1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/moduleparam.h> 19 #include <linux/swap.h> 20 #include <linux/swapops.h> 21 #include <linux/kmemleak.h> 22 #include <asm/pgalloc.h> 23 #include <asm/tlb.h> 24 #include <asm/setup.h> 25 #include <asm/hugetlb.h> 26 #include <asm/pte-walk.h> 27 28 bool hugetlb_disabled = false; 29 30 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 31 32 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \ 33 __builtin_ffs(sizeof(void *))) 34 35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 36 { 37 /* 38 * Only called for hugetlbfs pages, hence can ignore THP and the 39 * irq disabled walk. 40 */ 41 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 42 } 43 44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 45 unsigned long address, unsigned int pdshift, 46 unsigned int pshift, spinlock_t *ptl) 47 { 48 struct kmem_cache *cachep; 49 pte_t *new; 50 int i; 51 int num_hugepd; 52 53 if (pshift >= pdshift) { 54 cachep = PGT_CACHE(PTE_T_ORDER); 55 num_hugepd = 1 << (pshift - pdshift); 56 } else { 57 cachep = PGT_CACHE(pdshift - pshift); 58 num_hugepd = 1; 59 } 60 61 if (!cachep) { 62 WARN_ONCE(1, "No page table cache created for hugetlb tables"); 63 return -ENOMEM; 64 } 65 66 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 67 68 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 69 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 70 71 if (!new) 72 return -ENOMEM; 73 74 /* 75 * Make sure other cpus find the hugepd set only after a 76 * properly initialized page table is visible to them. 77 * For more details look for comment in __pte_alloc(). 78 */ 79 smp_wmb(); 80 81 spin_lock(ptl); 82 /* 83 * We have multiple higher-level entries that point to the same 84 * actual pte location. Fill in each as we go and backtrack on error. 85 * We need all of these so the DTLB pgtable walk code can find the 86 * right higher-level entry without knowing if it's a hugepage or not. 87 */ 88 for (i = 0; i < num_hugepd; i++, hpdp++) { 89 if (unlikely(!hugepd_none(*hpdp))) 90 break; 91 hugepd_populate(hpdp, new, pshift); 92 } 93 /* If we bailed from the for loop early, an error occurred, clean up */ 94 if (i < num_hugepd) { 95 for (i = i - 1 ; i >= 0; i--, hpdp--) 96 *hpdp = __hugepd(0); 97 kmem_cache_free(cachep, new); 98 } else { 99 kmemleak_ignore(new); 100 } 101 spin_unlock(ptl); 102 return 0; 103 } 104 105 /* 106 * At this point we do the placement change only for BOOK3S 64. This would 107 * possibly work on other subarchs. 108 */ 109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 110 { 111 pgd_t *pg; 112 p4d_t *p4; 113 pud_t *pu; 114 pmd_t *pm; 115 hugepd_t *hpdp = NULL; 116 unsigned pshift = __ffs(sz); 117 unsigned pdshift = PGDIR_SHIFT; 118 spinlock_t *ptl; 119 120 addr &= ~(sz-1); 121 pg = pgd_offset(mm, addr); 122 p4 = p4d_offset(pg, addr); 123 124 #ifdef CONFIG_PPC_BOOK3S_64 125 if (pshift == PGDIR_SHIFT) 126 /* 16GB huge page */ 127 return (pte_t *) p4; 128 else if (pshift > PUD_SHIFT) { 129 /* 130 * We need to use hugepd table 131 */ 132 ptl = &mm->page_table_lock; 133 hpdp = (hugepd_t *)p4; 134 } else { 135 pdshift = PUD_SHIFT; 136 pu = pud_alloc(mm, p4, addr); 137 if (!pu) 138 return NULL; 139 if (pshift == PUD_SHIFT) 140 return (pte_t *)pu; 141 else if (pshift > PMD_SHIFT) { 142 ptl = pud_lockptr(mm, pu); 143 hpdp = (hugepd_t *)pu; 144 } else { 145 pdshift = PMD_SHIFT; 146 pm = pmd_alloc(mm, pu, addr); 147 if (!pm) 148 return NULL; 149 if (pshift == PMD_SHIFT) 150 /* 16MB hugepage */ 151 return (pte_t *)pm; 152 else { 153 ptl = pmd_lockptr(mm, pm); 154 hpdp = (hugepd_t *)pm; 155 } 156 } 157 } 158 #else 159 if (pshift >= PGDIR_SHIFT) { 160 ptl = &mm->page_table_lock; 161 hpdp = (hugepd_t *)p4; 162 } else { 163 pdshift = PUD_SHIFT; 164 pu = pud_alloc(mm, p4, addr); 165 if (!pu) 166 return NULL; 167 if (pshift >= PUD_SHIFT) { 168 ptl = pud_lockptr(mm, pu); 169 hpdp = (hugepd_t *)pu; 170 } else { 171 pdshift = PMD_SHIFT; 172 pm = pmd_alloc(mm, pu, addr); 173 if (!pm) 174 return NULL; 175 ptl = pmd_lockptr(mm, pm); 176 hpdp = (hugepd_t *)pm; 177 } 178 } 179 #endif 180 if (!hpdp) 181 return NULL; 182 183 if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT) 184 return pte_alloc_map(mm, (pmd_t *)hpdp, addr); 185 186 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 187 188 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, 189 pdshift, pshift, ptl)) 190 return NULL; 191 192 return hugepte_offset(*hpdp, addr, pdshift); 193 } 194 195 #ifdef CONFIG_PPC_BOOK3S_64 196 /* 197 * Tracks gpages after the device tree is scanned and before the 198 * huge_boot_pages list is ready on pseries. 199 */ 200 #define MAX_NUMBER_GPAGES 1024 201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 202 __initdata static unsigned nr_gpages; 203 204 /* 205 * Build list of addresses of gigantic pages. This function is used in early 206 * boot before the buddy allocator is setup. 207 */ 208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 209 { 210 if (!addr) 211 return; 212 while (number_of_pages > 0) { 213 gpage_freearray[nr_gpages] = addr; 214 nr_gpages++; 215 number_of_pages--; 216 addr += page_size; 217 } 218 } 219 220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 221 { 222 struct huge_bootmem_page *m; 223 if (nr_gpages == 0) 224 return 0; 225 m = phys_to_virt(gpage_freearray[--nr_gpages]); 226 gpage_freearray[nr_gpages] = 0; 227 list_add(&m->list, &huge_boot_pages); 228 m->hstate = hstate; 229 return 1; 230 } 231 #endif 232 233 234 int __init alloc_bootmem_huge_page(struct hstate *h) 235 { 236 237 #ifdef CONFIG_PPC_BOOK3S_64 238 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 239 return pseries_alloc_bootmem_huge_page(h); 240 #endif 241 return __alloc_bootmem_huge_page(h); 242 } 243 244 #ifndef CONFIG_PPC_BOOK3S_64 245 #define HUGEPD_FREELIST_SIZE \ 246 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 247 248 struct hugepd_freelist { 249 struct rcu_head rcu; 250 unsigned int index; 251 void *ptes[]; 252 }; 253 254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 255 256 static void hugepd_free_rcu_callback(struct rcu_head *head) 257 { 258 struct hugepd_freelist *batch = 259 container_of(head, struct hugepd_freelist, rcu); 260 unsigned int i; 261 262 for (i = 0; i < batch->index; i++) 263 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); 264 265 free_page((unsigned long)batch); 266 } 267 268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 269 { 270 struct hugepd_freelist **batchp; 271 272 batchp = &get_cpu_var(hugepd_freelist_cur); 273 274 if (atomic_read(&tlb->mm->mm_users) < 2 || 275 mm_is_thread_local(tlb->mm)) { 276 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); 277 put_cpu_var(hugepd_freelist_cur); 278 return; 279 } 280 281 if (*batchp == NULL) { 282 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 283 (*batchp)->index = 0; 284 } 285 286 (*batchp)->ptes[(*batchp)->index++] = hugepte; 287 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 288 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); 289 *batchp = NULL; 290 } 291 put_cpu_var(hugepd_freelist_cur); 292 } 293 #else 294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 295 #endif 296 297 /* Return true when the entry to be freed maps more than the area being freed */ 298 static bool range_is_outside_limits(unsigned long start, unsigned long end, 299 unsigned long floor, unsigned long ceiling, 300 unsigned long mask) 301 { 302 if ((start & mask) < floor) 303 return true; 304 if (ceiling) { 305 ceiling &= mask; 306 if (!ceiling) 307 return true; 308 } 309 return end - 1 > ceiling - 1; 310 } 311 312 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 313 unsigned long start, unsigned long end, 314 unsigned long floor, unsigned long ceiling) 315 { 316 pte_t *hugepte = hugepd_page(*hpdp); 317 int i; 318 319 unsigned long pdmask = ~((1UL << pdshift) - 1); 320 unsigned int num_hugepd = 1; 321 unsigned int shift = hugepd_shift(*hpdp); 322 323 /* Note: On fsl the hpdp may be the first of several */ 324 if (shift > pdshift) 325 num_hugepd = 1 << (shift - pdshift); 326 327 if (range_is_outside_limits(start, end, floor, ceiling, pdmask)) 328 return; 329 330 for (i = 0; i < num_hugepd; i++, hpdp++) 331 *hpdp = __hugepd(0); 332 333 if (shift >= pdshift) 334 hugepd_free(tlb, hugepte); 335 else 336 pgtable_free_tlb(tlb, hugepte, 337 get_hugepd_cache_index(pdshift - shift)); 338 } 339 340 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 341 unsigned long addr, unsigned long end, 342 unsigned long floor, unsigned long ceiling) 343 { 344 pgtable_t token = pmd_pgtable(*pmd); 345 346 if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK)) 347 return; 348 349 pmd_clear(pmd); 350 pte_free_tlb(tlb, token, addr); 351 mm_dec_nr_ptes(tlb->mm); 352 } 353 354 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 355 unsigned long addr, unsigned long end, 356 unsigned long floor, unsigned long ceiling) 357 { 358 pmd_t *pmd; 359 unsigned long next; 360 unsigned long start; 361 362 start = addr; 363 do { 364 unsigned long more; 365 366 pmd = pmd_offset(pud, addr); 367 next = pmd_addr_end(addr, end); 368 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 369 if (pmd_none_or_clear_bad(pmd)) 370 continue; 371 372 /* 373 * if it is not hugepd pointer, we should already find 374 * it cleared. 375 */ 376 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx)); 377 378 hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling); 379 380 continue; 381 } 382 /* 383 * Increment next by the size of the huge mapping since 384 * there may be more than one entry at this level for a 385 * single hugepage, but all of them point to 386 * the same kmem cache that holds the hugepte. 387 */ 388 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 389 if (more > next) 390 next = more; 391 392 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 393 addr, next, floor, ceiling); 394 } while (addr = next, addr != end); 395 396 if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK)) 397 return; 398 399 pmd = pmd_offset(pud, start & PUD_MASK); 400 pud_clear(pud); 401 pmd_free_tlb(tlb, pmd, start & PUD_MASK); 402 mm_dec_nr_pmds(tlb->mm); 403 } 404 405 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 406 unsigned long addr, unsigned long end, 407 unsigned long floor, unsigned long ceiling) 408 { 409 pud_t *pud; 410 unsigned long next; 411 unsigned long start; 412 413 start = addr; 414 do { 415 pud = pud_offset(p4d, addr); 416 next = pud_addr_end(addr, end); 417 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 418 if (pud_none_or_clear_bad(pud)) 419 continue; 420 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 421 ceiling); 422 } else { 423 unsigned long more; 424 /* 425 * Increment next by the size of the huge mapping since 426 * there may be more than one entry at this level for a 427 * single hugepage, but all of them point to 428 * the same kmem cache that holds the hugepte. 429 */ 430 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 431 if (more > next) 432 next = more; 433 434 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 435 addr, next, floor, ceiling); 436 } 437 } while (addr = next, addr != end); 438 439 if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK)) 440 return; 441 442 pud = pud_offset(p4d, start & PGDIR_MASK); 443 p4d_clear(p4d); 444 pud_free_tlb(tlb, pud, start & PGDIR_MASK); 445 mm_dec_nr_puds(tlb->mm); 446 } 447 448 /* 449 * This function frees user-level page tables of a process. 450 */ 451 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 452 unsigned long addr, unsigned long end, 453 unsigned long floor, unsigned long ceiling) 454 { 455 pgd_t *pgd; 456 p4d_t *p4d; 457 unsigned long next; 458 459 /* 460 * Because there are a number of different possible pagetable 461 * layouts for hugepage ranges, we limit knowledge of how 462 * things should be laid out to the allocation path 463 * (huge_pte_alloc(), above). Everything else works out the 464 * structure as it goes from information in the hugepd 465 * pointers. That means that we can't here use the 466 * optimization used in the normal page free_pgd_range(), of 467 * checking whether we're actually covering a large enough 468 * range to have to do anything at the top level of the walk 469 * instead of at the bottom. 470 * 471 * To make sense of this, you should probably go read the big 472 * block comment at the top of the normal free_pgd_range(), 473 * too. 474 */ 475 476 do { 477 next = pgd_addr_end(addr, end); 478 pgd = pgd_offset(tlb->mm, addr); 479 p4d = p4d_offset(pgd, addr); 480 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 481 if (p4d_none_or_clear_bad(p4d)) 482 continue; 483 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling); 484 } else { 485 unsigned long more; 486 /* 487 * Increment next by the size of the huge mapping since 488 * there may be more than one entry at the pgd level 489 * for a single hugepage, but all of them point to the 490 * same kmem cache that holds the hugepte. 491 */ 492 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 493 if (more > next) 494 next = more; 495 496 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT, 497 addr, next, floor, ceiling); 498 } 499 } while (addr = next, addr != end); 500 } 501 502 struct page *follow_huge_pd(struct vm_area_struct *vma, 503 unsigned long address, hugepd_t hpd, 504 int flags, int pdshift) 505 { 506 pte_t *ptep; 507 spinlock_t *ptl; 508 struct page *page = NULL; 509 unsigned long mask; 510 int shift = hugepd_shift(hpd); 511 struct mm_struct *mm = vma->vm_mm; 512 513 retry: 514 /* 515 * hugepage directory entries are protected by mm->page_table_lock 516 * Use this instead of huge_pte_lockptr 517 */ 518 ptl = &mm->page_table_lock; 519 spin_lock(ptl); 520 521 ptep = hugepte_offset(hpd, address, pdshift); 522 if (pte_present(*ptep)) { 523 mask = (1UL << shift) - 1; 524 page = pte_page(*ptep); 525 page += ((address & mask) >> PAGE_SHIFT); 526 if (flags & FOLL_GET) 527 get_page(page); 528 } else { 529 if (is_hugetlb_entry_migration(*ptep)) { 530 spin_unlock(ptl); 531 __migration_entry_wait(mm, ptep, ptl); 532 goto retry; 533 } 534 } 535 spin_unlock(ptl); 536 return page; 537 } 538 539 #ifdef CONFIG_PPC_MM_SLICES 540 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 541 unsigned long len, unsigned long pgoff, 542 unsigned long flags) 543 { 544 struct hstate *hstate = hstate_file(file); 545 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 546 547 #ifdef CONFIG_PPC_RADIX_MMU 548 if (radix_enabled()) 549 return radix__hugetlb_get_unmapped_area(file, addr, len, 550 pgoff, flags); 551 #endif 552 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 553 } 554 #endif 555 556 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 557 { 558 /* With radix we don't use slice, so derive it from vma*/ 559 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) { 560 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 561 562 return 1UL << mmu_psize_to_shift(psize); 563 } 564 return vma_kernel_pagesize(vma); 565 } 566 567 bool __init arch_hugetlb_valid_size(unsigned long size) 568 { 569 int shift = __ffs(size); 570 int mmu_psize; 571 572 /* Check that it is a page size supported by the hardware and 573 * that it fits within pagetable and slice limits. */ 574 if (size <= PAGE_SIZE || !is_power_of_2(size)) 575 return false; 576 577 mmu_psize = check_and_get_huge_psize(shift); 578 if (mmu_psize < 0) 579 return false; 580 581 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 582 583 return true; 584 } 585 586 static int __init add_huge_page_size(unsigned long long size) 587 { 588 int shift = __ffs(size); 589 590 if (!arch_hugetlb_valid_size((unsigned long)size)) 591 return -EINVAL; 592 593 hugetlb_add_hstate(shift - PAGE_SHIFT); 594 return 0; 595 } 596 597 static int __init hugetlbpage_init(void) 598 { 599 bool configured = false; 600 int psize; 601 602 if (hugetlb_disabled) { 603 pr_info("HugeTLB support is disabled!\n"); 604 return 0; 605 } 606 607 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() && 608 !mmu_has_feature(MMU_FTR_16M_PAGE)) 609 return -ENODEV; 610 611 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 612 unsigned shift; 613 unsigned pdshift; 614 615 if (!mmu_psize_defs[psize].shift) 616 continue; 617 618 shift = mmu_psize_to_shift(psize); 619 620 #ifdef CONFIG_PPC_BOOK3S_64 621 if (shift > PGDIR_SHIFT) 622 continue; 623 else if (shift > PUD_SHIFT) 624 pdshift = PGDIR_SHIFT; 625 else if (shift > PMD_SHIFT) 626 pdshift = PUD_SHIFT; 627 else 628 pdshift = PMD_SHIFT; 629 #else 630 if (shift < PUD_SHIFT) 631 pdshift = PMD_SHIFT; 632 else if (shift < PGDIR_SHIFT) 633 pdshift = PUD_SHIFT; 634 else 635 pdshift = PGDIR_SHIFT; 636 #endif 637 638 if (add_huge_page_size(1ULL << shift) < 0) 639 continue; 640 /* 641 * if we have pdshift and shift value same, we don't 642 * use pgt cache for hugepd. 643 */ 644 if (pdshift > shift) { 645 if (!IS_ENABLED(CONFIG_PPC_8xx)) 646 pgtable_cache_add(pdshift - shift); 647 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || 648 IS_ENABLED(CONFIG_PPC_8xx)) { 649 pgtable_cache_add(PTE_T_ORDER); 650 } 651 652 configured = true; 653 } 654 655 if (configured) { 656 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) 657 hugetlbpage_init_default(); 658 } else 659 pr_info("Failed to initialize. Disabling HugeTLB"); 660 661 return 0; 662 } 663 664 arch_initcall(hugetlbpage_init); 665 666 void flush_dcache_icache_hugepage(struct page *page) 667 { 668 int i; 669 void *start; 670 671 BUG_ON(!PageCompound(page)); 672 673 for (i = 0; i < compound_nr(page); i++) { 674 if (!PageHighMem(page)) { 675 __flush_dcache_icache(page_address(page+i)); 676 } else { 677 start = kmap_atomic(page+i); 678 __flush_dcache_icache(start); 679 kunmap_atomic(start); 680 } 681 } 682 } 683 684 void __init gigantic_hugetlb_cma_reserve(void) 685 { 686 unsigned long order = 0; 687 688 if (radix_enabled()) 689 order = PUD_SHIFT - PAGE_SHIFT; 690 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift) 691 /* 692 * For pseries we do use ibm,expected#pages for reserving 16G pages. 693 */ 694 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT; 695 696 if (order) { 697 VM_WARN_ON(order < MAX_ORDER); 698 hugetlb_cma_reserve(order); 699 } 700 } 701