xref: /openbmc/linux/arch/powerpc/mm/hugetlbpage.c (revision 075a46a0)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/io.h>
12 #include <linux/slab.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgtable.h>
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 
18 #define PAGE_SHIFT_64K	16
19 #define PAGE_SHIFT_16M	24
20 #define PAGE_SHIFT_16G	34
21 
22 #define MAX_NUMBER_GPAGES	1024
23 
24 /* Tracks the 16G pages after the device tree is scanned and before the
25  * huge_boot_pages list is ready.  */
26 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
27 static unsigned nr_gpages;
28 
29 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
30  * will choke on pointers to hugepte tables, which is handy for
31  * catching screwups early. */
32 
33 static inline int shift_to_mmu_psize(unsigned int shift)
34 {
35 	int psize;
36 
37 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
38 		if (mmu_psize_defs[psize].shift == shift)
39 			return psize;
40 	return -1;
41 }
42 
43 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
44 {
45 	if (mmu_psize_defs[mmu_psize].shift)
46 		return mmu_psize_defs[mmu_psize].shift;
47 	BUG();
48 }
49 
50 #define hugepd_none(hpd)	((hpd).pd == 0)
51 
52 static inline pte_t *hugepd_page(hugepd_t hpd)
53 {
54 	BUG_ON(!hugepd_ok(hpd));
55 	return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
56 }
57 
58 static inline unsigned int hugepd_shift(hugepd_t hpd)
59 {
60 	return hpd.pd & HUGEPD_SHIFT_MASK;
61 }
62 
63 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
64 {
65 	unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
66 	pte_t *dir = hugepd_page(*hpdp);
67 
68 	return dir + idx;
69 }
70 
71 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
72 {
73 	pgd_t *pg;
74 	pud_t *pu;
75 	pmd_t *pm;
76 	hugepd_t *hpdp = NULL;
77 	unsigned pdshift = PGDIR_SHIFT;
78 
79 	if (shift)
80 		*shift = 0;
81 
82 	pg = pgdir + pgd_index(ea);
83 	if (is_hugepd(pg)) {
84 		hpdp = (hugepd_t *)pg;
85 	} else if (!pgd_none(*pg)) {
86 		pdshift = PUD_SHIFT;
87 		pu = pud_offset(pg, ea);
88 		if (is_hugepd(pu))
89 			hpdp = (hugepd_t *)pu;
90 		else if (!pud_none(*pu)) {
91 			pdshift = PMD_SHIFT;
92 			pm = pmd_offset(pu, ea);
93 			if (is_hugepd(pm))
94 				hpdp = (hugepd_t *)pm;
95 			else if (!pmd_none(*pm)) {
96 				return pte_offset_map(pm, ea);
97 			}
98 		}
99 	}
100 
101 	if (!hpdp)
102 		return NULL;
103 
104 	if (shift)
105 		*shift = hugepd_shift(*hpdp);
106 	return hugepte_offset(hpdp, ea, pdshift);
107 }
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112 }
113 
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115 			   unsigned long address, unsigned pdshift, unsigned pshift)
116 {
117 	pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
118 				       GFP_KERNEL|__GFP_REPEAT);
119 
120 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
121 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
122 
123 	if (! new)
124 		return -ENOMEM;
125 
126 	spin_lock(&mm->page_table_lock);
127 	if (!hugepd_none(*hpdp))
128 		kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
129 	else
130 		hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
131 	spin_unlock(&mm->page_table_lock);
132 	return 0;
133 }
134 
135 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
136 {
137 	pgd_t *pg;
138 	pud_t *pu;
139 	pmd_t *pm;
140 	hugepd_t *hpdp = NULL;
141 	unsigned pshift = __ffs(sz);
142 	unsigned pdshift = PGDIR_SHIFT;
143 
144 	addr &= ~(sz-1);
145 
146 	pg = pgd_offset(mm, addr);
147 	if (pshift >= PUD_SHIFT) {
148 		hpdp = (hugepd_t *)pg;
149 	} else {
150 		pdshift = PUD_SHIFT;
151 		pu = pud_alloc(mm, pg, addr);
152 		if (pshift >= PMD_SHIFT) {
153 			hpdp = (hugepd_t *)pu;
154 		} else {
155 			pdshift = PMD_SHIFT;
156 			pm = pmd_alloc(mm, pu, addr);
157 			hpdp = (hugepd_t *)pm;
158 		}
159 	}
160 
161 	if (!hpdp)
162 		return NULL;
163 
164 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
165 
166 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
167 		return NULL;
168 
169 	return hugepte_offset(hpdp, addr, pdshift);
170 }
171 
172 /* Build list of addresses of gigantic pages.  This function is used in early
173  * boot before the buddy or bootmem allocator is setup.
174  */
175 void add_gpage(unsigned long addr, unsigned long page_size,
176 	unsigned long number_of_pages)
177 {
178 	if (!addr)
179 		return;
180 	while (number_of_pages > 0) {
181 		gpage_freearray[nr_gpages] = addr;
182 		nr_gpages++;
183 		number_of_pages--;
184 		addr += page_size;
185 	}
186 }
187 
188 /* Moves the gigantic page addresses from the temporary list to the
189  * huge_boot_pages list.
190  */
191 int alloc_bootmem_huge_page(struct hstate *hstate)
192 {
193 	struct huge_bootmem_page *m;
194 	if (nr_gpages == 0)
195 		return 0;
196 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
197 	gpage_freearray[nr_gpages] = 0;
198 	list_add(&m->list, &huge_boot_pages);
199 	m->hstate = hstate;
200 	return 1;
201 }
202 
203 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
204 {
205 	return 0;
206 }
207 
208 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
209 			      unsigned long start, unsigned long end,
210 			      unsigned long floor, unsigned long ceiling)
211 {
212 	pte_t *hugepte = hugepd_page(*hpdp);
213 	unsigned shift = hugepd_shift(*hpdp);
214 	unsigned long pdmask = ~((1UL << pdshift) - 1);
215 
216 	start &= pdmask;
217 	if (start < floor)
218 		return;
219 	if (ceiling) {
220 		ceiling &= pdmask;
221 		if (! ceiling)
222 			return;
223 	}
224 	if (end - 1 > ceiling - 1)
225 		return;
226 
227 	hpdp->pd = 0;
228 	tlb->need_flush = 1;
229 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
230 }
231 
232 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
233 				   unsigned long addr, unsigned long end,
234 				   unsigned long floor, unsigned long ceiling)
235 {
236 	pmd_t *pmd;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pmd = pmd_offset(pud, addr);
242 	do {
243 		next = pmd_addr_end(addr, end);
244 		if (pmd_none(*pmd))
245 			continue;
246 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
247 				  addr, next, floor, ceiling);
248 	} while (pmd++, addr = next, addr != end);
249 
250 	start &= PUD_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= PUD_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pmd = pmd_offset(pud, start);
262 	pud_clear(pud);
263 	pmd_free_tlb(tlb, pmd, start);
264 }
265 
266 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				   unsigned long addr, unsigned long end,
268 				   unsigned long floor, unsigned long ceiling)
269 {
270 	pud_t *pud;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	pud = pud_offset(pgd, addr);
276 	do {
277 		next = pud_addr_end(addr, end);
278 		if (!is_hugepd(pud)) {
279 			if (pud_none_or_clear_bad(pud))
280 				continue;
281 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
282 					       ceiling);
283 		} else {
284 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
285 					  addr, next, floor, ceiling);
286 		}
287 	} while (pud++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	pud = pud_offset(pgd, start);
301 	pgd_clear(pgd);
302 	pud_free_tlb(tlb, pud, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  *
308  * Must be called with pagetable lock held.
309  */
310 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
311 			    unsigned long addr, unsigned long end,
312 			    unsigned long floor, unsigned long ceiling)
313 {
314 	pgd_t *pgd;
315 	unsigned long next;
316 
317 	/*
318 	 * Because there are a number of different possible pagetable
319 	 * layouts for hugepage ranges, we limit knowledge of how
320 	 * things should be laid out to the allocation path
321 	 * (huge_pte_alloc(), above).  Everything else works out the
322 	 * structure as it goes from information in the hugepd
323 	 * pointers.  That means that we can't here use the
324 	 * optimization used in the normal page free_pgd_range(), of
325 	 * checking whether we're actually covering a large enough
326 	 * range to have to do anything at the top level of the walk
327 	 * instead of at the bottom.
328 	 *
329 	 * To make sense of this, you should probably go read the big
330 	 * block comment at the top of the normal free_pgd_range(),
331 	 * too.
332 	 */
333 
334 	pgd = pgd_offset(tlb->mm, addr);
335 	do {
336 		next = pgd_addr_end(addr, end);
337 		if (!is_hugepd(pgd)) {
338 			if (pgd_none_or_clear_bad(pgd))
339 				continue;
340 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
341 		} else {
342 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
343 					  addr, next, floor, ceiling);
344 		}
345 	} while (pgd++, addr = next, addr != end);
346 }
347 
348 struct page *
349 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
350 {
351 	pte_t *ptep;
352 	struct page *page;
353 	unsigned shift;
354 	unsigned long mask;
355 
356 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
357 
358 	/* Verify it is a huge page else bail. */
359 	if (!ptep || !shift)
360 		return ERR_PTR(-EINVAL);
361 
362 	mask = (1UL << shift) - 1;
363 	page = pte_page(*ptep);
364 	if (page)
365 		page += (address & mask) / PAGE_SIZE;
366 
367 	return page;
368 }
369 
370 int pmd_huge(pmd_t pmd)
371 {
372 	return 0;
373 }
374 
375 int pud_huge(pud_t pud)
376 {
377 	return 0;
378 }
379 
380 struct page *
381 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
382 		pmd_t *pmd, int write)
383 {
384 	BUG();
385 	return NULL;
386 }
387 
388 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
389 		       unsigned long end, int write, struct page **pages, int *nr)
390 {
391 	unsigned long mask;
392 	unsigned long pte_end;
393 	struct page *head, *page;
394 	pte_t pte;
395 	int refs;
396 
397 	pte_end = (addr + sz) & ~(sz-1);
398 	if (pte_end < end)
399 		end = pte_end;
400 
401 	pte = *ptep;
402 	mask = _PAGE_PRESENT | _PAGE_USER;
403 	if (write)
404 		mask |= _PAGE_RW;
405 
406 	if ((pte_val(pte) & mask) != mask)
407 		return 0;
408 
409 	/* hugepages are never "special" */
410 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
411 
412 	refs = 0;
413 	head = pte_page(pte);
414 
415 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
416 	do {
417 		VM_BUG_ON(compound_head(page) != head);
418 		pages[*nr] = page;
419 		(*nr)++;
420 		page++;
421 		refs++;
422 	} while (addr += PAGE_SIZE, addr != end);
423 
424 	if (!page_cache_add_speculative(head, refs)) {
425 		*nr -= refs;
426 		return 0;
427 	}
428 
429 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
430 		/* Could be optimized better */
431 		while (*nr) {
432 			put_page(page);
433 			(*nr)--;
434 		}
435 	}
436 
437 	return 1;
438 }
439 
440 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
441 				      unsigned long sz)
442 {
443 	unsigned long __boundary = (addr + sz) & ~(sz-1);
444 	return (__boundary - 1 < end - 1) ? __boundary : end;
445 }
446 
447 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
448 	       unsigned long addr, unsigned long end,
449 	       int write, struct page **pages, int *nr)
450 {
451 	pte_t *ptep;
452 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
453 	unsigned long next;
454 
455 	ptep = hugepte_offset(hugepd, addr, pdshift);
456 	do {
457 		next = hugepte_addr_end(addr, end, sz);
458 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
459 			return 0;
460 	} while (ptep++, addr = next, addr != end);
461 
462 	return 1;
463 }
464 
465 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
466 					unsigned long len, unsigned long pgoff,
467 					unsigned long flags)
468 {
469 	struct hstate *hstate = hstate_file(file);
470 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
471 
472 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
473 }
474 
475 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
476 {
477 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
478 
479 	return 1UL << mmu_psize_to_shift(psize);
480 }
481 
482 static int __init add_huge_page_size(unsigned long long size)
483 {
484 	int shift = __ffs(size);
485 	int mmu_psize;
486 
487 	/* Check that it is a page size supported by the hardware and
488 	 * that it fits within pagetable and slice limits. */
489 	if (!is_power_of_2(size)
490 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
491 		return -EINVAL;
492 
493 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
494 		return -EINVAL;
495 
496 #ifdef CONFIG_SPU_FS_64K_LS
497 	/* Disable support for 64K huge pages when 64K SPU local store
498 	 * support is enabled as the current implementation conflicts.
499 	 */
500 	if (shift == PAGE_SHIFT_64K)
501 		return -EINVAL;
502 #endif /* CONFIG_SPU_FS_64K_LS */
503 
504 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
505 
506 	/* Return if huge page size has already been setup */
507 	if (size_to_hstate(size))
508 		return 0;
509 
510 	hugetlb_add_hstate(shift - PAGE_SHIFT);
511 
512 	return 0;
513 }
514 
515 static int __init hugepage_setup_sz(char *str)
516 {
517 	unsigned long long size;
518 
519 	size = memparse(str, &str);
520 
521 	if (add_huge_page_size(size) != 0)
522 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
523 
524 	return 1;
525 }
526 __setup("hugepagesz=", hugepage_setup_sz);
527 
528 static int __init hugetlbpage_init(void)
529 {
530 	int psize;
531 
532 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
533 		return -ENODEV;
534 
535 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
536 		unsigned shift;
537 		unsigned pdshift;
538 
539 		if (!mmu_psize_defs[psize].shift)
540 			continue;
541 
542 		shift = mmu_psize_to_shift(psize);
543 
544 		if (add_huge_page_size(1ULL << shift) < 0)
545 			continue;
546 
547 		if (shift < PMD_SHIFT)
548 			pdshift = PMD_SHIFT;
549 		else if (shift < PUD_SHIFT)
550 			pdshift = PUD_SHIFT;
551 		else
552 			pdshift = PGDIR_SHIFT;
553 
554 		pgtable_cache_add(pdshift - shift, NULL);
555 		if (!PGT_CACHE(pdshift - shift))
556 			panic("hugetlbpage_init(): could not create "
557 			      "pgtable cache for %d bit pagesize\n", shift);
558 	}
559 
560 	/* Set default large page size. Currently, we pick 16M or 1M
561 	 * depending on what is available
562 	 */
563 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
564 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
565 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
566 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
567 
568 	return 0;
569 }
570 
571 module_init(hugetlbpage_init);
572 
573 void flush_dcache_icache_hugepage(struct page *page)
574 {
575 	int i;
576 
577 	BUG_ON(!PageCompound(page));
578 
579 	for (i = 0; i < (1UL << compound_order(page)); i++)
580 		__flush_dcache_icache(page_address(page+i));
581 }
582