xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 11a163f2)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27 
28 bool hugetlb_disabled = false;
29 
30 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
31 
32 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
33 			 __builtin_ffs(sizeof(void *)))
34 
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 	/*
38 	 * Only called for hugetlbfs pages, hence can ignore THP and the
39 	 * irq disabled walk.
40 	 */
41 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43 
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 			   unsigned long address, unsigned int pdshift,
46 			   unsigned int pshift, spinlock_t *ptl)
47 {
48 	struct kmem_cache *cachep;
49 	pte_t *new;
50 	int i;
51 	int num_hugepd;
52 
53 	if (pshift >= pdshift) {
54 		cachep = PGT_CACHE(PTE_T_ORDER);
55 		num_hugepd = 1 << (pshift - pdshift);
56 	} else {
57 		cachep = PGT_CACHE(pdshift - pshift);
58 		num_hugepd = 1;
59 	}
60 
61 	if (!cachep) {
62 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 		return -ENOMEM;
64 	}
65 
66 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67 
68 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70 
71 	if (!new)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Make sure other cpus find the hugepd set only after a
76 	 * properly initialized page table is visible to them.
77 	 * For more details look for comment in __pte_alloc().
78 	 */
79 	smp_wmb();
80 
81 	spin_lock(ptl);
82 	/*
83 	 * We have multiple higher-level entries that point to the same
84 	 * actual pte location.  Fill in each as we go and backtrack on error.
85 	 * We need all of these so the DTLB pgtable walk code can find the
86 	 * right higher-level entry without knowing if it's a hugepage or not.
87 	 */
88 	for (i = 0; i < num_hugepd; i++, hpdp++) {
89 		if (unlikely(!hugepd_none(*hpdp)))
90 			break;
91 		hugepd_populate(hpdp, new, pshift);
92 	}
93 	/* If we bailed from the for loop early, an error occurred, clean up */
94 	if (i < num_hugepd) {
95 		for (i = i - 1 ; i >= 0; i--, hpdp--)
96 			*hpdp = __hugepd(0);
97 		kmem_cache_free(cachep, new);
98 	} else {
99 		kmemleak_ignore(new);
100 	}
101 	spin_unlock(ptl);
102 	return 0;
103 }
104 
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
110 {
111 	pgd_t *pg;
112 	p4d_t *p4;
113 	pud_t *pu;
114 	pmd_t *pm;
115 	hugepd_t *hpdp = NULL;
116 	unsigned pshift = __ffs(sz);
117 	unsigned pdshift = PGDIR_SHIFT;
118 	spinlock_t *ptl;
119 
120 	addr &= ~(sz-1);
121 	pg = pgd_offset(mm, addr);
122 	p4 = p4d_offset(pg, addr);
123 
124 #ifdef CONFIG_PPC_BOOK3S_64
125 	if (pshift == PGDIR_SHIFT)
126 		/* 16GB huge page */
127 		return (pte_t *) p4;
128 	else if (pshift > PUD_SHIFT) {
129 		/*
130 		 * We need to use hugepd table
131 		 */
132 		ptl = &mm->page_table_lock;
133 		hpdp = (hugepd_t *)p4;
134 	} else {
135 		pdshift = PUD_SHIFT;
136 		pu = pud_alloc(mm, p4, addr);
137 		if (!pu)
138 			return NULL;
139 		if (pshift == PUD_SHIFT)
140 			return (pte_t *)pu;
141 		else if (pshift > PMD_SHIFT) {
142 			ptl = pud_lockptr(mm, pu);
143 			hpdp = (hugepd_t *)pu;
144 		} else {
145 			pdshift = PMD_SHIFT;
146 			pm = pmd_alloc(mm, pu, addr);
147 			if (!pm)
148 				return NULL;
149 			if (pshift == PMD_SHIFT)
150 				/* 16MB hugepage */
151 				return (pte_t *)pm;
152 			else {
153 				ptl = pmd_lockptr(mm, pm);
154 				hpdp = (hugepd_t *)pm;
155 			}
156 		}
157 	}
158 #else
159 	if (pshift >= PGDIR_SHIFT) {
160 		ptl = &mm->page_table_lock;
161 		hpdp = (hugepd_t *)p4;
162 	} else {
163 		pdshift = PUD_SHIFT;
164 		pu = pud_alloc(mm, p4, addr);
165 		if (!pu)
166 			return NULL;
167 		if (pshift >= PUD_SHIFT) {
168 			ptl = pud_lockptr(mm, pu);
169 			hpdp = (hugepd_t *)pu;
170 		} else {
171 			pdshift = PMD_SHIFT;
172 			pm = pmd_alloc(mm, pu, addr);
173 			if (!pm)
174 				return NULL;
175 			ptl = pmd_lockptr(mm, pm);
176 			hpdp = (hugepd_t *)pm;
177 		}
178 	}
179 #endif
180 	if (!hpdp)
181 		return NULL;
182 
183 	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
184 		return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
185 
186 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
187 
188 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189 						  pdshift, pshift, ptl))
190 		return NULL;
191 
192 	return hugepte_offset(*hpdp, addr, pdshift);
193 }
194 
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197  * Tracks gpages after the device tree is scanned and before the
198  * huge_boot_pages list is ready on pseries.
199  */
200 #define MAX_NUMBER_GPAGES	1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203 
204 /*
205  * Build list of addresses of gigantic pages.  This function is used in early
206  * boot before the buddy allocator is setup.
207  */
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210 	if (!addr)
211 		return;
212 	while (number_of_pages > 0) {
213 		gpage_freearray[nr_gpages] = addr;
214 		nr_gpages++;
215 		number_of_pages--;
216 		addr += page_size;
217 	}
218 }
219 
220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222 	struct huge_bootmem_page *m;
223 	if (nr_gpages == 0)
224 		return 0;
225 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 	gpage_freearray[nr_gpages] = 0;
227 	list_add(&m->list, &huge_boot_pages);
228 	m->hstate = hstate;
229 	return 1;
230 }
231 #endif
232 
233 
234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236 
237 #ifdef CONFIG_PPC_BOOK3S_64
238 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 		return pseries_alloc_bootmem_huge_page(h);
240 #endif
241 	return __alloc_bootmem_huge_page(h);
242 }
243 
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247 
248 struct hugepd_freelist {
249 	struct rcu_head	rcu;
250 	unsigned int index;
251 	void *ptes[];
252 };
253 
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255 
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258 	struct hugepd_freelist *batch =
259 		container_of(head, struct hugepd_freelist, rcu);
260 	unsigned int i;
261 
262 	for (i = 0; i < batch->index; i++)
263 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
264 
265 	free_page((unsigned long)batch);
266 }
267 
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270 	struct hugepd_freelist **batchp;
271 
272 	batchp = &get_cpu_var(hugepd_freelist_cur);
273 
274 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 	    mm_is_thread_local(tlb->mm)) {
276 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277 		put_cpu_var(hugepd_freelist_cur);
278 		return;
279 	}
280 
281 	if (*batchp == NULL) {
282 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 		(*batchp)->index = 0;
284 	}
285 
286 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
287 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 		*batchp = NULL;
290 	}
291 	put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296 
297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298 			      unsigned long start, unsigned long end,
299 			      unsigned long floor, unsigned long ceiling)
300 {
301 	pte_t *hugepte = hugepd_page(*hpdp);
302 	int i;
303 
304 	unsigned long pdmask = ~((1UL << pdshift) - 1);
305 	unsigned int num_hugepd = 1;
306 	unsigned int shift = hugepd_shift(*hpdp);
307 
308 	/* Note: On fsl the hpdp may be the first of several */
309 	if (shift > pdshift)
310 		num_hugepd = 1 << (shift - pdshift);
311 
312 	start &= pdmask;
313 	if (start < floor)
314 		return;
315 	if (ceiling) {
316 		ceiling &= pdmask;
317 		if (! ceiling)
318 			return;
319 	}
320 	if (end - 1 > ceiling - 1)
321 		return;
322 
323 	for (i = 0; i < num_hugepd; i++, hpdp++)
324 		*hpdp = __hugepd(0);
325 
326 	if (shift >= pdshift)
327 		hugepd_free(tlb, hugepte);
328 	else
329 		pgtable_free_tlb(tlb, hugepte,
330 				 get_hugepd_cache_index(pdshift - shift));
331 }
332 
333 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
334 				   unsigned long addr, unsigned long end,
335 				   unsigned long floor, unsigned long ceiling)
336 {
337 	unsigned long start = addr;
338 	pgtable_t token = pmd_pgtable(*pmd);
339 
340 	start &= PMD_MASK;
341 	if (start < floor)
342 		return;
343 	if (ceiling) {
344 		ceiling &= PMD_MASK;
345 		if (!ceiling)
346 			return;
347 	}
348 	if (end - 1 > ceiling - 1)
349 		return;
350 
351 	pmd_clear(pmd);
352 	pte_free_tlb(tlb, token, addr);
353 	mm_dec_nr_ptes(tlb->mm);
354 }
355 
356 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
357 				   unsigned long addr, unsigned long end,
358 				   unsigned long floor, unsigned long ceiling)
359 {
360 	pmd_t *pmd;
361 	unsigned long next;
362 	unsigned long start;
363 
364 	start = addr;
365 	do {
366 		unsigned long more;
367 
368 		pmd = pmd_offset(pud, addr);
369 		next = pmd_addr_end(addr, end);
370 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
371 			if (pmd_none_or_clear_bad(pmd))
372 				continue;
373 
374 			/*
375 			 * if it is not hugepd pointer, we should already find
376 			 * it cleared.
377 			 */
378 			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
379 
380 			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
381 
382 			continue;
383 		}
384 		/*
385 		 * Increment next by the size of the huge mapping since
386 		 * there may be more than one entry at this level for a
387 		 * single hugepage, but all of them point to
388 		 * the same kmem cache that holds the hugepte.
389 		 */
390 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
391 		if (more > next)
392 			next = more;
393 
394 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
395 				  addr, next, floor, ceiling);
396 	} while (addr = next, addr != end);
397 
398 	start &= PUD_MASK;
399 	if (start < floor)
400 		return;
401 	if (ceiling) {
402 		ceiling &= PUD_MASK;
403 		if (!ceiling)
404 			return;
405 	}
406 	if (end - 1 > ceiling - 1)
407 		return;
408 
409 	pmd = pmd_offset(pud, start);
410 	pud_clear(pud);
411 	pmd_free_tlb(tlb, pmd, start);
412 	mm_dec_nr_pmds(tlb->mm);
413 }
414 
415 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
416 				   unsigned long addr, unsigned long end,
417 				   unsigned long floor, unsigned long ceiling)
418 {
419 	pud_t *pud;
420 	unsigned long next;
421 	unsigned long start;
422 
423 	start = addr;
424 	do {
425 		pud = pud_offset(p4d, addr);
426 		next = pud_addr_end(addr, end);
427 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
428 			if (pud_none_or_clear_bad(pud))
429 				continue;
430 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
431 					       ceiling);
432 		} else {
433 			unsigned long more;
434 			/*
435 			 * Increment next by the size of the huge mapping since
436 			 * there may be more than one entry at this level for a
437 			 * single hugepage, but all of them point to
438 			 * the same kmem cache that holds the hugepte.
439 			 */
440 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
441 			if (more > next)
442 				next = more;
443 
444 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
445 					  addr, next, floor, ceiling);
446 		}
447 	} while (addr = next, addr != end);
448 
449 	start &= PGDIR_MASK;
450 	if (start < floor)
451 		return;
452 	if (ceiling) {
453 		ceiling &= PGDIR_MASK;
454 		if (!ceiling)
455 			return;
456 	}
457 	if (end - 1 > ceiling - 1)
458 		return;
459 
460 	pud = pud_offset(p4d, start);
461 	p4d_clear(p4d);
462 	pud_free_tlb(tlb, pud, start);
463 	mm_dec_nr_puds(tlb->mm);
464 }
465 
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
470 			    unsigned long addr, unsigned long end,
471 			    unsigned long floor, unsigned long ceiling)
472 {
473 	pgd_t *pgd;
474 	p4d_t *p4d;
475 	unsigned long next;
476 
477 	/*
478 	 * Because there are a number of different possible pagetable
479 	 * layouts for hugepage ranges, we limit knowledge of how
480 	 * things should be laid out to the allocation path
481 	 * (huge_pte_alloc(), above).  Everything else works out the
482 	 * structure as it goes from information in the hugepd
483 	 * pointers.  That means that we can't here use the
484 	 * optimization used in the normal page free_pgd_range(), of
485 	 * checking whether we're actually covering a large enough
486 	 * range to have to do anything at the top level of the walk
487 	 * instead of at the bottom.
488 	 *
489 	 * To make sense of this, you should probably go read the big
490 	 * block comment at the top of the normal free_pgd_range(),
491 	 * too.
492 	 */
493 
494 	do {
495 		next = pgd_addr_end(addr, end);
496 		pgd = pgd_offset(tlb->mm, addr);
497 		p4d = p4d_offset(pgd, addr);
498 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
499 			if (p4d_none_or_clear_bad(p4d))
500 				continue;
501 			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
502 		} else {
503 			unsigned long more;
504 			/*
505 			 * Increment next by the size of the huge mapping since
506 			 * there may be more than one entry at the pgd level
507 			 * for a single hugepage, but all of them point to the
508 			 * same kmem cache that holds the hugepte.
509 			 */
510 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
511 			if (more > next)
512 				next = more;
513 
514 			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
515 					  addr, next, floor, ceiling);
516 		}
517 	} while (addr = next, addr != end);
518 }
519 
520 struct page *follow_huge_pd(struct vm_area_struct *vma,
521 			    unsigned long address, hugepd_t hpd,
522 			    int flags, int pdshift)
523 {
524 	pte_t *ptep;
525 	spinlock_t *ptl;
526 	struct page *page = NULL;
527 	unsigned long mask;
528 	int shift = hugepd_shift(hpd);
529 	struct mm_struct *mm = vma->vm_mm;
530 
531 retry:
532 	/*
533 	 * hugepage directory entries are protected by mm->page_table_lock
534 	 * Use this instead of huge_pte_lockptr
535 	 */
536 	ptl = &mm->page_table_lock;
537 	spin_lock(ptl);
538 
539 	ptep = hugepte_offset(hpd, address, pdshift);
540 	if (pte_present(*ptep)) {
541 		mask = (1UL << shift) - 1;
542 		page = pte_page(*ptep);
543 		page += ((address & mask) >> PAGE_SHIFT);
544 		if (flags & FOLL_GET)
545 			get_page(page);
546 	} else {
547 		if (is_hugetlb_entry_migration(*ptep)) {
548 			spin_unlock(ptl);
549 			__migration_entry_wait(mm, ptep, ptl);
550 			goto retry;
551 		}
552 	}
553 	spin_unlock(ptl);
554 	return page;
555 }
556 
557 #ifdef CONFIG_PPC_MM_SLICES
558 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
559 					unsigned long len, unsigned long pgoff,
560 					unsigned long flags)
561 {
562 	struct hstate *hstate = hstate_file(file);
563 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
564 
565 #ifdef CONFIG_PPC_RADIX_MMU
566 	if (radix_enabled())
567 		return radix__hugetlb_get_unmapped_area(file, addr, len,
568 						       pgoff, flags);
569 #endif
570 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
571 }
572 #endif
573 
574 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
575 {
576 	/* With radix we don't use slice, so derive it from vma*/
577 	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
578 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
579 
580 		return 1UL << mmu_psize_to_shift(psize);
581 	}
582 	return vma_kernel_pagesize(vma);
583 }
584 
585 bool __init arch_hugetlb_valid_size(unsigned long size)
586 {
587 	int shift = __ffs(size);
588 	int mmu_psize;
589 
590 	/* Check that it is a page size supported by the hardware and
591 	 * that it fits within pagetable and slice limits. */
592 	if (size <= PAGE_SIZE || !is_power_of_2(size))
593 		return false;
594 
595 	mmu_psize = check_and_get_huge_psize(shift);
596 	if (mmu_psize < 0)
597 		return false;
598 
599 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
600 
601 	return true;
602 }
603 
604 static int __init add_huge_page_size(unsigned long long size)
605 {
606 	int shift = __ffs(size);
607 
608 	if (!arch_hugetlb_valid_size((unsigned long)size))
609 		return -EINVAL;
610 
611 	hugetlb_add_hstate(shift - PAGE_SHIFT);
612 	return 0;
613 }
614 
615 static int __init hugetlbpage_init(void)
616 {
617 	bool configured = false;
618 	int psize;
619 
620 	if (hugetlb_disabled) {
621 		pr_info("HugeTLB support is disabled!\n");
622 		return 0;
623 	}
624 
625 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
626 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
627 		return -ENODEV;
628 
629 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
630 		unsigned shift;
631 		unsigned pdshift;
632 
633 		if (!mmu_psize_defs[psize].shift)
634 			continue;
635 
636 		shift = mmu_psize_to_shift(psize);
637 
638 #ifdef CONFIG_PPC_BOOK3S_64
639 		if (shift > PGDIR_SHIFT)
640 			continue;
641 		else if (shift > PUD_SHIFT)
642 			pdshift = PGDIR_SHIFT;
643 		else if (shift > PMD_SHIFT)
644 			pdshift = PUD_SHIFT;
645 		else
646 			pdshift = PMD_SHIFT;
647 #else
648 		if (shift < PUD_SHIFT)
649 			pdshift = PMD_SHIFT;
650 		else if (shift < PGDIR_SHIFT)
651 			pdshift = PUD_SHIFT;
652 		else
653 			pdshift = PGDIR_SHIFT;
654 #endif
655 
656 		if (add_huge_page_size(1ULL << shift) < 0)
657 			continue;
658 		/*
659 		 * if we have pdshift and shift value same, we don't
660 		 * use pgt cache for hugepd.
661 		 */
662 		if (pdshift > shift) {
663 			if (!IS_ENABLED(CONFIG_PPC_8xx))
664 				pgtable_cache_add(pdshift - shift);
665 		} else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
666 			   IS_ENABLED(CONFIG_PPC_8xx)) {
667 			pgtable_cache_add(PTE_T_ORDER);
668 		}
669 
670 		configured = true;
671 	}
672 
673 	if (configured) {
674 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
675 			hugetlbpage_init_default();
676 	} else
677 		pr_info("Failed to initialize. Disabling HugeTLB");
678 
679 	return 0;
680 }
681 
682 arch_initcall(hugetlbpage_init);
683 
684 void flush_dcache_icache_hugepage(struct page *page)
685 {
686 	int i;
687 	void *start;
688 
689 	BUG_ON(!PageCompound(page));
690 
691 	for (i = 0; i < compound_nr(page); i++) {
692 		if (!PageHighMem(page)) {
693 			__flush_dcache_icache(page_address(page+i));
694 		} else {
695 			start = kmap_atomic(page+i);
696 			__flush_dcache_icache(start);
697 			kunmap_atomic(start);
698 		}
699 	}
700 }
701 
702 void __init gigantic_hugetlb_cma_reserve(void)
703 {
704 	unsigned long order = 0;
705 
706 	if (radix_enabled())
707 		order = PUD_SHIFT - PAGE_SHIFT;
708 	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
709 		/*
710 		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
711 		 */
712 		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
713 
714 	if (order) {
715 		VM_WARN_ON(order < MAX_ORDER);
716 		hugetlb_cma_reserve(order);
717 	}
718 }
719