1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 #include <asm/hugetlb.h> 25 26 #ifdef CONFIG_HUGETLB_PAGE 27 28 #define PAGE_SHIFT_64K 16 29 #define PAGE_SHIFT_16M 24 30 #define PAGE_SHIFT_16G 34 31 32 unsigned int HPAGE_SHIFT; 33 34 /* 35 * Tracks gpages after the device tree is scanned and before the 36 * huge_boot_pages list is ready. On non-Freescale implementations, this is 37 * just used to track 16G pages and so is a single array. FSL-based 38 * implementations may have more than one gpage size, so we need multiple 39 * arrays 40 */ 41 #ifdef CONFIG_PPC_FSL_BOOK3E 42 #define MAX_NUMBER_GPAGES 128 43 struct psize_gpages { 44 u64 gpage_list[MAX_NUMBER_GPAGES]; 45 unsigned int nr_gpages; 46 }; 47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 48 #else 49 #define MAX_NUMBER_GPAGES 1024 50 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 51 static unsigned nr_gpages; 52 #endif 53 54 #define hugepd_none(hpd) ((hpd).pd == 0) 55 56 #ifdef CONFIG_PPC_BOOK3S_64 57 /* 58 * At this point we do the placement change only for BOOK3S 64. This would 59 * possibly work on other subarchs. 60 */ 61 62 /* 63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have 64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; 65 * 66 * Defined in such a way that we can optimize away code block at build time 67 * if CONFIG_HUGETLB_PAGE=n. 68 */ 69 int pmd_huge(pmd_t pmd) 70 { 71 /* 72 * leaf pte for huge page, bottom two bits != 00 73 */ 74 return ((pmd_val(pmd) & 0x3) != 0x0); 75 } 76 77 int pud_huge(pud_t pud) 78 { 79 /* 80 * leaf pte for huge page, bottom two bits != 00 81 */ 82 return ((pud_val(pud) & 0x3) != 0x0); 83 } 84 85 int pgd_huge(pgd_t pgd) 86 { 87 /* 88 * leaf pte for huge page, bottom two bits != 00 89 */ 90 return ((pgd_val(pgd) & 0x3) != 0x0); 91 } 92 93 #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_DEBUG_VM) 94 /* 95 * This enables us to catch the wrong page directory format 96 * Moved here so that we can use WARN() in the call. 97 */ 98 int hugepd_ok(hugepd_t hpd) 99 { 100 bool is_hugepd; 101 102 /* 103 * We should not find this format in page directory, warn otherwise. 104 */ 105 is_hugepd = (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0)); 106 WARN(is_hugepd, "Found wrong page directory format\n"); 107 return 0; 108 } 109 #endif 110 111 #else 112 int pmd_huge(pmd_t pmd) 113 { 114 return 0; 115 } 116 117 int pud_huge(pud_t pud) 118 { 119 return 0; 120 } 121 122 int pgd_huge(pgd_t pgd) 123 { 124 return 0; 125 } 126 #endif 127 128 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 129 { 130 /* Only called for hugetlbfs pages, hence can ignore THP */ 131 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL); 132 } 133 134 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 135 unsigned long address, unsigned pdshift, unsigned pshift) 136 { 137 struct kmem_cache *cachep; 138 pte_t *new; 139 140 #ifdef CONFIG_PPC_FSL_BOOK3E 141 int i; 142 int num_hugepd = 1 << (pshift - pdshift); 143 cachep = hugepte_cache; 144 #else 145 cachep = PGT_CACHE(pdshift - pshift); 146 #endif 147 148 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 149 150 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 151 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 152 153 if (! new) 154 return -ENOMEM; 155 156 spin_lock(&mm->page_table_lock); 157 #ifdef CONFIG_PPC_FSL_BOOK3E 158 /* 159 * We have multiple higher-level entries that point to the same 160 * actual pte location. Fill in each as we go and backtrack on error. 161 * We need all of these so the DTLB pgtable walk code can find the 162 * right higher-level entry without knowing if it's a hugepage or not. 163 */ 164 for (i = 0; i < num_hugepd; i++, hpdp++) { 165 if (unlikely(!hugepd_none(*hpdp))) 166 break; 167 else 168 /* We use the old format for PPC_FSL_BOOK3E */ 169 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 170 } 171 /* If we bailed from the for loop early, an error occurred, clean up */ 172 if (i < num_hugepd) { 173 for (i = i - 1 ; i >= 0; i--, hpdp--) 174 hpdp->pd = 0; 175 kmem_cache_free(cachep, new); 176 } 177 #else 178 if (!hugepd_none(*hpdp)) 179 kmem_cache_free(cachep, new); 180 else { 181 #ifdef CONFIG_PPC_BOOK3S_64 182 hpdp->pd = (unsigned long)new | 183 (shift_to_mmu_psize(pshift) << 2); 184 #else 185 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 186 #endif 187 } 188 #endif 189 spin_unlock(&mm->page_table_lock); 190 return 0; 191 } 192 193 /* 194 * These macros define how to determine which level of the page table holds 195 * the hpdp. 196 */ 197 #ifdef CONFIG_PPC_FSL_BOOK3E 198 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 199 #define HUGEPD_PUD_SHIFT PUD_SHIFT 200 #else 201 #define HUGEPD_PGD_SHIFT PUD_SHIFT 202 #define HUGEPD_PUD_SHIFT PMD_SHIFT 203 #endif 204 205 #ifdef CONFIG_PPC_BOOK3S_64 206 /* 207 * At this point we do the placement change only for BOOK3S 64. This would 208 * possibly work on other subarchs. 209 */ 210 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 211 { 212 pgd_t *pg; 213 pud_t *pu; 214 pmd_t *pm; 215 hugepd_t *hpdp = NULL; 216 unsigned pshift = __ffs(sz); 217 unsigned pdshift = PGDIR_SHIFT; 218 219 addr &= ~(sz-1); 220 pg = pgd_offset(mm, addr); 221 222 if (pshift == PGDIR_SHIFT) 223 /* 16GB huge page */ 224 return (pte_t *) pg; 225 else if (pshift > PUD_SHIFT) 226 /* 227 * We need to use hugepd table 228 */ 229 hpdp = (hugepd_t *)pg; 230 else { 231 pdshift = PUD_SHIFT; 232 pu = pud_alloc(mm, pg, addr); 233 if (pshift == PUD_SHIFT) 234 return (pte_t *)pu; 235 else if (pshift > PMD_SHIFT) 236 hpdp = (hugepd_t *)pu; 237 else { 238 pdshift = PMD_SHIFT; 239 pm = pmd_alloc(mm, pu, addr); 240 if (pshift == PMD_SHIFT) 241 /* 16MB hugepage */ 242 return (pte_t *)pm; 243 else 244 hpdp = (hugepd_t *)pm; 245 } 246 } 247 if (!hpdp) 248 return NULL; 249 250 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 251 252 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 253 return NULL; 254 255 return hugepte_offset(*hpdp, addr, pdshift); 256 } 257 258 #else 259 260 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 261 { 262 pgd_t *pg; 263 pud_t *pu; 264 pmd_t *pm; 265 hugepd_t *hpdp = NULL; 266 unsigned pshift = __ffs(sz); 267 unsigned pdshift = PGDIR_SHIFT; 268 269 addr &= ~(sz-1); 270 271 pg = pgd_offset(mm, addr); 272 273 if (pshift >= HUGEPD_PGD_SHIFT) { 274 hpdp = (hugepd_t *)pg; 275 } else { 276 pdshift = PUD_SHIFT; 277 pu = pud_alloc(mm, pg, addr); 278 if (pshift >= HUGEPD_PUD_SHIFT) { 279 hpdp = (hugepd_t *)pu; 280 } else { 281 pdshift = PMD_SHIFT; 282 pm = pmd_alloc(mm, pu, addr); 283 hpdp = (hugepd_t *)pm; 284 } 285 } 286 287 if (!hpdp) 288 return NULL; 289 290 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 291 292 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 293 return NULL; 294 295 return hugepte_offset(*hpdp, addr, pdshift); 296 } 297 #endif 298 299 #ifdef CONFIG_PPC_FSL_BOOK3E 300 /* Build list of addresses of gigantic pages. This function is used in early 301 * boot before the buddy allocator is setup. 302 */ 303 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 304 { 305 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 306 int i; 307 308 if (addr == 0) 309 return; 310 311 gpage_freearray[idx].nr_gpages = number_of_pages; 312 313 for (i = 0; i < number_of_pages; i++) { 314 gpage_freearray[idx].gpage_list[i] = addr; 315 addr += page_size; 316 } 317 } 318 319 /* 320 * Moves the gigantic page addresses from the temporary list to the 321 * huge_boot_pages list. 322 */ 323 int alloc_bootmem_huge_page(struct hstate *hstate) 324 { 325 struct huge_bootmem_page *m; 326 int idx = shift_to_mmu_psize(huge_page_shift(hstate)); 327 int nr_gpages = gpage_freearray[idx].nr_gpages; 328 329 if (nr_gpages == 0) 330 return 0; 331 332 #ifdef CONFIG_HIGHMEM 333 /* 334 * If gpages can be in highmem we can't use the trick of storing the 335 * data structure in the page; allocate space for this 336 */ 337 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0); 338 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 339 #else 340 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 341 #endif 342 343 list_add(&m->list, &huge_boot_pages); 344 gpage_freearray[idx].nr_gpages = nr_gpages; 345 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 346 m->hstate = hstate; 347 348 return 1; 349 } 350 /* 351 * Scan the command line hugepagesz= options for gigantic pages; store those in 352 * a list that we use to allocate the memory once all options are parsed. 353 */ 354 355 unsigned long gpage_npages[MMU_PAGE_COUNT]; 356 357 static int __init do_gpage_early_setup(char *param, char *val, 358 const char *unused, void *arg) 359 { 360 static phys_addr_t size; 361 unsigned long npages; 362 363 /* 364 * The hugepagesz and hugepages cmdline options are interleaved. We 365 * use the size variable to keep track of whether or not this was done 366 * properly and skip over instances where it is incorrect. Other 367 * command-line parsing code will issue warnings, so we don't need to. 368 * 369 */ 370 if ((strcmp(param, "default_hugepagesz") == 0) || 371 (strcmp(param, "hugepagesz") == 0)) { 372 size = memparse(val, NULL); 373 } else if (strcmp(param, "hugepages") == 0) { 374 if (size != 0) { 375 if (sscanf(val, "%lu", &npages) <= 0) 376 npages = 0; 377 if (npages > MAX_NUMBER_GPAGES) { 378 pr_warn("MMU: %lu pages requested for page " 379 "size %llu KB, limiting to " 380 __stringify(MAX_NUMBER_GPAGES) "\n", 381 npages, size / 1024); 382 npages = MAX_NUMBER_GPAGES; 383 } 384 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 385 size = 0; 386 } 387 } 388 return 0; 389 } 390 391 392 /* 393 * This function allocates physical space for pages that are larger than the 394 * buddy allocator can handle. We want to allocate these in highmem because 395 * the amount of lowmem is limited. This means that this function MUST be 396 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 397 * allocate to grab highmem. 398 */ 399 void __init reserve_hugetlb_gpages(void) 400 { 401 static __initdata char cmdline[COMMAND_LINE_SIZE]; 402 phys_addr_t size, base; 403 int i; 404 405 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 406 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 407 NULL, &do_gpage_early_setup); 408 409 /* 410 * Walk gpage list in reverse, allocating larger page sizes first. 411 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 412 * When we reach the point in the list where pages are no longer 413 * considered gpages, we're done. 414 */ 415 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 416 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 417 continue; 418 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 419 break; 420 421 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 422 base = memblock_alloc_base(size * gpage_npages[i], size, 423 MEMBLOCK_ALLOC_ANYWHERE); 424 add_gpage(base, size, gpage_npages[i]); 425 } 426 } 427 428 #else /* !PPC_FSL_BOOK3E */ 429 430 /* Build list of addresses of gigantic pages. This function is used in early 431 * boot before the buddy allocator is setup. 432 */ 433 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 434 { 435 if (!addr) 436 return; 437 while (number_of_pages > 0) { 438 gpage_freearray[nr_gpages] = addr; 439 nr_gpages++; 440 number_of_pages--; 441 addr += page_size; 442 } 443 } 444 445 /* Moves the gigantic page addresses from the temporary list to the 446 * huge_boot_pages list. 447 */ 448 int alloc_bootmem_huge_page(struct hstate *hstate) 449 { 450 struct huge_bootmem_page *m; 451 if (nr_gpages == 0) 452 return 0; 453 m = phys_to_virt(gpage_freearray[--nr_gpages]); 454 gpage_freearray[nr_gpages] = 0; 455 list_add(&m->list, &huge_boot_pages); 456 m->hstate = hstate; 457 return 1; 458 } 459 #endif 460 461 #ifdef CONFIG_PPC_FSL_BOOK3E 462 #define HUGEPD_FREELIST_SIZE \ 463 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 464 465 struct hugepd_freelist { 466 struct rcu_head rcu; 467 unsigned int index; 468 void *ptes[0]; 469 }; 470 471 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 472 473 static void hugepd_free_rcu_callback(struct rcu_head *head) 474 { 475 struct hugepd_freelist *batch = 476 container_of(head, struct hugepd_freelist, rcu); 477 unsigned int i; 478 479 for (i = 0; i < batch->index; i++) 480 kmem_cache_free(hugepte_cache, batch->ptes[i]); 481 482 free_page((unsigned long)batch); 483 } 484 485 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 486 { 487 struct hugepd_freelist **batchp; 488 489 batchp = this_cpu_ptr(&hugepd_freelist_cur); 490 491 if (atomic_read(&tlb->mm->mm_users) < 2 || 492 cpumask_equal(mm_cpumask(tlb->mm), 493 cpumask_of(smp_processor_id()))) { 494 kmem_cache_free(hugepte_cache, hugepte); 495 put_cpu_var(hugepd_freelist_cur); 496 return; 497 } 498 499 if (*batchp == NULL) { 500 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 501 (*batchp)->index = 0; 502 } 503 504 (*batchp)->ptes[(*batchp)->index++] = hugepte; 505 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 506 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 507 *batchp = NULL; 508 } 509 put_cpu_var(hugepd_freelist_cur); 510 } 511 #endif 512 513 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 514 unsigned long start, unsigned long end, 515 unsigned long floor, unsigned long ceiling) 516 { 517 pte_t *hugepte = hugepd_page(*hpdp); 518 int i; 519 520 unsigned long pdmask = ~((1UL << pdshift) - 1); 521 unsigned int num_hugepd = 1; 522 523 #ifdef CONFIG_PPC_FSL_BOOK3E 524 /* Note: On fsl the hpdp may be the first of several */ 525 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 526 #else 527 unsigned int shift = hugepd_shift(*hpdp); 528 #endif 529 530 start &= pdmask; 531 if (start < floor) 532 return; 533 if (ceiling) { 534 ceiling &= pdmask; 535 if (! ceiling) 536 return; 537 } 538 if (end - 1 > ceiling - 1) 539 return; 540 541 for (i = 0; i < num_hugepd; i++, hpdp++) 542 hpdp->pd = 0; 543 544 #ifdef CONFIG_PPC_FSL_BOOK3E 545 hugepd_free(tlb, hugepte); 546 #else 547 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 548 #endif 549 } 550 551 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 552 unsigned long addr, unsigned long end, 553 unsigned long floor, unsigned long ceiling) 554 { 555 pmd_t *pmd; 556 unsigned long next; 557 unsigned long start; 558 559 start = addr; 560 do { 561 pmd = pmd_offset(pud, addr); 562 next = pmd_addr_end(addr, end); 563 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 564 /* 565 * if it is not hugepd pointer, we should already find 566 * it cleared. 567 */ 568 WARN_ON(!pmd_none_or_clear_bad(pmd)); 569 continue; 570 } 571 #ifdef CONFIG_PPC_FSL_BOOK3E 572 /* 573 * Increment next by the size of the huge mapping since 574 * there may be more than one entry at this level for a 575 * single hugepage, but all of them point to 576 * the same kmem cache that holds the hugepte. 577 */ 578 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 579 #endif 580 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 581 addr, next, floor, ceiling); 582 } while (addr = next, addr != end); 583 584 start &= PUD_MASK; 585 if (start < floor) 586 return; 587 if (ceiling) { 588 ceiling &= PUD_MASK; 589 if (!ceiling) 590 return; 591 } 592 if (end - 1 > ceiling - 1) 593 return; 594 595 pmd = pmd_offset(pud, start); 596 pud_clear(pud); 597 pmd_free_tlb(tlb, pmd, start); 598 mm_dec_nr_pmds(tlb->mm); 599 } 600 601 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 602 unsigned long addr, unsigned long end, 603 unsigned long floor, unsigned long ceiling) 604 { 605 pud_t *pud; 606 unsigned long next; 607 unsigned long start; 608 609 start = addr; 610 do { 611 pud = pud_offset(pgd, addr); 612 next = pud_addr_end(addr, end); 613 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 614 if (pud_none_or_clear_bad(pud)) 615 continue; 616 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 617 ceiling); 618 } else { 619 #ifdef CONFIG_PPC_FSL_BOOK3E 620 /* 621 * Increment next by the size of the huge mapping since 622 * there may be more than one entry at this level for a 623 * single hugepage, but all of them point to 624 * the same kmem cache that holds the hugepte. 625 */ 626 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 627 #endif 628 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 629 addr, next, floor, ceiling); 630 } 631 } while (addr = next, addr != end); 632 633 start &= PGDIR_MASK; 634 if (start < floor) 635 return; 636 if (ceiling) { 637 ceiling &= PGDIR_MASK; 638 if (!ceiling) 639 return; 640 } 641 if (end - 1 > ceiling - 1) 642 return; 643 644 pud = pud_offset(pgd, start); 645 pgd_clear(pgd); 646 pud_free_tlb(tlb, pud, start); 647 } 648 649 /* 650 * This function frees user-level page tables of a process. 651 */ 652 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 653 unsigned long addr, unsigned long end, 654 unsigned long floor, unsigned long ceiling) 655 { 656 pgd_t *pgd; 657 unsigned long next; 658 659 /* 660 * Because there are a number of different possible pagetable 661 * layouts for hugepage ranges, we limit knowledge of how 662 * things should be laid out to the allocation path 663 * (huge_pte_alloc(), above). Everything else works out the 664 * structure as it goes from information in the hugepd 665 * pointers. That means that we can't here use the 666 * optimization used in the normal page free_pgd_range(), of 667 * checking whether we're actually covering a large enough 668 * range to have to do anything at the top level of the walk 669 * instead of at the bottom. 670 * 671 * To make sense of this, you should probably go read the big 672 * block comment at the top of the normal free_pgd_range(), 673 * too. 674 */ 675 676 do { 677 next = pgd_addr_end(addr, end); 678 pgd = pgd_offset(tlb->mm, addr); 679 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 680 if (pgd_none_or_clear_bad(pgd)) 681 continue; 682 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 683 } else { 684 #ifdef CONFIG_PPC_FSL_BOOK3E 685 /* 686 * Increment next by the size of the huge mapping since 687 * there may be more than one entry at the pgd level 688 * for a single hugepage, but all of them point to the 689 * same kmem cache that holds the hugepte. 690 */ 691 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 692 #endif 693 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 694 addr, next, floor, ceiling); 695 } 696 } while (addr = next, addr != end); 697 } 698 699 /* 700 * We are holding mmap_sem, so a parallel huge page collapse cannot run. 701 * To prevent hugepage split, disable irq. 702 */ 703 struct page * 704 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 705 { 706 bool is_thp; 707 pte_t *ptep, pte; 708 unsigned shift; 709 unsigned long mask, flags; 710 struct page *page = ERR_PTR(-EINVAL); 711 712 local_irq_save(flags); 713 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift); 714 if (!ptep) 715 goto no_page; 716 pte = READ_ONCE(*ptep); 717 /* 718 * Verify it is a huge page else bail. 719 * Transparent hugepages are handled by generic code. We can skip them 720 * here. 721 */ 722 if (!shift || is_thp) 723 goto no_page; 724 725 if (!pte_present(pte)) { 726 page = NULL; 727 goto no_page; 728 } 729 mask = (1UL << shift) - 1; 730 page = pte_page(pte); 731 if (page) 732 page += (address & mask) / PAGE_SIZE; 733 734 no_page: 735 local_irq_restore(flags); 736 return page; 737 } 738 739 struct page * 740 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 741 pmd_t *pmd, int write) 742 { 743 BUG(); 744 return NULL; 745 } 746 747 struct page * 748 follow_huge_pud(struct mm_struct *mm, unsigned long address, 749 pud_t *pud, int write) 750 { 751 BUG(); 752 return NULL; 753 } 754 755 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 756 unsigned long sz) 757 { 758 unsigned long __boundary = (addr + sz) & ~(sz-1); 759 return (__boundary - 1 < end - 1) ? __boundary : end; 760 } 761 762 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 763 unsigned long end, int write, struct page **pages, int *nr) 764 { 765 pte_t *ptep; 766 unsigned long sz = 1UL << hugepd_shift(hugepd); 767 unsigned long next; 768 769 ptep = hugepte_offset(hugepd, addr, pdshift); 770 do { 771 next = hugepte_addr_end(addr, end, sz); 772 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 773 return 0; 774 } while (ptep++, addr = next, addr != end); 775 776 return 1; 777 } 778 779 #ifdef CONFIG_PPC_MM_SLICES 780 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 781 unsigned long len, unsigned long pgoff, 782 unsigned long flags) 783 { 784 struct hstate *hstate = hstate_file(file); 785 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 786 787 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 788 } 789 #endif 790 791 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 792 { 793 #ifdef CONFIG_PPC_MM_SLICES 794 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 795 796 return 1UL << mmu_psize_to_shift(psize); 797 #else 798 if (!is_vm_hugetlb_page(vma)) 799 return PAGE_SIZE; 800 801 return huge_page_size(hstate_vma(vma)); 802 #endif 803 } 804 805 static inline bool is_power_of_4(unsigned long x) 806 { 807 if (is_power_of_2(x)) 808 return (__ilog2(x) % 2) ? false : true; 809 return false; 810 } 811 812 static int __init add_huge_page_size(unsigned long long size) 813 { 814 int shift = __ffs(size); 815 int mmu_psize; 816 817 /* Check that it is a page size supported by the hardware and 818 * that it fits within pagetable and slice limits. */ 819 #ifdef CONFIG_PPC_FSL_BOOK3E 820 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 821 return -EINVAL; 822 #else 823 if (!is_power_of_2(size) 824 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 825 return -EINVAL; 826 #endif 827 828 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 829 return -EINVAL; 830 831 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 832 833 /* Return if huge page size has already been setup */ 834 if (size_to_hstate(size)) 835 return 0; 836 837 hugetlb_add_hstate(shift - PAGE_SHIFT); 838 839 return 0; 840 } 841 842 static int __init hugepage_setup_sz(char *str) 843 { 844 unsigned long long size; 845 846 size = memparse(str, &str); 847 848 if (add_huge_page_size(size) != 0) 849 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 850 851 return 1; 852 } 853 __setup("hugepagesz=", hugepage_setup_sz); 854 855 #ifdef CONFIG_PPC_FSL_BOOK3E 856 struct kmem_cache *hugepte_cache; 857 static int __init hugetlbpage_init(void) 858 { 859 int psize; 860 861 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 862 unsigned shift; 863 864 if (!mmu_psize_defs[psize].shift) 865 continue; 866 867 shift = mmu_psize_to_shift(psize); 868 869 /* Don't treat normal page sizes as huge... */ 870 if (shift != PAGE_SHIFT) 871 if (add_huge_page_size(1ULL << shift) < 0) 872 continue; 873 } 874 875 /* 876 * Create a kmem cache for hugeptes. The bottom bits in the pte have 877 * size information encoded in them, so align them to allow this 878 */ 879 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 880 HUGEPD_SHIFT_MASK + 1, 0, NULL); 881 if (hugepte_cache == NULL) 882 panic("%s: Unable to create kmem cache for hugeptes\n", 883 __func__); 884 885 /* Default hpage size = 4M */ 886 if (mmu_psize_defs[MMU_PAGE_4M].shift) 887 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 888 else 889 panic("%s: Unable to set default huge page size\n", __func__); 890 891 892 return 0; 893 } 894 #else 895 static int __init hugetlbpage_init(void) 896 { 897 int psize; 898 899 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 900 return -ENODEV; 901 902 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 903 unsigned shift; 904 unsigned pdshift; 905 906 if (!mmu_psize_defs[psize].shift) 907 continue; 908 909 shift = mmu_psize_to_shift(psize); 910 911 if (add_huge_page_size(1ULL << shift) < 0) 912 continue; 913 914 if (shift < PMD_SHIFT) 915 pdshift = PMD_SHIFT; 916 else if (shift < PUD_SHIFT) 917 pdshift = PUD_SHIFT; 918 else 919 pdshift = PGDIR_SHIFT; 920 /* 921 * if we have pdshift and shift value same, we don't 922 * use pgt cache for hugepd. 923 */ 924 if (pdshift != shift) { 925 pgtable_cache_add(pdshift - shift, NULL); 926 if (!PGT_CACHE(pdshift - shift)) 927 panic("hugetlbpage_init(): could not create " 928 "pgtable cache for %d bit pagesize\n", shift); 929 } 930 } 931 932 /* Set default large page size. Currently, we pick 16M or 1M 933 * depending on what is available 934 */ 935 if (mmu_psize_defs[MMU_PAGE_16M].shift) 936 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 937 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 938 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 939 940 return 0; 941 } 942 #endif 943 arch_initcall(hugetlbpage_init); 944 945 void flush_dcache_icache_hugepage(struct page *page) 946 { 947 int i; 948 void *start; 949 950 BUG_ON(!PageCompound(page)); 951 952 for (i = 0; i < (1UL << compound_order(page)); i++) { 953 if (!PageHighMem(page)) { 954 __flush_dcache_icache(page_address(page+i)); 955 } else { 956 start = kmap_atomic(page+i); 957 __flush_dcache_icache(start); 958 kunmap_atomic(start); 959 } 960 } 961 } 962 963 #endif /* CONFIG_HUGETLB_PAGE */ 964 965 /* 966 * We have 4 cases for pgds and pmds: 967 * (1) invalid (all zeroes) 968 * (2) pointer to next table, as normal; bottom 6 bits == 0 969 * (3) leaf pte for huge page, bottom two bits != 00 970 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table 971 * 972 * So long as we atomically load page table pointers we are safe against teardown, 973 * we can follow the address down to the the page and take a ref on it. 974 * This function need to be called with interrupts disabled. We use this variant 975 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1 976 */ 977 978 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 979 bool *is_thp, unsigned *shift) 980 { 981 pgd_t pgd, *pgdp; 982 pud_t pud, *pudp; 983 pmd_t pmd, *pmdp; 984 pte_t *ret_pte; 985 hugepd_t *hpdp = NULL; 986 unsigned pdshift = PGDIR_SHIFT; 987 988 if (shift) 989 *shift = 0; 990 991 if (is_thp) 992 *is_thp = false; 993 994 pgdp = pgdir + pgd_index(ea); 995 pgd = READ_ONCE(*pgdp); 996 /* 997 * Always operate on the local stack value. This make sure the 998 * value don't get updated by a parallel THP split/collapse, 999 * page fault or a page unmap. The return pte_t * is still not 1000 * stable. So should be checked there for above conditions. 1001 */ 1002 if (pgd_none(pgd)) 1003 return NULL; 1004 else if (pgd_huge(pgd)) { 1005 ret_pte = (pte_t *) pgdp; 1006 goto out; 1007 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 1008 hpdp = (hugepd_t *)&pgd; 1009 else { 1010 /* 1011 * Even if we end up with an unmap, the pgtable will not 1012 * be freed, because we do an rcu free and here we are 1013 * irq disabled 1014 */ 1015 pdshift = PUD_SHIFT; 1016 pudp = pud_offset(&pgd, ea); 1017 pud = READ_ONCE(*pudp); 1018 1019 if (pud_none(pud)) 1020 return NULL; 1021 else if (pud_huge(pud)) { 1022 ret_pte = (pte_t *) pudp; 1023 goto out; 1024 } else if (is_hugepd(__hugepd(pud_val(pud)))) 1025 hpdp = (hugepd_t *)&pud; 1026 else { 1027 pdshift = PMD_SHIFT; 1028 pmdp = pmd_offset(&pud, ea); 1029 pmd = READ_ONCE(*pmdp); 1030 /* 1031 * A hugepage collapse is captured by pmd_none, because 1032 * it mark the pmd none and do a hpte invalidate. 1033 * 1034 * We don't worry about pmd_trans_splitting here, The 1035 * caller if it needs to handle the splitting case 1036 * should check for that. 1037 */ 1038 if (pmd_none(pmd)) 1039 return NULL; 1040 1041 if (pmd_trans_huge(pmd)) { 1042 if (is_thp) 1043 *is_thp = true; 1044 ret_pte = (pte_t *) pmdp; 1045 goto out; 1046 } 1047 1048 if (pmd_huge(pmd)) { 1049 ret_pte = (pte_t *) pmdp; 1050 goto out; 1051 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 1052 hpdp = (hugepd_t *)&pmd; 1053 else 1054 return pte_offset_kernel(&pmd, ea); 1055 } 1056 } 1057 if (!hpdp) 1058 return NULL; 1059 1060 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 1061 pdshift = hugepd_shift(*hpdp); 1062 out: 1063 if (shift) 1064 *shift = pdshift; 1065 return ret_pte; 1066 } 1067 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte); 1068 1069 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1070 unsigned long end, int write, struct page **pages, int *nr) 1071 { 1072 unsigned long mask; 1073 unsigned long pte_end; 1074 struct page *head, *page, *tail; 1075 pte_t pte; 1076 int refs; 1077 1078 pte_end = (addr + sz) & ~(sz-1); 1079 if (pte_end < end) 1080 end = pte_end; 1081 1082 pte = READ_ONCE(*ptep); 1083 mask = _PAGE_PRESENT | _PAGE_USER; 1084 if (write) 1085 mask |= _PAGE_RW; 1086 1087 if ((pte_val(pte) & mask) != mask) 1088 return 0; 1089 1090 /* hugepages are never "special" */ 1091 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1092 1093 refs = 0; 1094 head = pte_page(pte); 1095 1096 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1097 tail = page; 1098 do { 1099 VM_BUG_ON(compound_head(page) != head); 1100 pages[*nr] = page; 1101 (*nr)++; 1102 page++; 1103 refs++; 1104 } while (addr += PAGE_SIZE, addr != end); 1105 1106 if (!page_cache_add_speculative(head, refs)) { 1107 *nr -= refs; 1108 return 0; 1109 } 1110 1111 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1112 /* Could be optimized better */ 1113 *nr -= refs; 1114 while (refs--) 1115 put_page(head); 1116 return 0; 1117 } 1118 1119 /* 1120 * Any tail page need their mapcount reference taken before we 1121 * return. 1122 */ 1123 while (refs--) { 1124 if (PageTail(tail)) 1125 get_huge_page_tail(tail); 1126 tail++; 1127 } 1128 1129 return 1; 1130 } 1131