xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 12eb4683)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58  * At this point we do the placement change only for BOOK3S 64. This would
59  * possibly work on other subarchs.
60  */
61 
62 /*
63  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65  */
66 int pmd_huge(pmd_t pmd)
67 {
68 	/*
69 	 * leaf pte for huge page, bottom two bits != 00
70 	 */
71 	return ((pmd_val(pmd) & 0x3) != 0x0);
72 }
73 
74 int pud_huge(pud_t pud)
75 {
76 	/*
77 	 * leaf pte for huge page, bottom two bits != 00
78 	 */
79 	return ((pud_val(pud) & 0x3) != 0x0);
80 }
81 
82 int pgd_huge(pgd_t pgd)
83 {
84 	/*
85 	 * leaf pte for huge page, bottom two bits != 00
86 	 */
87 	return ((pgd_val(pgd) & 0x3) != 0x0);
88 }
89 
90 int pmd_huge_support(void)
91 {
92 	return 1;
93 }
94 #else
95 int pmd_huge(pmd_t pmd)
96 {
97 	return 0;
98 }
99 
100 int pud_huge(pud_t pud)
101 {
102 	return 0;
103 }
104 
105 int pgd_huge(pgd_t pgd)
106 {
107 	return 0;
108 }
109 
110 int pmd_huge_support(void)
111 {
112 	return 0;
113 }
114 #endif
115 
116 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
117 {
118 	/* Only called for hugetlbfs pages, hence can ignore THP */
119 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
120 }
121 
122 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
123 			   unsigned long address, unsigned pdshift, unsigned pshift)
124 {
125 	struct kmem_cache *cachep;
126 	pte_t *new;
127 
128 #ifdef CONFIG_PPC_FSL_BOOK3E
129 	int i;
130 	int num_hugepd = 1 << (pshift - pdshift);
131 	cachep = hugepte_cache;
132 #else
133 	cachep = PGT_CACHE(pdshift - pshift);
134 #endif
135 
136 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
137 
138 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
139 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
140 
141 	if (! new)
142 		return -ENOMEM;
143 
144 	spin_lock(&mm->page_table_lock);
145 #ifdef CONFIG_PPC_FSL_BOOK3E
146 	/*
147 	 * We have multiple higher-level entries that point to the same
148 	 * actual pte location.  Fill in each as we go and backtrack on error.
149 	 * We need all of these so the DTLB pgtable walk code can find the
150 	 * right higher-level entry without knowing if it's a hugepage or not.
151 	 */
152 	for (i = 0; i < num_hugepd; i++, hpdp++) {
153 		if (unlikely(!hugepd_none(*hpdp)))
154 			break;
155 		else
156 			/* We use the old format for PPC_FSL_BOOK3E */
157 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
158 	}
159 	/* If we bailed from the for loop early, an error occurred, clean up */
160 	if (i < num_hugepd) {
161 		for (i = i - 1 ; i >= 0; i--, hpdp--)
162 			hpdp->pd = 0;
163 		kmem_cache_free(cachep, new);
164 	}
165 #else
166 	if (!hugepd_none(*hpdp))
167 		kmem_cache_free(cachep, new);
168 	else {
169 #ifdef CONFIG_PPC_BOOK3S_64
170 		hpdp->pd = (unsigned long)new |
171 			    (shift_to_mmu_psize(pshift) << 2);
172 #else
173 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
174 #endif
175 	}
176 #endif
177 	spin_unlock(&mm->page_table_lock);
178 	return 0;
179 }
180 
181 /*
182  * These macros define how to determine which level of the page table holds
183  * the hpdp.
184  */
185 #ifdef CONFIG_PPC_FSL_BOOK3E
186 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
187 #define HUGEPD_PUD_SHIFT PUD_SHIFT
188 #else
189 #define HUGEPD_PGD_SHIFT PUD_SHIFT
190 #define HUGEPD_PUD_SHIFT PMD_SHIFT
191 #endif
192 
193 #ifdef CONFIG_PPC_BOOK3S_64
194 /*
195  * At this point we do the placement change only for BOOK3S 64. This would
196  * possibly work on other subarchs.
197  */
198 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
199 {
200 	pgd_t *pg;
201 	pud_t *pu;
202 	pmd_t *pm;
203 	hugepd_t *hpdp = NULL;
204 	unsigned pshift = __ffs(sz);
205 	unsigned pdshift = PGDIR_SHIFT;
206 
207 	addr &= ~(sz-1);
208 	pg = pgd_offset(mm, addr);
209 
210 	if (pshift == PGDIR_SHIFT)
211 		/* 16GB huge page */
212 		return (pte_t *) pg;
213 	else if (pshift > PUD_SHIFT)
214 		/*
215 		 * We need to use hugepd table
216 		 */
217 		hpdp = (hugepd_t *)pg;
218 	else {
219 		pdshift = PUD_SHIFT;
220 		pu = pud_alloc(mm, pg, addr);
221 		if (pshift == PUD_SHIFT)
222 			return (pte_t *)pu;
223 		else if (pshift > PMD_SHIFT)
224 			hpdp = (hugepd_t *)pu;
225 		else {
226 			pdshift = PMD_SHIFT;
227 			pm = pmd_alloc(mm, pu, addr);
228 			if (pshift == PMD_SHIFT)
229 				/* 16MB hugepage */
230 				return (pte_t *)pm;
231 			else
232 				hpdp = (hugepd_t *)pm;
233 		}
234 	}
235 	if (!hpdp)
236 		return NULL;
237 
238 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
239 
240 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
241 		return NULL;
242 
243 	return hugepte_offset(hpdp, addr, pdshift);
244 }
245 
246 #else
247 
248 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
249 {
250 	pgd_t *pg;
251 	pud_t *pu;
252 	pmd_t *pm;
253 	hugepd_t *hpdp = NULL;
254 	unsigned pshift = __ffs(sz);
255 	unsigned pdshift = PGDIR_SHIFT;
256 
257 	addr &= ~(sz-1);
258 
259 	pg = pgd_offset(mm, addr);
260 
261 	if (pshift >= HUGEPD_PGD_SHIFT) {
262 		hpdp = (hugepd_t *)pg;
263 	} else {
264 		pdshift = PUD_SHIFT;
265 		pu = pud_alloc(mm, pg, addr);
266 		if (pshift >= HUGEPD_PUD_SHIFT) {
267 			hpdp = (hugepd_t *)pu;
268 		} else {
269 			pdshift = PMD_SHIFT;
270 			pm = pmd_alloc(mm, pu, addr);
271 			hpdp = (hugepd_t *)pm;
272 		}
273 	}
274 
275 	if (!hpdp)
276 		return NULL;
277 
278 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
279 
280 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
281 		return NULL;
282 
283 	return hugepte_offset(hpdp, addr, pdshift);
284 }
285 #endif
286 
287 #ifdef CONFIG_PPC_FSL_BOOK3E
288 /* Build list of addresses of gigantic pages.  This function is used in early
289  * boot before the buddy or bootmem allocator is setup.
290  */
291 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
292 {
293 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
294 	int i;
295 
296 	if (addr == 0)
297 		return;
298 
299 	gpage_freearray[idx].nr_gpages = number_of_pages;
300 
301 	for (i = 0; i < number_of_pages; i++) {
302 		gpage_freearray[idx].gpage_list[i] = addr;
303 		addr += page_size;
304 	}
305 }
306 
307 /*
308  * Moves the gigantic page addresses from the temporary list to the
309  * huge_boot_pages list.
310  */
311 int alloc_bootmem_huge_page(struct hstate *hstate)
312 {
313 	struct huge_bootmem_page *m;
314 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
315 	int nr_gpages = gpage_freearray[idx].nr_gpages;
316 
317 	if (nr_gpages == 0)
318 		return 0;
319 
320 #ifdef CONFIG_HIGHMEM
321 	/*
322 	 * If gpages can be in highmem we can't use the trick of storing the
323 	 * data structure in the page; allocate space for this
324 	 */
325 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
326 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
327 #else
328 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
329 #endif
330 
331 	list_add(&m->list, &huge_boot_pages);
332 	gpage_freearray[idx].nr_gpages = nr_gpages;
333 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
334 	m->hstate = hstate;
335 
336 	return 1;
337 }
338 /*
339  * Scan the command line hugepagesz= options for gigantic pages; store those in
340  * a list that we use to allocate the memory once all options are parsed.
341  */
342 
343 unsigned long gpage_npages[MMU_PAGE_COUNT];
344 
345 static int __init do_gpage_early_setup(char *param, char *val,
346 				       const char *unused)
347 {
348 	static phys_addr_t size;
349 	unsigned long npages;
350 
351 	/*
352 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
353 	 * use the size variable to keep track of whether or not this was done
354 	 * properly and skip over instances where it is incorrect.  Other
355 	 * command-line parsing code will issue warnings, so we don't need to.
356 	 *
357 	 */
358 	if ((strcmp(param, "default_hugepagesz") == 0) ||
359 	    (strcmp(param, "hugepagesz") == 0)) {
360 		size = memparse(val, NULL);
361 	} else if (strcmp(param, "hugepages") == 0) {
362 		if (size != 0) {
363 			if (sscanf(val, "%lu", &npages) <= 0)
364 				npages = 0;
365 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 			size = 0;
367 		}
368 	}
369 	return 0;
370 }
371 
372 
373 /*
374  * This function allocates physical space for pages that are larger than the
375  * buddy allocator can handle.  We want to allocate these in highmem because
376  * the amount of lowmem is limited.  This means that this function MUST be
377  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378  * allocate to grab highmem.
379  */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 	static __initdata char cmdline[COMMAND_LINE_SIZE];
383 	phys_addr_t size, base;
384 	int i;
385 
386 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 			&do_gpage_early_setup);
389 
390 	/*
391 	 * Walk gpage list in reverse, allocating larger page sizes first.
392 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 	 * When we reach the point in the list where pages are no longer
394 	 * considered gpages, we're done.
395 	 */
396 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 			continue;
399 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 			break;
401 
402 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 		base = memblock_alloc_base(size * gpage_npages[i], size,
404 					   MEMBLOCK_ALLOC_ANYWHERE);
405 		add_gpage(base, size, gpage_npages[i]);
406 	}
407 }
408 
409 #else /* !PPC_FSL_BOOK3E */
410 
411 /* Build list of addresses of gigantic pages.  This function is used in early
412  * boot before the buddy or bootmem allocator is setup.
413  */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 	if (!addr)
417 		return;
418 	while (number_of_pages > 0) {
419 		gpage_freearray[nr_gpages] = addr;
420 		nr_gpages++;
421 		number_of_pages--;
422 		addr += page_size;
423 	}
424 }
425 
426 /* Moves the gigantic page addresses from the temporary list to the
427  * huge_boot_pages list.
428  */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 	struct huge_bootmem_page *m;
432 	if (nr_gpages == 0)
433 		return 0;
434 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 	gpage_freearray[nr_gpages] = 0;
436 	list_add(&m->list, &huge_boot_pages);
437 	m->hstate = hstate;
438 	return 1;
439 }
440 #endif
441 
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 	return 0;
445 }
446 
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450 
451 struct hugepd_freelist {
452 	struct rcu_head	rcu;
453 	unsigned int index;
454 	void *ptes[0];
455 };
456 
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458 
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 	struct hugepd_freelist *batch =
462 		container_of(head, struct hugepd_freelist, rcu);
463 	unsigned int i;
464 
465 	for (i = 0; i < batch->index; i++)
466 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
467 
468 	free_page((unsigned long)batch);
469 }
470 
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 	struct hugepd_freelist **batchp;
474 
475 	batchp = &__get_cpu_var(hugepd_freelist_cur);
476 
477 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 	    cpumask_equal(mm_cpumask(tlb->mm),
479 			  cpumask_of(smp_processor_id()))) {
480 		kmem_cache_free(hugepte_cache, hugepte);
481 		return;
482 	}
483 
484 	if (*batchp == NULL) {
485 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
486 		(*batchp)->index = 0;
487 	}
488 
489 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
490 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
491 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
492 		*batchp = NULL;
493 	}
494 }
495 #endif
496 
497 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
498 			      unsigned long start, unsigned long end,
499 			      unsigned long floor, unsigned long ceiling)
500 {
501 	pte_t *hugepte = hugepd_page(*hpdp);
502 	int i;
503 
504 	unsigned long pdmask = ~((1UL << pdshift) - 1);
505 	unsigned int num_hugepd = 1;
506 
507 #ifdef CONFIG_PPC_FSL_BOOK3E
508 	/* Note: On fsl the hpdp may be the first of several */
509 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
510 #else
511 	unsigned int shift = hugepd_shift(*hpdp);
512 #endif
513 
514 	start &= pdmask;
515 	if (start < floor)
516 		return;
517 	if (ceiling) {
518 		ceiling &= pdmask;
519 		if (! ceiling)
520 			return;
521 	}
522 	if (end - 1 > ceiling - 1)
523 		return;
524 
525 	for (i = 0; i < num_hugepd; i++, hpdp++)
526 		hpdp->pd = 0;
527 
528 	tlb->need_flush = 1;
529 
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 	hugepd_free(tlb, hugepte);
532 #else
533 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
535 }
536 
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 				   unsigned long addr, unsigned long end,
539 				   unsigned long floor, unsigned long ceiling)
540 {
541 	pmd_t *pmd;
542 	unsigned long next;
543 	unsigned long start;
544 
545 	start = addr;
546 	do {
547 		pmd = pmd_offset(pud, addr);
548 		next = pmd_addr_end(addr, end);
549 		if (!is_hugepd(pmd)) {
550 			/*
551 			 * if it is not hugepd pointer, we should already find
552 			 * it cleared.
553 			 */
554 			WARN_ON(!pmd_none_or_clear_bad(pmd));
555 			continue;
556 		}
557 #ifdef CONFIG_PPC_FSL_BOOK3E
558 		/*
559 		 * Increment next by the size of the huge mapping since
560 		 * there may be more than one entry at this level for a
561 		 * single hugepage, but all of them point to
562 		 * the same kmem cache that holds the hugepte.
563 		 */
564 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 				  addr, next, floor, ceiling);
568 	} while (addr = next, addr != end);
569 
570 	start &= PUD_MASK;
571 	if (start < floor)
572 		return;
573 	if (ceiling) {
574 		ceiling &= PUD_MASK;
575 		if (!ceiling)
576 			return;
577 	}
578 	if (end - 1 > ceiling - 1)
579 		return;
580 
581 	pmd = pmd_offset(pud, start);
582 	pud_clear(pud);
583 	pmd_free_tlb(tlb, pmd, start);
584 }
585 
586 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
587 				   unsigned long addr, unsigned long end,
588 				   unsigned long floor, unsigned long ceiling)
589 {
590 	pud_t *pud;
591 	unsigned long next;
592 	unsigned long start;
593 
594 	start = addr;
595 	do {
596 		pud = pud_offset(pgd, addr);
597 		next = pud_addr_end(addr, end);
598 		if (!is_hugepd(pud)) {
599 			if (pud_none_or_clear_bad(pud))
600 				continue;
601 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
602 					       ceiling);
603 		} else {
604 #ifdef CONFIG_PPC_FSL_BOOK3E
605 			/*
606 			 * Increment next by the size of the huge mapping since
607 			 * there may be more than one entry at this level for a
608 			 * single hugepage, but all of them point to
609 			 * the same kmem cache that holds the hugepte.
610 			 */
611 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
612 #endif
613 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
614 					  addr, next, floor, ceiling);
615 		}
616 	} while (addr = next, addr != end);
617 
618 	start &= PGDIR_MASK;
619 	if (start < floor)
620 		return;
621 	if (ceiling) {
622 		ceiling &= PGDIR_MASK;
623 		if (!ceiling)
624 			return;
625 	}
626 	if (end - 1 > ceiling - 1)
627 		return;
628 
629 	pud = pud_offset(pgd, start);
630 	pgd_clear(pgd);
631 	pud_free_tlb(tlb, pud, start);
632 }
633 
634 /*
635  * This function frees user-level page tables of a process.
636  */
637 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
638 			    unsigned long addr, unsigned long end,
639 			    unsigned long floor, unsigned long ceiling)
640 {
641 	pgd_t *pgd;
642 	unsigned long next;
643 
644 	/*
645 	 * Because there are a number of different possible pagetable
646 	 * layouts for hugepage ranges, we limit knowledge of how
647 	 * things should be laid out to the allocation path
648 	 * (huge_pte_alloc(), above).  Everything else works out the
649 	 * structure as it goes from information in the hugepd
650 	 * pointers.  That means that we can't here use the
651 	 * optimization used in the normal page free_pgd_range(), of
652 	 * checking whether we're actually covering a large enough
653 	 * range to have to do anything at the top level of the walk
654 	 * instead of at the bottom.
655 	 *
656 	 * To make sense of this, you should probably go read the big
657 	 * block comment at the top of the normal free_pgd_range(),
658 	 * too.
659 	 */
660 
661 	do {
662 		next = pgd_addr_end(addr, end);
663 		pgd = pgd_offset(tlb->mm, addr);
664 		if (!is_hugepd(pgd)) {
665 			if (pgd_none_or_clear_bad(pgd))
666 				continue;
667 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
668 		} else {
669 #ifdef CONFIG_PPC_FSL_BOOK3E
670 			/*
671 			 * Increment next by the size of the huge mapping since
672 			 * there may be more than one entry at the pgd level
673 			 * for a single hugepage, but all of them point to the
674 			 * same kmem cache that holds the hugepte.
675 			 */
676 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
677 #endif
678 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
679 					  addr, next, floor, ceiling);
680 		}
681 	} while (addr = next, addr != end);
682 }
683 
684 struct page *
685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686 {
687 	pte_t *ptep;
688 	struct page *page;
689 	unsigned shift;
690 	unsigned long mask;
691 	/*
692 	 * Transparent hugepages are handled by generic code. We can skip them
693 	 * here.
694 	 */
695 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
696 
697 	/* Verify it is a huge page else bail. */
698 	if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
699 		return ERR_PTR(-EINVAL);
700 
701 	mask = (1UL << shift) - 1;
702 	page = pte_page(*ptep);
703 	if (page)
704 		page += (address & mask) / PAGE_SIZE;
705 
706 	return page;
707 }
708 
709 struct page *
710 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
711 		pmd_t *pmd, int write)
712 {
713 	BUG();
714 	return NULL;
715 }
716 
717 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
718 				      unsigned long sz)
719 {
720 	unsigned long __boundary = (addr + sz) & ~(sz-1);
721 	return (__boundary - 1 < end - 1) ? __boundary : end;
722 }
723 
724 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
725 	       unsigned long addr, unsigned long end,
726 	       int write, struct page **pages, int *nr)
727 {
728 	pte_t *ptep;
729 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
730 	unsigned long next;
731 
732 	ptep = hugepte_offset(hugepd, addr, pdshift);
733 	do {
734 		next = hugepte_addr_end(addr, end, sz);
735 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
736 			return 0;
737 	} while (ptep++, addr = next, addr != end);
738 
739 	return 1;
740 }
741 
742 #ifdef CONFIG_PPC_MM_SLICES
743 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
744 					unsigned long len, unsigned long pgoff,
745 					unsigned long flags)
746 {
747 	struct hstate *hstate = hstate_file(file);
748 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
749 
750 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
751 }
752 #endif
753 
754 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
755 {
756 #ifdef CONFIG_PPC_MM_SLICES
757 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
758 
759 	return 1UL << mmu_psize_to_shift(psize);
760 #else
761 	if (!is_vm_hugetlb_page(vma))
762 		return PAGE_SIZE;
763 
764 	return huge_page_size(hstate_vma(vma));
765 #endif
766 }
767 
768 static inline bool is_power_of_4(unsigned long x)
769 {
770 	if (is_power_of_2(x))
771 		return (__ilog2(x) % 2) ? false : true;
772 	return false;
773 }
774 
775 static int __init add_huge_page_size(unsigned long long size)
776 {
777 	int shift = __ffs(size);
778 	int mmu_psize;
779 
780 	/* Check that it is a page size supported by the hardware and
781 	 * that it fits within pagetable and slice limits. */
782 #ifdef CONFIG_PPC_FSL_BOOK3E
783 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
784 		return -EINVAL;
785 #else
786 	if (!is_power_of_2(size)
787 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
788 		return -EINVAL;
789 #endif
790 
791 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
792 		return -EINVAL;
793 
794 #ifdef CONFIG_SPU_FS_64K_LS
795 	/* Disable support for 64K huge pages when 64K SPU local store
796 	 * support is enabled as the current implementation conflicts.
797 	 */
798 	if (shift == PAGE_SHIFT_64K)
799 		return -EINVAL;
800 #endif /* CONFIG_SPU_FS_64K_LS */
801 
802 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
803 
804 	/* Return if huge page size has already been setup */
805 	if (size_to_hstate(size))
806 		return 0;
807 
808 	hugetlb_add_hstate(shift - PAGE_SHIFT);
809 
810 	return 0;
811 }
812 
813 static int __init hugepage_setup_sz(char *str)
814 {
815 	unsigned long long size;
816 
817 	size = memparse(str, &str);
818 
819 	if (add_huge_page_size(size) != 0)
820 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
821 
822 	return 1;
823 }
824 __setup("hugepagesz=", hugepage_setup_sz);
825 
826 #ifdef CONFIG_PPC_FSL_BOOK3E
827 struct kmem_cache *hugepte_cache;
828 static int __init hugetlbpage_init(void)
829 {
830 	int psize;
831 
832 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
833 		unsigned shift;
834 
835 		if (!mmu_psize_defs[psize].shift)
836 			continue;
837 
838 		shift = mmu_psize_to_shift(psize);
839 
840 		/* Don't treat normal page sizes as huge... */
841 		if (shift != PAGE_SHIFT)
842 			if (add_huge_page_size(1ULL << shift) < 0)
843 				continue;
844 	}
845 
846 	/*
847 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
848 	 * size information encoded in them, so align them to allow this
849 	 */
850 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
851 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
852 	if (hugepte_cache == NULL)
853 		panic("%s: Unable to create kmem cache for hugeptes\n",
854 		      __func__);
855 
856 	/* Default hpage size = 4M */
857 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
858 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
859 	else
860 		panic("%s: Unable to set default huge page size\n", __func__);
861 
862 
863 	return 0;
864 }
865 #else
866 static int __init hugetlbpage_init(void)
867 {
868 	int psize;
869 
870 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
871 		return -ENODEV;
872 
873 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
874 		unsigned shift;
875 		unsigned pdshift;
876 
877 		if (!mmu_psize_defs[psize].shift)
878 			continue;
879 
880 		shift = mmu_psize_to_shift(psize);
881 
882 		if (add_huge_page_size(1ULL << shift) < 0)
883 			continue;
884 
885 		if (shift < PMD_SHIFT)
886 			pdshift = PMD_SHIFT;
887 		else if (shift < PUD_SHIFT)
888 			pdshift = PUD_SHIFT;
889 		else
890 			pdshift = PGDIR_SHIFT;
891 		/*
892 		 * if we have pdshift and shift value same, we don't
893 		 * use pgt cache for hugepd.
894 		 */
895 		if (pdshift != shift) {
896 			pgtable_cache_add(pdshift - shift, NULL);
897 			if (!PGT_CACHE(pdshift - shift))
898 				panic("hugetlbpage_init(): could not create "
899 				      "pgtable cache for %d bit pagesize\n", shift);
900 		}
901 	}
902 
903 	/* Set default large page size. Currently, we pick 16M or 1M
904 	 * depending on what is available
905 	 */
906 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
907 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
908 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
909 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
910 
911 	return 0;
912 }
913 #endif
914 module_init(hugetlbpage_init);
915 
916 void flush_dcache_icache_hugepage(struct page *page)
917 {
918 	int i;
919 	void *start;
920 
921 	BUG_ON(!PageCompound(page));
922 
923 	for (i = 0; i < (1UL << compound_order(page)); i++) {
924 		if (!PageHighMem(page)) {
925 			__flush_dcache_icache(page_address(page+i));
926 		} else {
927 			start = kmap_atomic(page+i);
928 			__flush_dcache_icache(start);
929 			kunmap_atomic(start);
930 		}
931 	}
932 }
933 
934 #endif /* CONFIG_HUGETLB_PAGE */
935 
936 /*
937  * We have 4 cases for pgds and pmds:
938  * (1) invalid (all zeroes)
939  * (2) pointer to next table, as normal; bottom 6 bits == 0
940  * (3) leaf pte for huge page, bottom two bits != 00
941  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
942  *
943  * So long as we atomically load page table pointers we are safe against teardown,
944  * we can follow the address down to the the page and take a ref on it.
945  */
946 
947 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
948 {
949 	pgd_t pgd, *pgdp;
950 	pud_t pud, *pudp;
951 	pmd_t pmd, *pmdp;
952 	pte_t *ret_pte;
953 	hugepd_t *hpdp = NULL;
954 	unsigned pdshift = PGDIR_SHIFT;
955 
956 	if (shift)
957 		*shift = 0;
958 
959 	pgdp = pgdir + pgd_index(ea);
960 	pgd  = ACCESS_ONCE(*pgdp);
961 	/*
962 	 * Always operate on the local stack value. This make sure the
963 	 * value don't get updated by a parallel THP split/collapse,
964 	 * page fault or a page unmap. The return pte_t * is still not
965 	 * stable. So should be checked there for above conditions.
966 	 */
967 	if (pgd_none(pgd))
968 		return NULL;
969 	else if (pgd_huge(pgd)) {
970 		ret_pte = (pte_t *) pgdp;
971 		goto out;
972 	} else if (is_hugepd(&pgd))
973 		hpdp = (hugepd_t *)&pgd;
974 	else {
975 		/*
976 		 * Even if we end up with an unmap, the pgtable will not
977 		 * be freed, because we do an rcu free and here we are
978 		 * irq disabled
979 		 */
980 		pdshift = PUD_SHIFT;
981 		pudp = pud_offset(&pgd, ea);
982 		pud  = ACCESS_ONCE(*pudp);
983 
984 		if (pud_none(pud))
985 			return NULL;
986 		else if (pud_huge(pud)) {
987 			ret_pte = (pte_t *) pudp;
988 			goto out;
989 		} else if (is_hugepd(&pud))
990 			hpdp = (hugepd_t *)&pud;
991 		else {
992 			pdshift = PMD_SHIFT;
993 			pmdp = pmd_offset(&pud, ea);
994 			pmd  = ACCESS_ONCE(*pmdp);
995 			/*
996 			 * A hugepage collapse is captured by pmd_none, because
997 			 * it mark the pmd none and do a hpte invalidate.
998 			 *
999 			 * A hugepage split is captured by pmd_trans_splitting
1000 			 * because we mark the pmd trans splitting and do a
1001 			 * hpte invalidate
1002 			 *
1003 			 */
1004 			if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1005 				return NULL;
1006 
1007 			if (pmd_huge(pmd) || pmd_large(pmd)) {
1008 				ret_pte = (pte_t *) pmdp;
1009 				goto out;
1010 			} else if (is_hugepd(&pmd))
1011 				hpdp = (hugepd_t *)&pmd;
1012 			else
1013 				return pte_offset_kernel(&pmd, ea);
1014 		}
1015 	}
1016 	if (!hpdp)
1017 		return NULL;
1018 
1019 	ret_pte = hugepte_offset(hpdp, ea, pdshift);
1020 	pdshift = hugepd_shift(*hpdp);
1021 out:
1022 	if (shift)
1023 		*shift = pdshift;
1024 	return ret_pte;
1025 }
1026 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1027 
1028 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1029 		unsigned long end, int write, struct page **pages, int *nr)
1030 {
1031 	unsigned long mask;
1032 	unsigned long pte_end;
1033 	struct page *head, *page, *tail;
1034 	pte_t pte;
1035 	int refs;
1036 
1037 	pte_end = (addr + sz) & ~(sz-1);
1038 	if (pte_end < end)
1039 		end = pte_end;
1040 
1041 	pte = ACCESS_ONCE(*ptep);
1042 	mask = _PAGE_PRESENT | _PAGE_USER;
1043 	if (write)
1044 		mask |= _PAGE_RW;
1045 
1046 	if ((pte_val(pte) & mask) != mask)
1047 		return 0;
1048 
1049 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1050 	/*
1051 	 * check for splitting here
1052 	 */
1053 	if (pmd_trans_splitting(pte_pmd(pte)))
1054 		return 0;
1055 #endif
1056 
1057 	/* hugepages are never "special" */
1058 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1059 
1060 	refs = 0;
1061 	head = pte_page(pte);
1062 
1063 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1064 	tail = page;
1065 	do {
1066 		VM_BUG_ON(compound_head(page) != head);
1067 		pages[*nr] = page;
1068 		(*nr)++;
1069 		page++;
1070 		refs++;
1071 	} while (addr += PAGE_SIZE, addr != end);
1072 
1073 	if (!page_cache_add_speculative(head, refs)) {
1074 		*nr -= refs;
1075 		return 0;
1076 	}
1077 
1078 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1079 		/* Could be optimized better */
1080 		*nr -= refs;
1081 		while (refs--)
1082 			put_page(head);
1083 		return 0;
1084 	}
1085 
1086 	/*
1087 	 * Any tail page need their mapcount reference taken before we
1088 	 * return.
1089 	 */
1090 	while (refs--) {
1091 		if (PageTail(tail))
1092 			get_huge_page_tail(tail);
1093 		tail++;
1094 	}
1095 
1096 	return 1;
1097 }
1098