xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/siginfo.h>
41 #include <asm/debug.h>
42 #include <asm/kup.h>
43 #include <asm/inst.h>
44 
45 /*
46  * Check whether the instruction inst is a store using
47  * an update addressing form which will update r1.
48  */
49 static bool store_updates_sp(struct ppc_inst inst)
50 {
51 	/* check for 1 in the rA field */
52 	if (((ppc_inst_val(inst) >> 16) & 0x1f) != 1)
53 		return false;
54 	/* check major opcode */
55 	switch (ppc_inst_primary_opcode(inst)) {
56 	case OP_STWU:
57 	case OP_STBU:
58 	case OP_STHU:
59 	case OP_STFSU:
60 	case OP_STFDU:
61 		return true;
62 	case OP_STD:	/* std or stdu */
63 		return (ppc_inst_val(inst) & 3) == 1;
64 	case OP_31:
65 		/* check minor opcode */
66 		switch ((ppc_inst_val(inst) >> 1) & 0x3ff) {
67 		case OP_31_XOP_STDUX:
68 		case OP_31_XOP_STWUX:
69 		case OP_31_XOP_STBUX:
70 		case OP_31_XOP_STHUX:
71 		case OP_31_XOP_STFSUX:
72 		case OP_31_XOP_STFDUX:
73 			return true;
74 		}
75 	}
76 	return false;
77 }
78 /*
79  * do_page_fault error handling helpers
80  */
81 
82 static int
83 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
84 {
85 	/*
86 	 * If we are in kernel mode, bail out with a SEGV, this will
87 	 * be caught by the assembly which will restore the non-volatile
88 	 * registers before calling bad_page_fault()
89 	 */
90 	if (!user_mode(regs))
91 		return SIGSEGV;
92 
93 	_exception(SIGSEGV, regs, si_code, address);
94 
95 	return 0;
96 }
97 
98 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
99 {
100 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101 }
102 
103 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
104 {
105 	struct mm_struct *mm = current->mm;
106 
107 	/*
108 	 * Something tried to access memory that isn't in our memory map..
109 	 * Fix it, but check if it's kernel or user first..
110 	 */
111 	mmap_read_unlock(mm);
112 
113 	return __bad_area_nosemaphore(regs, address, si_code);
114 }
115 
116 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117 {
118 	return __bad_area(regs, address, SEGV_MAPERR);
119 }
120 
121 #ifdef CONFIG_PPC_MEM_KEYS
122 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
123 				    struct vm_area_struct *vma)
124 {
125 	struct mm_struct *mm = current->mm;
126 	int pkey;
127 
128 	/*
129 	 * We don't try to fetch the pkey from page table because reading
130 	 * page table without locking doesn't guarantee stable pte value.
131 	 * Hence the pkey value that we return to userspace can be different
132 	 * from the pkey that actually caused access error.
133 	 *
134 	 * It does *not* guarantee that the VMA we find here
135 	 * was the one that we faulted on.
136 	 *
137 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
138 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
139 	 * 3. T1   : faults...
140 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
141 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
142 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
143 	 *	     faulted on a pte with its pkey=4.
144 	 */
145 	pkey = vma_pkey(vma);
146 
147 	mmap_read_unlock(mm);
148 
149 	/*
150 	 * If we are in kernel mode, bail out with a SEGV, this will
151 	 * be caught by the assembly which will restore the non-volatile
152 	 * registers before calling bad_page_fault()
153 	 */
154 	if (!user_mode(regs))
155 		return SIGSEGV;
156 
157 	_exception_pkey(regs, address, pkey);
158 
159 	return 0;
160 }
161 #endif
162 
163 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
164 {
165 	return __bad_area(regs, address, SEGV_ACCERR);
166 }
167 
168 static int do_sigbus(struct pt_regs *regs, unsigned long address,
169 		     vm_fault_t fault)
170 {
171 	if (!user_mode(regs))
172 		return SIGBUS;
173 
174 	current->thread.trap_nr = BUS_ADRERR;
175 #ifdef CONFIG_MEMORY_FAILURE
176 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
177 		unsigned int lsb = 0; /* shutup gcc */
178 
179 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
180 			current->comm, current->pid, address);
181 
182 		if (fault & VM_FAULT_HWPOISON_LARGE)
183 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184 		if (fault & VM_FAULT_HWPOISON)
185 			lsb = PAGE_SHIFT;
186 
187 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
188 		return 0;
189 	}
190 
191 #endif
192 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
193 	return 0;
194 }
195 
196 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
197 				vm_fault_t fault)
198 {
199 	/*
200 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
201 	 * continue processing.
202 	 */
203 	if (fatal_signal_pending(current) && !user_mode(regs))
204 		return SIGKILL;
205 
206 	/* Out of memory */
207 	if (fault & VM_FAULT_OOM) {
208 		/*
209 		 * We ran out of memory, or some other thing happened to us that
210 		 * made us unable to handle the page fault gracefully.
211 		 */
212 		if (!user_mode(regs))
213 			return SIGSEGV;
214 		pagefault_out_of_memory();
215 	} else {
216 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
217 			     VM_FAULT_HWPOISON_LARGE))
218 			return do_sigbus(regs, addr, fault);
219 		else if (fault & VM_FAULT_SIGSEGV)
220 			return bad_area_nosemaphore(regs, addr);
221 		else
222 			BUG();
223 	}
224 	return 0;
225 }
226 
227 /* Is this a bad kernel fault ? */
228 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
229 			     unsigned long address, bool is_write)
230 {
231 	int is_exec = TRAP(regs) == 0x400;
232 
233 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
234 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
235 				      DSISR_PROTFAULT))) {
236 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
237 				    address >= TASK_SIZE ? "exec-protected" : "user",
238 				    address,
239 				    from_kuid(&init_user_ns, current_uid()));
240 
241 		// Kernel exec fault is always bad
242 		return true;
243 	}
244 
245 	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
246 	    !search_exception_tables(regs->nip)) {
247 		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
248 				    address,
249 				    from_kuid(&init_user_ns, current_uid()));
250 	}
251 
252 	// Kernel fault on kernel address is bad
253 	if (address >= TASK_SIZE)
254 		return true;
255 
256 	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
257 	if (!search_exception_tables(regs->nip))
258 		return true;
259 
260 	// Read/write fault in a valid region (the exception table search passed
261 	// above), but blocked by KUAP is bad, it can never succeed.
262 	if (bad_kuap_fault(regs, address, is_write))
263 		return true;
264 
265 	// What's left? Kernel fault on user in well defined regions (extable
266 	// matched), and allowed by KUAP in the faulting context.
267 	return false;
268 }
269 
270 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
271 				struct vm_area_struct *vma, unsigned int flags,
272 				bool *must_retry)
273 {
274 	/*
275 	 * N.B. The POWER/Open ABI allows programs to access up to
276 	 * 288 bytes below the stack pointer.
277 	 * The kernel signal delivery code writes up to about 1.5kB
278 	 * below the stack pointer (r1) before decrementing it.
279 	 * The exec code can write slightly over 640kB to the stack
280 	 * before setting the user r1.  Thus we allow the stack to
281 	 * expand to 1MB without further checks.
282 	 */
283 	if (address + 0x100000 < vma->vm_end) {
284 		struct ppc_inst __user *nip = (struct ppc_inst __user *)regs->nip;
285 		/* get user regs even if this fault is in kernel mode */
286 		struct pt_regs *uregs = current->thread.regs;
287 		if (uregs == NULL)
288 			return true;
289 
290 		/*
291 		 * A user-mode access to an address a long way below
292 		 * the stack pointer is only valid if the instruction
293 		 * is one which would update the stack pointer to the
294 		 * address accessed if the instruction completed,
295 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
296 		 * (or the byte, halfword, float or double forms).
297 		 *
298 		 * If we don't check this then any write to the area
299 		 * between the last mapped region and the stack will
300 		 * expand the stack rather than segfaulting.
301 		 */
302 		if (address + 2048 >= uregs->gpr[1])
303 			return false;
304 
305 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
306 		    access_ok(nip, sizeof(*nip))) {
307 			struct ppc_inst inst;
308 
309 			if (!probe_user_read_inst(&inst, nip))
310 				return !store_updates_sp(inst);
311 			*must_retry = true;
312 		}
313 		return true;
314 	}
315 	return false;
316 }
317 
318 #ifdef CONFIG_PPC_MEM_KEYS
319 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
320 			      struct vm_area_struct *vma)
321 {
322 	/*
323 	 * Make sure to check the VMA so that we do not perform
324 	 * faults just to hit a pkey fault as soon as we fill in a
325 	 * page. Only called for current mm, hence foreign == 0
326 	 */
327 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
328 		return true;
329 
330 	return false;
331 }
332 #endif
333 
334 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
335 {
336 	/*
337 	 * Allow execution from readable areas if the MMU does not
338 	 * provide separate controls over reading and executing.
339 	 *
340 	 * Note: That code used to not be enabled for 4xx/BookE.
341 	 * It is now as I/D cache coherency for these is done at
342 	 * set_pte_at() time and I see no reason why the test
343 	 * below wouldn't be valid on those processors. This -may-
344 	 * break programs compiled with a really old ABI though.
345 	 */
346 	if (is_exec) {
347 		return !(vma->vm_flags & VM_EXEC) &&
348 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
349 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
350 	}
351 
352 	if (is_write) {
353 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
354 			return true;
355 		return false;
356 	}
357 
358 	if (unlikely(!vma_is_accessible(vma)))
359 		return true;
360 	/*
361 	 * We should ideally do the vma pkey access check here. But in the
362 	 * fault path, handle_mm_fault() also does the same check. To avoid
363 	 * these multiple checks, we skip it here and handle access error due
364 	 * to pkeys later.
365 	 */
366 	return false;
367 }
368 
369 #ifdef CONFIG_PPC_SMLPAR
370 static inline void cmo_account_page_fault(void)
371 {
372 	if (firmware_has_feature(FW_FEATURE_CMO)) {
373 		u32 page_ins;
374 
375 		preempt_disable();
376 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
377 		page_ins += 1 << PAGE_FACTOR;
378 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
379 		preempt_enable();
380 	}
381 }
382 #else
383 static inline void cmo_account_page_fault(void) { }
384 #endif /* CONFIG_PPC_SMLPAR */
385 
386 #ifdef CONFIG_PPC_BOOK3S
387 static void sanity_check_fault(bool is_write, bool is_user,
388 			       unsigned long error_code, unsigned long address)
389 {
390 	/*
391 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
392 	 */
393 	if (is_user && address >= TASK_SIZE) {
394 		if ((long)address == -1)
395 			return;
396 
397 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
398 				   current->comm, current->pid, address,
399 				   from_kuid(&init_user_ns, current_uid()));
400 		return;
401 	}
402 
403 	/*
404 	 * For hash translation mode, we should never get a
405 	 * PROTFAULT. Any update to pte to reduce access will result in us
406 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
407 	 * fault instead of DSISR_PROTFAULT.
408 	 *
409 	 * A pte update to relax the access will not result in a hash page table
410 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
411 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
412 	 * the special !is_write in the below conditional.
413 	 *
414 	 * For platforms that doesn't supports coherent icache and do support
415 	 * per page noexec bit, we do setup things such that we do the
416 	 * sync between D/I cache via fault. But that is handled via low level
417 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
418 	 * here in such case.
419 	 *
420 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
421 	 * check should handle those and hence we should fall to the bad_area
422 	 * handling correctly.
423 	 *
424 	 * For embedded with per page exec support that doesn't support coherent
425 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
426 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
427 	 * is conditional for server MMU.
428 	 *
429 	 * For radix, we can get prot fault for autonuma case, because radix
430 	 * page table will have them marked noaccess for user.
431 	 */
432 	if (radix_enabled() || is_write)
433 		return;
434 
435 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
436 }
437 #else
438 static void sanity_check_fault(bool is_write, bool is_user,
439 			       unsigned long error_code, unsigned long address) { }
440 #endif /* CONFIG_PPC_BOOK3S */
441 
442 /*
443  * Define the correct "is_write" bit in error_code based
444  * on the processor family
445  */
446 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
447 #define page_fault_is_write(__err)	((__err) & ESR_DST)
448 #define page_fault_is_bad(__err)	(0)
449 #else
450 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
451 #if defined(CONFIG_PPC_8xx)
452 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
453 #elif defined(CONFIG_PPC64)
454 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
455 #else
456 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
457 #endif
458 #endif
459 
460 /*
461  * For 600- and 800-family processors, the error_code parameter is DSISR
462  * for a data fault, SRR1 for an instruction fault. For 400-family processors
463  * the error_code parameter is ESR for a data fault, 0 for an instruction
464  * fault.
465  * For 64-bit processors, the error_code parameter is
466  *  - DSISR for a non-SLB data access fault,
467  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
468  *  - 0 any SLB fault.
469  *
470  * The return value is 0 if the fault was handled, or the signal
471  * number if this is a kernel fault that can't be handled here.
472  */
473 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
474 			   unsigned long error_code)
475 {
476 	struct vm_area_struct * vma;
477 	struct mm_struct *mm = current->mm;
478 	unsigned int flags = FAULT_FLAG_DEFAULT;
479  	int is_exec = TRAP(regs) == 0x400;
480 	int is_user = user_mode(regs);
481 	int is_write = page_fault_is_write(error_code);
482 	vm_fault_t fault, major = 0;
483 	bool must_retry = false;
484 	bool kprobe_fault = kprobe_page_fault(regs, 11);
485 
486 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
487 		return 0;
488 
489 	if (unlikely(page_fault_is_bad(error_code))) {
490 		if (is_user) {
491 			_exception(SIGBUS, regs, BUS_OBJERR, address);
492 			return 0;
493 		}
494 		return SIGBUS;
495 	}
496 
497 	/* Additional sanity check(s) */
498 	sanity_check_fault(is_write, is_user, error_code, address);
499 
500 	/*
501 	 * The kernel should never take an execute fault nor should it
502 	 * take a page fault to a kernel address or a page fault to a user
503 	 * address outside of dedicated places
504 	 */
505 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
506 		return SIGSEGV;
507 
508 	/*
509 	 * If we're in an interrupt, have no user context or are running
510 	 * in a region with pagefaults disabled then we must not take the fault
511 	 */
512 	if (unlikely(faulthandler_disabled() || !mm)) {
513 		if (is_user)
514 			printk_ratelimited(KERN_ERR "Page fault in user mode"
515 					   " with faulthandler_disabled()=%d"
516 					   " mm=%p\n",
517 					   faulthandler_disabled(), mm);
518 		return bad_area_nosemaphore(regs, address);
519 	}
520 
521 	/* We restore the interrupt state now */
522 	if (!arch_irq_disabled_regs(regs))
523 		local_irq_enable();
524 
525 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
526 
527 	/*
528 	 * We want to do this outside mmap_lock, because reading code around nip
529 	 * can result in fault, which will cause a deadlock when called with
530 	 * mmap_lock held
531 	 */
532 	if (is_user)
533 		flags |= FAULT_FLAG_USER;
534 	if (is_write)
535 		flags |= FAULT_FLAG_WRITE;
536 	if (is_exec)
537 		flags |= FAULT_FLAG_INSTRUCTION;
538 
539 	/* When running in the kernel we expect faults to occur only to
540 	 * addresses in user space.  All other faults represent errors in the
541 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
542 	 * erroneous fault occurring in a code path which already holds mmap_lock
543 	 * we will deadlock attempting to validate the fault against the
544 	 * address space.  Luckily the kernel only validly references user
545 	 * space from well defined areas of code, which are listed in the
546 	 * exceptions table.
547 	 *
548 	 * As the vast majority of faults will be valid we will only perform
549 	 * the source reference check when there is a possibility of a deadlock.
550 	 * Attempt to lock the address space, if we cannot we then validate the
551 	 * source.  If this is invalid we can skip the address space check,
552 	 * thus avoiding the deadlock.
553 	 */
554 	if (unlikely(!mmap_read_trylock(mm))) {
555 		if (!is_user && !search_exception_tables(regs->nip))
556 			return bad_area_nosemaphore(regs, address);
557 
558 retry:
559 		mmap_read_lock(mm);
560 	} else {
561 		/*
562 		 * The above down_read_trylock() might have succeeded in
563 		 * which case we'll have missed the might_sleep() from
564 		 * down_read():
565 		 */
566 		might_sleep();
567 	}
568 
569 	vma = find_vma(mm, address);
570 	if (unlikely(!vma))
571 		return bad_area(regs, address);
572 	if (likely(vma->vm_start <= address))
573 		goto good_area;
574 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
575 		return bad_area(regs, address);
576 
577 	/* The stack is being expanded, check if it's valid */
578 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
579 					 &must_retry))) {
580 		if (!must_retry)
581 			return bad_area(regs, address);
582 
583 		mmap_read_unlock(mm);
584 		if (fault_in_pages_readable((const char __user *)regs->nip,
585 					    sizeof(unsigned int)))
586 			return bad_area_nosemaphore(regs, address);
587 		goto retry;
588 	}
589 
590 	/* Try to expand it */
591 	if (unlikely(expand_stack(vma, address)))
592 		return bad_area(regs, address);
593 
594 good_area:
595 
596 #ifdef CONFIG_PPC_MEM_KEYS
597 	if (unlikely(access_pkey_error(is_write, is_exec,
598 				       (error_code & DSISR_KEYFAULT), vma)))
599 		return bad_access_pkey(regs, address, vma);
600 #endif /* CONFIG_PPC_MEM_KEYS */
601 
602 	if (unlikely(access_error(is_write, is_exec, vma)))
603 		return bad_access(regs, address);
604 
605 	/*
606 	 * If for any reason at all we couldn't handle the fault,
607 	 * make sure we exit gracefully rather than endlessly redo
608 	 * the fault.
609 	 */
610 	fault = handle_mm_fault(vma, address, flags);
611 
612 	major |= fault & VM_FAULT_MAJOR;
613 
614 	if (fault_signal_pending(fault, regs))
615 		return user_mode(regs) ? 0 : SIGBUS;
616 
617 	/*
618 	 * Handle the retry right now, the mmap_lock has been released in that
619 	 * case.
620 	 */
621 	if (unlikely(fault & VM_FAULT_RETRY)) {
622 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
623 			flags |= FAULT_FLAG_TRIED;
624 			goto retry;
625 		}
626 	}
627 
628 	mmap_read_unlock(current->mm);
629 
630 	if (unlikely(fault & VM_FAULT_ERROR))
631 		return mm_fault_error(regs, address, fault);
632 
633 	/*
634 	 * Major/minor page fault accounting.
635 	 */
636 	if (major) {
637 		current->maj_flt++;
638 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
639 		cmo_account_page_fault();
640 	} else {
641 		current->min_flt++;
642 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
643 	}
644 	return 0;
645 }
646 NOKPROBE_SYMBOL(__do_page_fault);
647 
648 int do_page_fault(struct pt_regs *regs, unsigned long address,
649 		  unsigned long error_code)
650 {
651 	enum ctx_state prev_state = exception_enter();
652 	int rc = __do_page_fault(regs, address, error_code);
653 	exception_exit(prev_state);
654 	return rc;
655 }
656 NOKPROBE_SYMBOL(do_page_fault);
657 
658 /*
659  * bad_page_fault is called when we have a bad access from the kernel.
660  * It is called from the DSI and ISI handlers in head.S and from some
661  * of the procedures in traps.c.
662  */
663 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
664 {
665 	const struct exception_table_entry *entry;
666 	int is_write = page_fault_is_write(regs->dsisr);
667 
668 	/* Are we prepared to handle this fault?  */
669 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
670 		regs->nip = extable_fixup(entry);
671 		return;
672 	}
673 
674 	/* kernel has accessed a bad area */
675 
676 	switch (TRAP(regs)) {
677 	case 0x300:
678 	case 0x380:
679 	case 0xe00:
680 		pr_alert("BUG: %s on %s at 0x%08lx\n",
681 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
682 			 "Unable to handle kernel data access",
683 			 is_write ? "write" : "read", regs->dar);
684 		break;
685 	case 0x400:
686 	case 0x480:
687 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
688 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
689 		break;
690 	case 0x600:
691 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
692 			 regs->dar);
693 		break;
694 	default:
695 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
696 			 regs->dar);
697 		break;
698 	}
699 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
700 		regs->nip);
701 
702 	if (task_stack_end_corrupted(current))
703 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
704 
705 	die("Kernel access of bad area", regs, sig);
706 }
707