xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 #include <linux/kfence.h>
36 #include <linux/pkeys.h>
37 
38 #include <asm/firmware.h>
39 #include <asm/interrupt.h>
40 #include <asm/page.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <asm/kup.h>
46 #include <asm/inst.h>
47 
48 
49 /*
50  * do_page_fault error handling helpers
51  */
52 
53 static int
54 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55 {
56 	/*
57 	 * If we are in kernel mode, bail out with a SEGV, this will
58 	 * be caught by the assembly which will restore the non-volatile
59 	 * registers before calling bad_page_fault()
60 	 */
61 	if (!user_mode(regs))
62 		return SIGSEGV;
63 
64 	_exception(SIGSEGV, regs, si_code, address);
65 
66 	return 0;
67 }
68 
69 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70 {
71 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72 }
73 
74 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75 {
76 	struct mm_struct *mm = current->mm;
77 
78 	/*
79 	 * Something tried to access memory that isn't in our memory map..
80 	 * Fix it, but check if it's kernel or user first..
81 	 */
82 	mmap_read_unlock(mm);
83 
84 	return __bad_area_nosemaphore(regs, address, si_code);
85 }
86 
87 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
88 {
89 	return __bad_area(regs, address, SEGV_MAPERR);
90 }
91 
92 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
93 				    struct vm_area_struct *vma)
94 {
95 	struct mm_struct *mm = current->mm;
96 	int pkey;
97 
98 	/*
99 	 * We don't try to fetch the pkey from page table because reading
100 	 * page table without locking doesn't guarantee stable pte value.
101 	 * Hence the pkey value that we return to userspace can be different
102 	 * from the pkey that actually caused access error.
103 	 *
104 	 * It does *not* guarantee that the VMA we find here
105 	 * was the one that we faulted on.
106 	 *
107 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
108 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
109 	 * 3. T1   : faults...
110 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
111 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
112 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
113 	 *	     faulted on a pte with its pkey=4.
114 	 */
115 	pkey = vma_pkey(vma);
116 
117 	mmap_read_unlock(mm);
118 
119 	/*
120 	 * If we are in kernel mode, bail out with a SEGV, this will
121 	 * be caught by the assembly which will restore the non-volatile
122 	 * registers before calling bad_page_fault()
123 	 */
124 	if (!user_mode(regs))
125 		return SIGSEGV;
126 
127 	_exception_pkey(regs, address, pkey);
128 
129 	return 0;
130 }
131 
132 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
133 {
134 	return __bad_area(regs, address, SEGV_ACCERR);
135 }
136 
137 static int do_sigbus(struct pt_regs *regs, unsigned long address,
138 		     vm_fault_t fault)
139 {
140 	if (!user_mode(regs))
141 		return SIGBUS;
142 
143 	current->thread.trap_nr = BUS_ADRERR;
144 #ifdef CONFIG_MEMORY_FAILURE
145 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
146 		unsigned int lsb = 0; /* shutup gcc */
147 
148 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
149 			current->comm, current->pid, address);
150 
151 		if (fault & VM_FAULT_HWPOISON_LARGE)
152 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
153 		if (fault & VM_FAULT_HWPOISON)
154 			lsb = PAGE_SHIFT;
155 
156 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
157 		return 0;
158 	}
159 
160 #endif
161 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
162 	return 0;
163 }
164 
165 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
166 				vm_fault_t fault)
167 {
168 	/*
169 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
170 	 * continue processing.
171 	 */
172 	if (fatal_signal_pending(current) && !user_mode(regs))
173 		return SIGKILL;
174 
175 	/* Out of memory */
176 	if (fault & VM_FAULT_OOM) {
177 		/*
178 		 * We ran out of memory, or some other thing happened to us that
179 		 * made us unable to handle the page fault gracefully.
180 		 */
181 		if (!user_mode(regs))
182 			return SIGSEGV;
183 		pagefault_out_of_memory();
184 	} else {
185 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
186 			     VM_FAULT_HWPOISON_LARGE))
187 			return do_sigbus(regs, addr, fault);
188 		else if (fault & VM_FAULT_SIGSEGV)
189 			return bad_area_nosemaphore(regs, addr);
190 		else
191 			BUG();
192 	}
193 	return 0;
194 }
195 
196 /* Is this a bad kernel fault ? */
197 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
198 			     unsigned long address, bool is_write)
199 {
200 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
201 
202 	/* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
203 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
204 				      DSISR_PROTFAULT))) {
205 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
206 				    address >= TASK_SIZE ? "exec-protected" : "user",
207 				    address,
208 				    from_kuid(&init_user_ns, current_uid()));
209 
210 		// Kernel exec fault is always bad
211 		return true;
212 	}
213 
214 	// Kernel fault on kernel address is bad
215 	if (address >= TASK_SIZE)
216 		return true;
217 
218 	// Read/write fault blocked by KUAP is bad, it can never succeed.
219 	if (bad_kuap_fault(regs, address, is_write)) {
220 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
221 				    is_write ? "write" : "read", address,
222 				    from_kuid(&init_user_ns, current_uid()));
223 
224 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
225 		if (!search_exception_tables(regs->nip))
226 			return true;
227 
228 		// Read/write fault in a valid region (the exception table search passed
229 		// above), but blocked by KUAP is bad, it can never succeed.
230 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
231 	}
232 
233 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
234 	return false;
235 }
236 
237 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238 			      struct vm_area_struct *vma)
239 {
240 	/*
241 	 * Make sure to check the VMA so that we do not perform
242 	 * faults just to hit a pkey fault as soon as we fill in a
243 	 * page. Only called for current mm, hence foreign == 0
244 	 */
245 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246 		return true;
247 
248 	return false;
249 }
250 
251 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
252 {
253 	/*
254 	 * Allow execution from readable areas if the MMU does not
255 	 * provide separate controls over reading and executing.
256 	 *
257 	 * Note: That code used to not be enabled for 4xx/BookE.
258 	 * It is now as I/D cache coherency for these is done at
259 	 * set_pte_at() time and I see no reason why the test
260 	 * below wouldn't be valid on those processors. This -may-
261 	 * break programs compiled with a really old ABI though.
262 	 */
263 	if (is_exec) {
264 		return !(vma->vm_flags & VM_EXEC) &&
265 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
266 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
267 	}
268 
269 	if (is_write) {
270 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
271 			return true;
272 		return false;
273 	}
274 
275 	if (unlikely(!vma_is_accessible(vma)))
276 		return true;
277 	/*
278 	 * We should ideally do the vma pkey access check here. But in the
279 	 * fault path, handle_mm_fault() also does the same check. To avoid
280 	 * these multiple checks, we skip it here and handle access error due
281 	 * to pkeys later.
282 	 */
283 	return false;
284 }
285 
286 #ifdef CONFIG_PPC_SMLPAR
287 static inline void cmo_account_page_fault(void)
288 {
289 	if (firmware_has_feature(FW_FEATURE_CMO)) {
290 		u32 page_ins;
291 
292 		preempt_disable();
293 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
294 		page_ins += 1 << PAGE_FACTOR;
295 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
296 		preempt_enable();
297 	}
298 }
299 #else
300 static inline void cmo_account_page_fault(void) { }
301 #endif /* CONFIG_PPC_SMLPAR */
302 
303 static void sanity_check_fault(bool is_write, bool is_user,
304 			       unsigned long error_code, unsigned long address)
305 {
306 	/*
307 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
308 	 */
309 	if (is_user && address >= TASK_SIZE) {
310 		if ((long)address == -1)
311 			return;
312 
313 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
314 				   current->comm, current->pid, address,
315 				   from_kuid(&init_user_ns, current_uid()));
316 		return;
317 	}
318 
319 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
320 		return;
321 
322 	/*
323 	 * For hash translation mode, we should never get a
324 	 * PROTFAULT. Any update to pte to reduce access will result in us
325 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
326 	 * fault instead of DSISR_PROTFAULT.
327 	 *
328 	 * A pte update to relax the access will not result in a hash page table
329 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
330 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
331 	 * the special !is_write in the below conditional.
332 	 *
333 	 * For platforms that doesn't supports coherent icache and do support
334 	 * per page noexec bit, we do setup things such that we do the
335 	 * sync between D/I cache via fault. But that is handled via low level
336 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
337 	 * here in such case.
338 	 *
339 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
340 	 * check should handle those and hence we should fall to the bad_area
341 	 * handling correctly.
342 	 *
343 	 * For embedded with per page exec support that doesn't support coherent
344 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
345 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
346 	 * is conditional for server MMU.
347 	 *
348 	 * For radix, we can get prot fault for autonuma case, because radix
349 	 * page table will have them marked noaccess for user.
350 	 */
351 	if (radix_enabled() || is_write)
352 		return;
353 
354 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
355 }
356 
357 /*
358  * Define the correct "is_write" bit in error_code based
359  * on the processor family
360  */
361 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
362 #define page_fault_is_write(__err)	((__err) & ESR_DST)
363 #else
364 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
365 #endif
366 
367 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
368 #define page_fault_is_bad(__err)	(0)
369 #elif defined(CONFIG_PPC_8xx)
370 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
371 #elif defined(CONFIG_PPC64)
372 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
373 #else
374 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
375 #endif
376 
377 /*
378  * For 600- and 800-family processors, the error_code parameter is DSISR
379  * for a data fault, SRR1 for an instruction fault.
380  * For 400-family processors the error_code parameter is ESR for a data fault,
381  * 0 for an instruction fault.
382  * For 64-bit processors, the error_code parameter is DSISR for a data access
383  * fault, SRR1 & 0x08000000 for an instruction access fault.
384  *
385  * The return value is 0 if the fault was handled, or the signal
386  * number if this is a kernel fault that can't be handled here.
387  */
388 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
389 			   unsigned long error_code)
390 {
391 	struct vm_area_struct * vma;
392 	struct mm_struct *mm = current->mm;
393 	unsigned int flags = FAULT_FLAG_DEFAULT;
394 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
395 	int is_user = user_mode(regs);
396 	int is_write = page_fault_is_write(error_code);
397 	vm_fault_t fault, major = 0;
398 	bool kprobe_fault = kprobe_page_fault(regs, 11);
399 
400 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
401 		return 0;
402 
403 	if (unlikely(page_fault_is_bad(error_code))) {
404 		if (is_user) {
405 			_exception(SIGBUS, regs, BUS_OBJERR, address);
406 			return 0;
407 		}
408 		return SIGBUS;
409 	}
410 
411 	/* Additional sanity check(s) */
412 	sanity_check_fault(is_write, is_user, error_code, address);
413 
414 	/*
415 	 * The kernel should never take an execute fault nor should it
416 	 * take a page fault to a kernel address or a page fault to a user
417 	 * address outside of dedicated places
418 	 */
419 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
420 		if (kfence_handle_page_fault(address, is_write, regs))
421 			return 0;
422 
423 		return SIGSEGV;
424 	}
425 
426 	/*
427 	 * If we're in an interrupt, have no user context or are running
428 	 * in a region with pagefaults disabled then we must not take the fault
429 	 */
430 	if (unlikely(faulthandler_disabled() || !mm)) {
431 		if (is_user)
432 			printk_ratelimited(KERN_ERR "Page fault in user mode"
433 					   " with faulthandler_disabled()=%d"
434 					   " mm=%p\n",
435 					   faulthandler_disabled(), mm);
436 		return bad_area_nosemaphore(regs, address);
437 	}
438 
439 	interrupt_cond_local_irq_enable(regs);
440 
441 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
442 
443 	/*
444 	 * We want to do this outside mmap_lock, because reading code around nip
445 	 * can result in fault, which will cause a deadlock when called with
446 	 * mmap_lock held
447 	 */
448 	if (is_user)
449 		flags |= FAULT_FLAG_USER;
450 	if (is_write)
451 		flags |= FAULT_FLAG_WRITE;
452 	if (is_exec)
453 		flags |= FAULT_FLAG_INSTRUCTION;
454 
455 	/* When running in the kernel we expect faults to occur only to
456 	 * addresses in user space.  All other faults represent errors in the
457 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
458 	 * erroneous fault occurring in a code path which already holds mmap_lock
459 	 * we will deadlock attempting to validate the fault against the
460 	 * address space.  Luckily the kernel only validly references user
461 	 * space from well defined areas of code, which are listed in the
462 	 * exceptions table.
463 	 *
464 	 * As the vast majority of faults will be valid we will only perform
465 	 * the source reference check when there is a possibility of a deadlock.
466 	 * Attempt to lock the address space, if we cannot we then validate the
467 	 * source.  If this is invalid we can skip the address space check,
468 	 * thus avoiding the deadlock.
469 	 */
470 	if (unlikely(!mmap_read_trylock(mm))) {
471 		if (!is_user && !search_exception_tables(regs->nip))
472 			return bad_area_nosemaphore(regs, address);
473 
474 retry:
475 		mmap_read_lock(mm);
476 	} else {
477 		/*
478 		 * The above down_read_trylock() might have succeeded in
479 		 * which case we'll have missed the might_sleep() from
480 		 * down_read():
481 		 */
482 		might_sleep();
483 	}
484 
485 	vma = find_vma(mm, address);
486 	if (unlikely(!vma))
487 		return bad_area(regs, address);
488 
489 	if (unlikely(vma->vm_start > address)) {
490 		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
491 			return bad_area(regs, address);
492 
493 		if (unlikely(expand_stack(vma, address)))
494 			return bad_area(regs, address);
495 	}
496 
497 	if (unlikely(access_pkey_error(is_write, is_exec,
498 				       (error_code & DSISR_KEYFAULT), vma)))
499 		return bad_access_pkey(regs, address, vma);
500 
501 	if (unlikely(access_error(is_write, is_exec, vma)))
502 		return bad_access(regs, address);
503 
504 	/*
505 	 * If for any reason at all we couldn't handle the fault,
506 	 * make sure we exit gracefully rather than endlessly redo
507 	 * the fault.
508 	 */
509 	fault = handle_mm_fault(vma, address, flags, regs);
510 
511 	major |= fault & VM_FAULT_MAJOR;
512 
513 	if (fault_signal_pending(fault, regs))
514 		return user_mode(regs) ? 0 : SIGBUS;
515 
516 	/*
517 	 * Handle the retry right now, the mmap_lock has been released in that
518 	 * case.
519 	 */
520 	if (unlikely(fault & VM_FAULT_RETRY)) {
521 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
522 			flags |= FAULT_FLAG_TRIED;
523 			goto retry;
524 		}
525 	}
526 
527 	mmap_read_unlock(current->mm);
528 
529 	if (unlikely(fault & VM_FAULT_ERROR))
530 		return mm_fault_error(regs, address, fault);
531 
532 	/*
533 	 * Major/minor page fault accounting.
534 	 */
535 	if (major)
536 		cmo_account_page_fault();
537 
538 	return 0;
539 }
540 NOKPROBE_SYMBOL(___do_page_fault);
541 
542 static __always_inline void __do_page_fault(struct pt_regs *regs)
543 {
544 	long err;
545 
546 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
547 	if (unlikely(err))
548 		bad_page_fault(regs, err);
549 }
550 
551 DEFINE_INTERRUPT_HANDLER(do_page_fault)
552 {
553 	__do_page_fault(regs);
554 }
555 
556 #ifdef CONFIG_PPC_BOOK3S_64
557 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
558 void hash__do_page_fault(struct pt_regs *regs)
559 {
560 	__do_page_fault(regs);
561 }
562 NOKPROBE_SYMBOL(hash__do_page_fault);
563 #endif
564 
565 /*
566  * bad_page_fault is called when we have a bad access from the kernel.
567  * It is called from the DSI and ISI handlers in head.S and from some
568  * of the procedures in traps.c.
569  */
570 static void __bad_page_fault(struct pt_regs *regs, int sig)
571 {
572 	int is_write = page_fault_is_write(regs->dsisr);
573 
574 	/* kernel has accessed a bad area */
575 
576 	switch (TRAP(regs)) {
577 	case INTERRUPT_DATA_STORAGE:
578 	case INTERRUPT_DATA_SEGMENT:
579 	case INTERRUPT_H_DATA_STORAGE:
580 		pr_alert("BUG: %s on %s at 0x%08lx\n",
581 			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
582 			 "Unable to handle kernel data access",
583 			 is_write ? "write" : "read", regs->dar);
584 		break;
585 	case INTERRUPT_INST_STORAGE:
586 	case INTERRUPT_INST_SEGMENT:
587 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
588 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
589 		break;
590 	case INTERRUPT_ALIGNMENT:
591 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
592 			 regs->dar);
593 		break;
594 	default:
595 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
596 			 regs->dar);
597 		break;
598 	}
599 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
600 		regs->nip);
601 
602 	if (task_stack_end_corrupted(current))
603 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
604 
605 	die("Kernel access of bad area", regs, sig);
606 }
607 
608 void bad_page_fault(struct pt_regs *regs, int sig)
609 {
610 	const struct exception_table_entry *entry;
611 
612 	/* Are we prepared to handle this fault?  */
613 	entry = search_exception_tables(instruction_pointer(regs));
614 	if (entry)
615 		instruction_pointer_set(regs, extable_fixup(entry));
616 	else
617 		__bad_page_fault(regs, sig);
618 }
619 
620 #ifdef CONFIG_PPC_BOOK3S_64
621 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
622 {
623 	bad_page_fault(regs, SIGSEGV);
624 }
625 #endif
626