 738 739 return 1; 740 } 741 742 #ifdef CONFIG_PPC_MM_SLICES 743 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 744 unsigned long len, unsigned long pgoff, 745 unsigned long flags) 746 { 747 struct hstate *hstate = hstate_file(file); 748 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 749 750 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 751 } 752 #endif 753 754 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 755 { 756 #ifdef CONFIG_PPC_MM_SLICES 757 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 758 759 return 1UL << mmu_psize_to_shift(psize); 760 #else 761 if (!is_vm_hugetlb_page(vma)) 762 return PAGE_SIZE; 763 764 return huge_page_size(hstate_vma(vma)); 765 #endif 766 } 767 768 static inline bool is_power_of_4(unsigned long x) 769 { 770 if (is_power_of_2(x)) 771 return (__ilog2(x) % 2) ? false : true; 772 return false; 773 } 774 775 static int __init add_huge_page_size(unsigned long long size) 776 { 777 int shift = __ffs(size); 778 int mmu_psize; 779 780 /* Check that it is a page size supported by the hardware and 781 * that it fits within pagetable and slice limits. */ 782 #ifdef CONFIG_PPC_FSL_BOOK3E 783 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 784 return -EINVAL; 785 #else 786 if (!is_power_of_2(size) 787 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 788 return -EINVAL; 789 #endif 790 791 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 792 return -EINVAL; 793 794 #ifdef CONFIG_SPU_FS_64K_LS 795 /* Disable support for 64K huge pages when 64K SPU local store 796 * support is enabled as the current implementation conflicts. 797 */ 798 if (shift == PAGE_SHIFT_64K) 799 return -EINVAL; 800 #endif /* CONFIG_SPU_FS_64K_LS */ 801 802 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 803 804 /* Return if huge page size has already been setup */ 805 if (size_to_hstate(size)) 806 return 0; 807 808 hugetlb_add_hstate(shift - PAGE_SHIFT); 809 810 return 0; 811 } 812 813 static int __init hugepage_setup_sz(char *str) 814 { 815 unsigned long long size; 816 817 size = memparse(str, &str); 818 819 if (add_huge_page_size(size) != 0) 820 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 821 822 return 1; 823 } 824 __setup("hugepagesz=", hugepage_setup_sz); 825 826 #ifdef CONFIG_PPC_FSL_BOOK3E 827 struct kmem_cache *hugepte_cache; 828 static int __init hugetlbpage_init(void) 829 { 830 int psize; 831 832 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 833 unsigned shift; 834 835 if (!mmu_psize_defs[psize].shift) 836 continue; 837 838 shift = mmu_psize_to_shift(psize); 839 840 /* Don't treat normal page sizes as huge... */ 841 if (shift != PAGE_SHIFT) 842 if (add_huge_page_size(1ULL << shift) < 0) 843 continue; 844 } 845 846 /* 847 * Create a kmem cache for hugeptes. The bottom bits in the pte have 848 * size information encoded in them, so align them to allow this 849 */ 850 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 851 HUGEPD_SHIFT_MASK + 1, 0, NULL); 852 if (hugepte_cache == NULL) 853 panic("%s: Unable to create kmem cache for hugeptes\n", 854 __func__); 855 856 /* Default hpage size = 4M */ 857 if (mmu_psize_defs[MMU_PAGE_4M].shift) 858 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 859 else 860 panic("%s: Unable to set default huge page size\n", __func__); 861 862 863 return 0; 864 } 865 #else 866 static int __init hugetlbpage_init(void) 867 { 868 int psize; 869 870 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 871 return -ENODEV; 872 873 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 874 unsigned shift; 875 unsigned pdshift; 876 877 if (!mmu_psize_defs[psize].shift) 878 continue; 879 880 shift = mmu_psize_to_shift(psize); 881 882 if (add_huge_page_size(1ULL << shift) < 0) 883 continue; 884 885 if (shift < PMD_SHIFT) 886 pdshift = PMD_SHIFT; 887 else if (shift < PUD_SHIFT) 888 pdshift = PUD_SHIFT; 889 else 890 pdshift = PGDIR_SHIFT; 891 /* 892 * if we have pdshift and shift value same, we don't 893 * use pgt cache for hugepd. 894 */ 895 if (pdshift != shift) { 896 pgtable_cache_add(pdshift - shift, NULL); 897 if (!PGT_CACHE(pdshift - shift)) 898 panic("hugetlbpage_init(): could not create " 899 "pgtable cache for %d bit pagesize\n", shift); 900 } 901 } 902 903 /* Set default large page size. Currently, we pick 16M or 1M 904 * depending on what is available 905 */ 906 if (mmu_psize_defs[MMU_PAGE_16M].shift) 907 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 908 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 909 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 910 911 return 0; 912 } 913 #endif 914 module_init(hugetlbpage_init); 915 916 void flush_dcache_icache_hugepage(struct page *page) 917 { 918 int i; 919 void *start; 920 921 BUG_ON(!PageCompound(page)); 922 923 for (i = 0; i < (1UL << compound_order(page)); i++) { 924 if (!PageHighMem(page)) { 925 __flush_dcache_icache(page_address(page+i)); 926 } else { 927 start = kmap_atomic(page+i); 928 __flush_dcache_icache(start); 929 kunmap_atomic(start); 930 } 931 } 932 } 933 934 #endif /* CONFIG_HUGETLB_PAGE */ 935 936 /* 937 * We have 4 cases for pgds and pmds: 938 * (1) invalid (all zeroes) 939 * (2) pointer to next table, as normal; bottom 6 bits == 0 940 * (3) leaf pte for huge page, bottom two bits != 00 941 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table 942 * 943 * So long as we atomically load page table pointers we are safe against teardown, 944 * we can follow the address down to the the page and take a ref on it. 945 */ 946 947 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) 948 { 949 pgd_t pgd, *pgdp; 950 pud_t pud, *pudp; 951 pmd_t pmd, *pmdp; 952 pte_t *ret_pte; 953 hugepd_t *hpdp = NULL; 954 unsigned pdshift = PGDIR_SHIFT; 955 956 if (shift) 957 *shift = 0; 958 959 pgdp = pgdir + pgd_index(ea); 960 pgd = ACCESS_ONCE(*pgdp); 961 /* 962 * Always operate on the local stack value. This make sure the 963 * value don't get updated by a parallel THP split/collapse, 964 * page fault or a page unmap. The return pte_t * is still not 965 * stable. So should be checked there for above conditions. 966 */ 967 if (pgd_none(pgd)) 968 return NULL; 969 else if (pgd_huge(pgd)) { 970 ret_pte = (pte_t *) pgdp; 971 goto out; 972 } else if (is_hugepd(&pgd)) 973 hpdp = (hugepd_t *)&pgd; 974 else { 975 /* 976 * Even if we end up with an unmap, the pgtable will not 977 * be freed, because we do an rcu free and here we are 978 * irq disabled 979 */ 980 pdshift = PUD_SHIFT; 981 pudp = pud_offset(&pgd, ea); 982 pud = ACCESS_ONCE(*pudp); 983 984 if (pud_none(pud)) 985 return NULL; 986 else if (pud_huge(pud)) { 987 ret_pte = (pte_t *) pudp; 988 goto out; 989 } else if (is_hugepd(&pud)) 990 hpdp = (hugepd_t *)&pud; 991 else { 992 pdshift = PMD_SHIFT; 993 pmdp = pmd_offset(&pud, ea); 994 pmd = ACCESS_ONCE(*pmdp); 995 /* 996 * A hugepage collapse is captured by pmd_none, because 997 * it mark the pmd none and do a hpte invalidate. 998 * 999 * A hugepage split is captured by pmd_trans_splitting 1000 * because we mark the pmd trans splitting and do a 1001 * hpte invalidate 1002 * 1003 */ 1004 if (pmd_none(pmd) || pmd_trans_splitting(pmd)) 1005 return NULL; 1006 1007 if (pmd_huge(pmd) || pmd_large(pmd)) { 1008 ret_pte = (pte_t *) pmdp; 1009 goto out; 1010 } else if (is_hugepd(&pmd)) 1011 hpdp = (hugepd_t *)&pmd; 1012 else 1013 return pte_offset_kernel(&pmd, ea); 1014 } 1015 } 1016 if (!hpdp) 1017 return NULL; 1018 1019 ret_pte = hugepte_offset(hpdp, ea, pdshift); 1020 pdshift = hugepd_shift(*hpdp); 1021 out: 1022 if (shift) 1023 *shift = pdshift; 1024 return ret_pte; 1025 } 1026 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); 1027 1028 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1029 unsigned long end, int write, struct page **pages, int *nr) 1030 { 1031 unsigned long mask; 1032 unsigned long pte_end; 1033 struct page *head, *page, *tail; 1034 pte_t pte; 1035 int refs; 1036 1037 pte_end = (addr + sz) & ~(sz-1); 1038 if (pte_end < end) 1039 end = pte_end; 1040 1041 pte = ACCESS_ONCE(*ptep); 1042 mask = _PAGE_PRESENT | _PAGE_USER; 1043 if (write) 1044 mask |= _PAGE_RW; 1045 1046 if ((pte_val(pte) & mask) != mask) 1047 return 0; 1048 1049 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1050 /* 1051 * check for splitting here 1052 */ 1053 if (pmd_trans_splitting(pte_pmd(pte))) 1054 return 0; 1055 #endif 1056 1057 /* hugepages are never "special" */ 1058 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1059 1060 refs = 0; 1061 head = pte_page(pte); 1062 1063 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1064 tail = page; 1065 do { 1066 VM_BUG_ON(compound_head(page) != head); 1067 pages[*nr] = page; 1068 (*nr)++; 1069 page++; 1070 refs++; 1071 } while (addr += PAGE_SIZE, addr != end); 1072 1073 if (!page_cache_add_speculative(head, refs)) { 1074 *nr -= refs; 1075 return 0; 1076 } 1077 1078 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1079 /* Could be optimized better */ 1080 *nr -= refs; 1081 while (refs--) 1082 put_page(head); 1083 return 0; 1084 } 1085 1086 /* 1087 * Any tail page need their mapcount reference taken before we 1088 * return. 1089 */ 1090 while (refs--) { 1091 if (PageTail(tail)) 1092 get_huge_page_tail(tail); 1093 tail++; 1094 } 1095 1096 return 1; 1097 } 1098