xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 0edbfea5)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
57 {
58 	/* Only called for hugetlbfs pages, hence can ignore THP */
59 	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
60 }
61 
62 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
63 			   unsigned long address, unsigned pdshift, unsigned pshift)
64 {
65 	struct kmem_cache *cachep;
66 	pte_t *new;
67 
68 #ifdef CONFIG_PPC_FSL_BOOK3E
69 	int i;
70 	int num_hugepd = 1 << (pshift - pdshift);
71 	cachep = hugepte_cache;
72 #else
73 	cachep = PGT_CACHE(pdshift - pshift);
74 #endif
75 
76 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
77 
78 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
80 
81 	if (! new)
82 		return -ENOMEM;
83 
84 	spin_lock(&mm->page_table_lock);
85 #ifdef CONFIG_PPC_FSL_BOOK3E
86 	/*
87 	 * We have multiple higher-level entries that point to the same
88 	 * actual pte location.  Fill in each as we go and backtrack on error.
89 	 * We need all of these so the DTLB pgtable walk code can find the
90 	 * right higher-level entry without knowing if it's a hugepage or not.
91 	 */
92 	for (i = 0; i < num_hugepd; i++, hpdp++) {
93 		if (unlikely(!hugepd_none(*hpdp)))
94 			break;
95 		else
96 			/* We use the old format for PPC_FSL_BOOK3E */
97 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
98 	}
99 	/* If we bailed from the for loop early, an error occurred, clean up */
100 	if (i < num_hugepd) {
101 		for (i = i - 1 ; i >= 0; i--, hpdp--)
102 			hpdp->pd = 0;
103 		kmem_cache_free(cachep, new);
104 	}
105 #else
106 	if (!hugepd_none(*hpdp))
107 		kmem_cache_free(cachep, new);
108 	else {
109 #ifdef CONFIG_PPC_BOOK3S_64
110 		hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
111 #else
112 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
113 #endif
114 	}
115 #endif
116 	spin_unlock(&mm->page_table_lock);
117 	return 0;
118 }
119 
120 /*
121  * These macros define how to determine which level of the page table holds
122  * the hpdp.
123  */
124 #ifdef CONFIG_PPC_FSL_BOOK3E
125 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
126 #define HUGEPD_PUD_SHIFT PUD_SHIFT
127 #else
128 #define HUGEPD_PGD_SHIFT PUD_SHIFT
129 #define HUGEPD_PUD_SHIFT PMD_SHIFT
130 #endif
131 
132 #ifdef CONFIG_PPC_BOOK3S_64
133 /*
134  * At this point we do the placement change only for BOOK3S 64. This would
135  * possibly work on other subarchs.
136  */
137 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
138 {
139 	pgd_t *pg;
140 	pud_t *pu;
141 	pmd_t *pm;
142 	hugepd_t *hpdp = NULL;
143 	unsigned pshift = __ffs(sz);
144 	unsigned pdshift = PGDIR_SHIFT;
145 
146 	addr &= ~(sz-1);
147 	pg = pgd_offset(mm, addr);
148 
149 	if (pshift == PGDIR_SHIFT)
150 		/* 16GB huge page */
151 		return (pte_t *) pg;
152 	else if (pshift > PUD_SHIFT)
153 		/*
154 		 * We need to use hugepd table
155 		 */
156 		hpdp = (hugepd_t *)pg;
157 	else {
158 		pdshift = PUD_SHIFT;
159 		pu = pud_alloc(mm, pg, addr);
160 		if (pshift == PUD_SHIFT)
161 			return (pte_t *)pu;
162 		else if (pshift > PMD_SHIFT)
163 			hpdp = (hugepd_t *)pu;
164 		else {
165 			pdshift = PMD_SHIFT;
166 			pm = pmd_alloc(mm, pu, addr);
167 			if (pshift == PMD_SHIFT)
168 				/* 16MB hugepage */
169 				return (pte_t *)pm;
170 			else
171 				hpdp = (hugepd_t *)pm;
172 		}
173 	}
174 	if (!hpdp)
175 		return NULL;
176 
177 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
178 
179 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
180 		return NULL;
181 
182 	return hugepte_offset(*hpdp, addr, pdshift);
183 }
184 
185 #else
186 
187 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
188 {
189 	pgd_t *pg;
190 	pud_t *pu;
191 	pmd_t *pm;
192 	hugepd_t *hpdp = NULL;
193 	unsigned pshift = __ffs(sz);
194 	unsigned pdshift = PGDIR_SHIFT;
195 
196 	addr &= ~(sz-1);
197 
198 	pg = pgd_offset(mm, addr);
199 
200 	if (pshift >= HUGEPD_PGD_SHIFT) {
201 		hpdp = (hugepd_t *)pg;
202 	} else {
203 		pdshift = PUD_SHIFT;
204 		pu = pud_alloc(mm, pg, addr);
205 		if (pshift >= HUGEPD_PUD_SHIFT) {
206 			hpdp = (hugepd_t *)pu;
207 		} else {
208 			pdshift = PMD_SHIFT;
209 			pm = pmd_alloc(mm, pu, addr);
210 			hpdp = (hugepd_t *)pm;
211 		}
212 	}
213 
214 	if (!hpdp)
215 		return NULL;
216 
217 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
218 
219 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
220 		return NULL;
221 
222 	return hugepte_offset(*hpdp, addr, pdshift);
223 }
224 #endif
225 
226 #ifdef CONFIG_PPC_FSL_BOOK3E
227 /* Build list of addresses of gigantic pages.  This function is used in early
228  * boot before the buddy allocator is setup.
229  */
230 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
231 {
232 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
233 	int i;
234 
235 	if (addr == 0)
236 		return;
237 
238 	gpage_freearray[idx].nr_gpages = number_of_pages;
239 
240 	for (i = 0; i < number_of_pages; i++) {
241 		gpage_freearray[idx].gpage_list[i] = addr;
242 		addr += page_size;
243 	}
244 }
245 
246 /*
247  * Moves the gigantic page addresses from the temporary list to the
248  * huge_boot_pages list.
249  */
250 int alloc_bootmem_huge_page(struct hstate *hstate)
251 {
252 	struct huge_bootmem_page *m;
253 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
254 	int nr_gpages = gpage_freearray[idx].nr_gpages;
255 
256 	if (nr_gpages == 0)
257 		return 0;
258 
259 #ifdef CONFIG_HIGHMEM
260 	/*
261 	 * If gpages can be in highmem we can't use the trick of storing the
262 	 * data structure in the page; allocate space for this
263 	 */
264 	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
265 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
266 #else
267 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
268 #endif
269 
270 	list_add(&m->list, &huge_boot_pages);
271 	gpage_freearray[idx].nr_gpages = nr_gpages;
272 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
273 	m->hstate = hstate;
274 
275 	return 1;
276 }
277 /*
278  * Scan the command line hugepagesz= options for gigantic pages; store those in
279  * a list that we use to allocate the memory once all options are parsed.
280  */
281 
282 unsigned long gpage_npages[MMU_PAGE_COUNT];
283 
284 static int __init do_gpage_early_setup(char *param, char *val,
285 				       const char *unused, void *arg)
286 {
287 	static phys_addr_t size;
288 	unsigned long npages;
289 
290 	/*
291 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
292 	 * use the size variable to keep track of whether or not this was done
293 	 * properly and skip over instances where it is incorrect.  Other
294 	 * command-line parsing code will issue warnings, so we don't need to.
295 	 *
296 	 */
297 	if ((strcmp(param, "default_hugepagesz") == 0) ||
298 	    (strcmp(param, "hugepagesz") == 0)) {
299 		size = memparse(val, NULL);
300 	} else if (strcmp(param, "hugepages") == 0) {
301 		if (size != 0) {
302 			if (sscanf(val, "%lu", &npages) <= 0)
303 				npages = 0;
304 			if (npages > MAX_NUMBER_GPAGES) {
305 				pr_warn("MMU: %lu pages requested for page "
306 					"size %llu KB, limiting to "
307 					__stringify(MAX_NUMBER_GPAGES) "\n",
308 					npages, size / 1024);
309 				npages = MAX_NUMBER_GPAGES;
310 			}
311 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
312 			size = 0;
313 		}
314 	}
315 	return 0;
316 }
317 
318 
319 /*
320  * This function allocates physical space for pages that are larger than the
321  * buddy allocator can handle.  We want to allocate these in highmem because
322  * the amount of lowmem is limited.  This means that this function MUST be
323  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
324  * allocate to grab highmem.
325  */
326 void __init reserve_hugetlb_gpages(void)
327 {
328 	static __initdata char cmdline[COMMAND_LINE_SIZE];
329 	phys_addr_t size, base;
330 	int i;
331 
332 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
333 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
334 			NULL, &do_gpage_early_setup);
335 
336 	/*
337 	 * Walk gpage list in reverse, allocating larger page sizes first.
338 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
339 	 * When we reach the point in the list where pages are no longer
340 	 * considered gpages, we're done.
341 	 */
342 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
343 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
344 			continue;
345 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
346 			break;
347 
348 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
349 		base = memblock_alloc_base(size * gpage_npages[i], size,
350 					   MEMBLOCK_ALLOC_ANYWHERE);
351 		add_gpage(base, size, gpage_npages[i]);
352 	}
353 }
354 
355 #else /* !PPC_FSL_BOOK3E */
356 
357 /* Build list of addresses of gigantic pages.  This function is used in early
358  * boot before the buddy allocator is setup.
359  */
360 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
361 {
362 	if (!addr)
363 		return;
364 	while (number_of_pages > 0) {
365 		gpage_freearray[nr_gpages] = addr;
366 		nr_gpages++;
367 		number_of_pages--;
368 		addr += page_size;
369 	}
370 }
371 
372 /* Moves the gigantic page addresses from the temporary list to the
373  * huge_boot_pages list.
374  */
375 int alloc_bootmem_huge_page(struct hstate *hstate)
376 {
377 	struct huge_bootmem_page *m;
378 	if (nr_gpages == 0)
379 		return 0;
380 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
381 	gpage_freearray[nr_gpages] = 0;
382 	list_add(&m->list, &huge_boot_pages);
383 	m->hstate = hstate;
384 	return 1;
385 }
386 #endif
387 
388 #ifdef CONFIG_PPC_FSL_BOOK3E
389 #define HUGEPD_FREELIST_SIZE \
390 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
391 
392 struct hugepd_freelist {
393 	struct rcu_head	rcu;
394 	unsigned int index;
395 	void *ptes[0];
396 };
397 
398 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
399 
400 static void hugepd_free_rcu_callback(struct rcu_head *head)
401 {
402 	struct hugepd_freelist *batch =
403 		container_of(head, struct hugepd_freelist, rcu);
404 	unsigned int i;
405 
406 	for (i = 0; i < batch->index; i++)
407 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
408 
409 	free_page((unsigned long)batch);
410 }
411 
412 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
413 {
414 	struct hugepd_freelist **batchp;
415 
416 	batchp = &get_cpu_var(hugepd_freelist_cur);
417 
418 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
419 	    cpumask_equal(mm_cpumask(tlb->mm),
420 			  cpumask_of(smp_processor_id()))) {
421 		kmem_cache_free(hugepte_cache, hugepte);
422 		put_cpu_var(hugepd_freelist_cur);
423 		return;
424 	}
425 
426 	if (*batchp == NULL) {
427 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
428 		(*batchp)->index = 0;
429 	}
430 
431 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
432 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
433 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
434 		*batchp = NULL;
435 	}
436 	put_cpu_var(hugepd_freelist_cur);
437 }
438 #endif
439 
440 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
441 			      unsigned long start, unsigned long end,
442 			      unsigned long floor, unsigned long ceiling)
443 {
444 	pte_t *hugepte = hugepd_page(*hpdp);
445 	int i;
446 
447 	unsigned long pdmask = ~((1UL << pdshift) - 1);
448 	unsigned int num_hugepd = 1;
449 
450 #ifdef CONFIG_PPC_FSL_BOOK3E
451 	/* Note: On fsl the hpdp may be the first of several */
452 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
453 #else
454 	unsigned int shift = hugepd_shift(*hpdp);
455 #endif
456 
457 	start &= pdmask;
458 	if (start < floor)
459 		return;
460 	if (ceiling) {
461 		ceiling &= pdmask;
462 		if (! ceiling)
463 			return;
464 	}
465 	if (end - 1 > ceiling - 1)
466 		return;
467 
468 	for (i = 0; i < num_hugepd; i++, hpdp++)
469 		hpdp->pd = 0;
470 
471 #ifdef CONFIG_PPC_FSL_BOOK3E
472 	hugepd_free(tlb, hugepte);
473 #else
474 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
475 #endif
476 }
477 
478 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
479 				   unsigned long addr, unsigned long end,
480 				   unsigned long floor, unsigned long ceiling)
481 {
482 	pmd_t *pmd;
483 	unsigned long next;
484 	unsigned long start;
485 
486 	start = addr;
487 	do {
488 		pmd = pmd_offset(pud, addr);
489 		next = pmd_addr_end(addr, end);
490 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
491 			/*
492 			 * if it is not hugepd pointer, we should already find
493 			 * it cleared.
494 			 */
495 			WARN_ON(!pmd_none_or_clear_bad(pmd));
496 			continue;
497 		}
498 #ifdef CONFIG_PPC_FSL_BOOK3E
499 		/*
500 		 * Increment next by the size of the huge mapping since
501 		 * there may be more than one entry at this level for a
502 		 * single hugepage, but all of them point to
503 		 * the same kmem cache that holds the hugepte.
504 		 */
505 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
506 #endif
507 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
508 				  addr, next, floor, ceiling);
509 	} while (addr = next, addr != end);
510 
511 	start &= PUD_MASK;
512 	if (start < floor)
513 		return;
514 	if (ceiling) {
515 		ceiling &= PUD_MASK;
516 		if (!ceiling)
517 			return;
518 	}
519 	if (end - 1 > ceiling - 1)
520 		return;
521 
522 	pmd = pmd_offset(pud, start);
523 	pud_clear(pud);
524 	pmd_free_tlb(tlb, pmd, start);
525 	mm_dec_nr_pmds(tlb->mm);
526 }
527 
528 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
529 				   unsigned long addr, unsigned long end,
530 				   unsigned long floor, unsigned long ceiling)
531 {
532 	pud_t *pud;
533 	unsigned long next;
534 	unsigned long start;
535 
536 	start = addr;
537 	do {
538 		pud = pud_offset(pgd, addr);
539 		next = pud_addr_end(addr, end);
540 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
541 			if (pud_none_or_clear_bad(pud))
542 				continue;
543 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
544 					       ceiling);
545 		} else {
546 #ifdef CONFIG_PPC_FSL_BOOK3E
547 			/*
548 			 * Increment next by the size of the huge mapping since
549 			 * there may be more than one entry at this level for a
550 			 * single hugepage, but all of them point to
551 			 * the same kmem cache that holds the hugepte.
552 			 */
553 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
554 #endif
555 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
556 					  addr, next, floor, ceiling);
557 		}
558 	} while (addr = next, addr != end);
559 
560 	start &= PGDIR_MASK;
561 	if (start < floor)
562 		return;
563 	if (ceiling) {
564 		ceiling &= PGDIR_MASK;
565 		if (!ceiling)
566 			return;
567 	}
568 	if (end - 1 > ceiling - 1)
569 		return;
570 
571 	pud = pud_offset(pgd, start);
572 	pgd_clear(pgd);
573 	pud_free_tlb(tlb, pud, start);
574 }
575 
576 /*
577  * This function frees user-level page tables of a process.
578  */
579 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
580 			    unsigned long addr, unsigned long end,
581 			    unsigned long floor, unsigned long ceiling)
582 {
583 	pgd_t *pgd;
584 	unsigned long next;
585 
586 	/*
587 	 * Because there are a number of different possible pagetable
588 	 * layouts for hugepage ranges, we limit knowledge of how
589 	 * things should be laid out to the allocation path
590 	 * (huge_pte_alloc(), above).  Everything else works out the
591 	 * structure as it goes from information in the hugepd
592 	 * pointers.  That means that we can't here use the
593 	 * optimization used in the normal page free_pgd_range(), of
594 	 * checking whether we're actually covering a large enough
595 	 * range to have to do anything at the top level of the walk
596 	 * instead of at the bottom.
597 	 *
598 	 * To make sense of this, you should probably go read the big
599 	 * block comment at the top of the normal free_pgd_range(),
600 	 * too.
601 	 */
602 
603 	do {
604 		next = pgd_addr_end(addr, end);
605 		pgd = pgd_offset(tlb->mm, addr);
606 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
607 			if (pgd_none_or_clear_bad(pgd))
608 				continue;
609 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
610 		} else {
611 #ifdef CONFIG_PPC_FSL_BOOK3E
612 			/*
613 			 * Increment next by the size of the huge mapping since
614 			 * there may be more than one entry at the pgd level
615 			 * for a single hugepage, but all of them point to the
616 			 * same kmem cache that holds the hugepte.
617 			 */
618 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
619 #endif
620 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
621 					  addr, next, floor, ceiling);
622 		}
623 	} while (addr = next, addr != end);
624 }
625 
626 /*
627  * We are holding mmap_sem, so a parallel huge page collapse cannot run.
628  * To prevent hugepage split, disable irq.
629  */
630 struct page *
631 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
632 {
633 	bool is_thp;
634 	pte_t *ptep, pte;
635 	unsigned shift;
636 	unsigned long mask, flags;
637 	struct page *page = ERR_PTR(-EINVAL);
638 
639 	local_irq_save(flags);
640 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
641 	if (!ptep)
642 		goto no_page;
643 	pte = READ_ONCE(*ptep);
644 	/*
645 	 * Verify it is a huge page else bail.
646 	 * Transparent hugepages are handled by generic code. We can skip them
647 	 * here.
648 	 */
649 	if (!shift || is_thp)
650 		goto no_page;
651 
652 	if (!pte_present(pte)) {
653 		page = NULL;
654 		goto no_page;
655 	}
656 	mask = (1UL << shift) - 1;
657 	page = pte_page(pte);
658 	if (page)
659 		page += (address & mask) / PAGE_SIZE;
660 
661 no_page:
662 	local_irq_restore(flags);
663 	return page;
664 }
665 
666 struct page *
667 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
668 		pmd_t *pmd, int write)
669 {
670 	BUG();
671 	return NULL;
672 }
673 
674 struct page *
675 follow_huge_pud(struct mm_struct *mm, unsigned long address,
676 		pud_t *pud, int write)
677 {
678 	BUG();
679 	return NULL;
680 }
681 
682 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
683 				      unsigned long sz)
684 {
685 	unsigned long __boundary = (addr + sz) & ~(sz-1);
686 	return (__boundary - 1 < end - 1) ? __boundary : end;
687 }
688 
689 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
690 		unsigned long end, int write, struct page **pages, int *nr)
691 {
692 	pte_t *ptep;
693 	unsigned long sz = 1UL << hugepd_shift(hugepd);
694 	unsigned long next;
695 
696 	ptep = hugepte_offset(hugepd, addr, pdshift);
697 	do {
698 		next = hugepte_addr_end(addr, end, sz);
699 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
700 			return 0;
701 	} while (ptep++, addr = next, addr != end);
702 
703 	return 1;
704 }
705 
706 #ifdef CONFIG_PPC_MM_SLICES
707 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
708 					unsigned long len, unsigned long pgoff,
709 					unsigned long flags)
710 {
711 	struct hstate *hstate = hstate_file(file);
712 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
713 
714 	if (radix_enabled())
715 		return radix__hugetlb_get_unmapped_area(file, addr, len,
716 						       pgoff, flags);
717 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
718 }
719 #endif
720 
721 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
722 {
723 #ifdef CONFIG_PPC_MM_SLICES
724 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
725 	/* With radix we don't use slice, so derive it from vma*/
726 	if (!radix_enabled())
727 		return 1UL << mmu_psize_to_shift(psize);
728 #endif
729 	if (!is_vm_hugetlb_page(vma))
730 		return PAGE_SIZE;
731 
732 	return huge_page_size(hstate_vma(vma));
733 }
734 
735 static inline bool is_power_of_4(unsigned long x)
736 {
737 	if (is_power_of_2(x))
738 		return (__ilog2(x) % 2) ? false : true;
739 	return false;
740 }
741 
742 static int __init add_huge_page_size(unsigned long long size)
743 {
744 	int shift = __ffs(size);
745 	int mmu_psize;
746 
747 	/* Check that it is a page size supported by the hardware and
748 	 * that it fits within pagetable and slice limits. */
749 #ifdef CONFIG_PPC_FSL_BOOK3E
750 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
751 		return -EINVAL;
752 #else
753 	if (!is_power_of_2(size)
754 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
755 		return -EINVAL;
756 #endif
757 
758 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
759 		return -EINVAL;
760 
761 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
762 
763 	/* Return if huge page size has already been setup */
764 	if (size_to_hstate(size))
765 		return 0;
766 
767 	hugetlb_add_hstate(shift - PAGE_SHIFT);
768 
769 	return 0;
770 }
771 
772 static int __init hugepage_setup_sz(char *str)
773 {
774 	unsigned long long size;
775 
776 	size = memparse(str, &str);
777 
778 	if (add_huge_page_size(size) != 0) {
779 		hugetlb_bad_size();
780 		pr_err("Invalid huge page size specified(%llu)\n", size);
781 	}
782 
783 	return 1;
784 }
785 __setup("hugepagesz=", hugepage_setup_sz);
786 
787 #ifdef CONFIG_PPC_FSL_BOOK3E
788 struct kmem_cache *hugepte_cache;
789 static int __init hugetlbpage_init(void)
790 {
791 	int psize;
792 
793 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
794 		unsigned shift;
795 
796 		if (!mmu_psize_defs[psize].shift)
797 			continue;
798 
799 		shift = mmu_psize_to_shift(psize);
800 
801 		/* Don't treat normal page sizes as huge... */
802 		if (shift != PAGE_SHIFT)
803 			if (add_huge_page_size(1ULL << shift) < 0)
804 				continue;
805 	}
806 
807 	/*
808 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
809 	 * size information encoded in them, so align them to allow this
810 	 */
811 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
812 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
813 	if (hugepte_cache == NULL)
814 		panic("%s: Unable to create kmem cache for hugeptes\n",
815 		      __func__);
816 
817 	/* Default hpage size = 4M */
818 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
819 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
820 	else
821 		panic("%s: Unable to set default huge page size\n", __func__);
822 
823 
824 	return 0;
825 }
826 #else
827 static int __init hugetlbpage_init(void)
828 {
829 	int psize;
830 
831 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
832 		return -ENODEV;
833 
834 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
835 		unsigned shift;
836 		unsigned pdshift;
837 
838 		if (!mmu_psize_defs[psize].shift)
839 			continue;
840 
841 		shift = mmu_psize_to_shift(psize);
842 
843 		if (add_huge_page_size(1ULL << shift) < 0)
844 			continue;
845 
846 		if (shift < PMD_SHIFT)
847 			pdshift = PMD_SHIFT;
848 		else if (shift < PUD_SHIFT)
849 			pdshift = PUD_SHIFT;
850 		else
851 			pdshift = PGDIR_SHIFT;
852 		/*
853 		 * if we have pdshift and shift value same, we don't
854 		 * use pgt cache for hugepd.
855 		 */
856 		if (pdshift != shift) {
857 			pgtable_cache_add(pdshift - shift, NULL);
858 			if (!PGT_CACHE(pdshift - shift))
859 				panic("hugetlbpage_init(): could not create "
860 				      "pgtable cache for %d bit pagesize\n", shift);
861 		}
862 	}
863 
864 	/* Set default large page size. Currently, we pick 16M or 1M
865 	 * depending on what is available
866 	 */
867 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
868 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
869 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
870 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
871 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
872 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
873 
874 
875 	return 0;
876 }
877 #endif
878 arch_initcall(hugetlbpage_init);
879 
880 void flush_dcache_icache_hugepage(struct page *page)
881 {
882 	int i;
883 	void *start;
884 
885 	BUG_ON(!PageCompound(page));
886 
887 	for (i = 0; i < (1UL << compound_order(page)); i++) {
888 		if (!PageHighMem(page)) {
889 			__flush_dcache_icache(page_address(page+i));
890 		} else {
891 			start = kmap_atomic(page+i);
892 			__flush_dcache_icache(start);
893 			kunmap_atomic(start);
894 		}
895 	}
896 }
897 
898 #endif /* CONFIG_HUGETLB_PAGE */
899 
900 /*
901  * We have 4 cases for pgds and pmds:
902  * (1) invalid (all zeroes)
903  * (2) pointer to next table, as normal; bottom 6 bits == 0
904  * (3) leaf pte for huge page _PAGE_PTE set
905  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
906  *
907  * So long as we atomically load page table pointers we are safe against teardown,
908  * we can follow the address down to the the page and take a ref on it.
909  * This function need to be called with interrupts disabled. We use this variant
910  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
911  */
912 
913 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
914 				   bool *is_thp, unsigned *shift)
915 {
916 	pgd_t pgd, *pgdp;
917 	pud_t pud, *pudp;
918 	pmd_t pmd, *pmdp;
919 	pte_t *ret_pte;
920 	hugepd_t *hpdp = NULL;
921 	unsigned pdshift = PGDIR_SHIFT;
922 
923 	if (shift)
924 		*shift = 0;
925 
926 	if (is_thp)
927 		*is_thp = false;
928 
929 	pgdp = pgdir + pgd_index(ea);
930 	pgd  = READ_ONCE(*pgdp);
931 	/*
932 	 * Always operate on the local stack value. This make sure the
933 	 * value don't get updated by a parallel THP split/collapse,
934 	 * page fault or a page unmap. The return pte_t * is still not
935 	 * stable. So should be checked there for above conditions.
936 	 */
937 	if (pgd_none(pgd))
938 		return NULL;
939 	else if (pgd_huge(pgd)) {
940 		ret_pte = (pte_t *) pgdp;
941 		goto out;
942 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
943 		hpdp = (hugepd_t *)&pgd;
944 	else {
945 		/*
946 		 * Even if we end up with an unmap, the pgtable will not
947 		 * be freed, because we do an rcu free and here we are
948 		 * irq disabled
949 		 */
950 		pdshift = PUD_SHIFT;
951 		pudp = pud_offset(&pgd, ea);
952 		pud  = READ_ONCE(*pudp);
953 
954 		if (pud_none(pud))
955 			return NULL;
956 		else if (pud_huge(pud)) {
957 			ret_pte = (pte_t *) pudp;
958 			goto out;
959 		} else if (is_hugepd(__hugepd(pud_val(pud))))
960 			hpdp = (hugepd_t *)&pud;
961 		else {
962 			pdshift = PMD_SHIFT;
963 			pmdp = pmd_offset(&pud, ea);
964 			pmd  = READ_ONCE(*pmdp);
965 			/*
966 			 * A hugepage collapse is captured by pmd_none, because
967 			 * it mark the pmd none and do a hpte invalidate.
968 			 */
969 			if (pmd_none(pmd))
970 				return NULL;
971 
972 			if (pmd_trans_huge(pmd)) {
973 				if (is_thp)
974 					*is_thp = true;
975 				ret_pte = (pte_t *) pmdp;
976 				goto out;
977 			}
978 
979 			if (pmd_huge(pmd)) {
980 				ret_pte = (pte_t *) pmdp;
981 				goto out;
982 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
983 				hpdp = (hugepd_t *)&pmd;
984 			else
985 				return pte_offset_kernel(&pmd, ea);
986 		}
987 	}
988 	if (!hpdp)
989 		return NULL;
990 
991 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
992 	pdshift = hugepd_shift(*hpdp);
993 out:
994 	if (shift)
995 		*shift = pdshift;
996 	return ret_pte;
997 }
998 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
999 
1000 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1001 		unsigned long end, int write, struct page **pages, int *nr)
1002 {
1003 	unsigned long mask;
1004 	unsigned long pte_end;
1005 	struct page *head, *page;
1006 	pte_t pte;
1007 	int refs;
1008 
1009 	pte_end = (addr + sz) & ~(sz-1);
1010 	if (pte_end < end)
1011 		end = pte_end;
1012 
1013 	pte = READ_ONCE(*ptep);
1014 	mask = _PAGE_PRESENT | _PAGE_READ;
1015 	if (write)
1016 		mask |= _PAGE_WRITE;
1017 
1018 	if ((pte_val(pte) & mask) != mask)
1019 		return 0;
1020 
1021 	/* hugepages are never "special" */
1022 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1023 
1024 	refs = 0;
1025 	head = pte_page(pte);
1026 
1027 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1028 	do {
1029 		VM_BUG_ON(compound_head(page) != head);
1030 		pages[*nr] = page;
1031 		(*nr)++;
1032 		page++;
1033 		refs++;
1034 	} while (addr += PAGE_SIZE, addr != end);
1035 
1036 	if (!page_cache_add_speculative(head, refs)) {
1037 		*nr -= refs;
1038 		return 0;
1039 	}
1040 
1041 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1042 		/* Could be optimized better */
1043 		*nr -= refs;
1044 		while (refs--)
1045 			put_page(head);
1046 		return 0;
1047 	}
1048 
1049 	return 1;
1050 }
1051