xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 
37 #include <asm/firmware.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <mm/mmu_decl.h>
47 
48 #include "icswx.h"
49 
50 #ifdef CONFIG_KPROBES
51 static inline int notify_page_fault(struct pt_regs *regs)
52 {
53 	int ret = 0;
54 
55 	/* kprobe_running() needs smp_processor_id() */
56 	if (!user_mode(regs)) {
57 		preempt_disable();
58 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
59 			ret = 1;
60 		preempt_enable();
61 	}
62 
63 	return ret;
64 }
65 #else
66 static inline int notify_page_fault(struct pt_regs *regs)
67 {
68 	return 0;
69 }
70 #endif
71 
72 /*
73  * Check whether the instruction at regs->nip is a store using
74  * an update addressing form which will update r1.
75  */
76 static int store_updates_sp(struct pt_regs *regs)
77 {
78 	unsigned int inst;
79 
80 	if (get_user(inst, (unsigned int __user *)regs->nip))
81 		return 0;
82 	/* check for 1 in the rA field */
83 	if (((inst >> 16) & 0x1f) != 1)
84 		return 0;
85 	/* check major opcode */
86 	switch (inst >> 26) {
87 	case 37:	/* stwu */
88 	case 39:	/* stbu */
89 	case 45:	/* sthu */
90 	case 53:	/* stfsu */
91 	case 55:	/* stfdu */
92 		return 1;
93 	case 62:	/* std or stdu */
94 		return (inst & 3) == 1;
95 	case 31:
96 		/* check minor opcode */
97 		switch ((inst >> 1) & 0x3ff) {
98 		case 181:	/* stdux */
99 		case 183:	/* stwux */
100 		case 247:	/* stbux */
101 		case 439:	/* sthux */
102 		case 695:	/* stfsux */
103 		case 759:	/* stfdux */
104 			return 1;
105 		}
106 	}
107 	return 0;
108 }
109 /*
110  * do_page_fault error handling helpers
111  */
112 
113 #define MM_FAULT_RETURN		0
114 #define MM_FAULT_CONTINUE	-1
115 #define MM_FAULT_ERR(sig)	(sig)
116 
117 static int do_sigbus(struct pt_regs *regs, unsigned long address)
118 {
119 	siginfo_t info;
120 
121 	up_read(&current->mm->mmap_sem);
122 
123 	if (user_mode(regs)) {
124 		current->thread.trap_nr = BUS_ADRERR;
125 		info.si_signo = SIGBUS;
126 		info.si_errno = 0;
127 		info.si_code = BUS_ADRERR;
128 		info.si_addr = (void __user *)address;
129 		force_sig_info(SIGBUS, &info, current);
130 		return MM_FAULT_RETURN;
131 	}
132 	return MM_FAULT_ERR(SIGBUS);
133 }
134 
135 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
136 {
137 	/*
138 	 * Pagefault was interrupted by SIGKILL. We have no reason to
139 	 * continue the pagefault.
140 	 */
141 	if (fatal_signal_pending(current)) {
142 		/*
143 		 * If we have retry set, the mmap semaphore will have
144 		 * alrady been released in __lock_page_or_retry(). Else
145 		 * we release it now.
146 		 */
147 		if (!(fault & VM_FAULT_RETRY))
148 			up_read(&current->mm->mmap_sem);
149 		/* Coming from kernel, we need to deal with uaccess fixups */
150 		if (user_mode(regs))
151 			return MM_FAULT_RETURN;
152 		return MM_FAULT_ERR(SIGKILL);
153 	}
154 
155 	/* No fault: be happy */
156 	if (!(fault & VM_FAULT_ERROR))
157 		return MM_FAULT_CONTINUE;
158 
159 	/* Out of memory */
160 	if (fault & VM_FAULT_OOM) {
161 		up_read(&current->mm->mmap_sem);
162 
163 		/*
164 		 * We ran out of memory, or some other thing happened to us that
165 		 * made us unable to handle the page fault gracefully.
166 		 */
167 		if (!user_mode(regs))
168 			return MM_FAULT_ERR(SIGKILL);
169 		pagefault_out_of_memory();
170 		return MM_FAULT_RETURN;
171 	}
172 
173 	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
174 	 * we support the feature in HW
175 	 */
176 	if (fault & VM_FAULT_SIGBUS)
177 		return do_sigbus(regs, addr);
178 
179 	/* We don't understand the fault code, this is fatal */
180 	BUG();
181 	return MM_FAULT_CONTINUE;
182 }
183 
184 /*
185  * For 600- and 800-family processors, the error_code parameter is DSISR
186  * for a data fault, SRR1 for an instruction fault. For 400-family processors
187  * the error_code parameter is ESR for a data fault, 0 for an instruction
188  * fault.
189  * For 64-bit processors, the error_code parameter is
190  *  - DSISR for a non-SLB data access fault,
191  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
192  *  - 0 any SLB fault.
193  *
194  * The return value is 0 if the fault was handled, or the signal
195  * number if this is a kernel fault that can't be handled here.
196  */
197 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
198 			    unsigned long error_code)
199 {
200 	enum ctx_state prev_state = exception_enter();
201 	struct vm_area_struct * vma;
202 	struct mm_struct *mm = current->mm;
203 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204 	int code = SEGV_MAPERR;
205 	int is_write = 0;
206 	int trap = TRAP(regs);
207  	int is_exec = trap == 0x400;
208 	int fault;
209 	int rc = 0, store_update_sp = 0;
210 
211 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
212 	/*
213 	 * Fortunately the bit assignments in SRR1 for an instruction
214 	 * fault and DSISR for a data fault are mostly the same for the
215 	 * bits we are interested in.  But there are some bits which
216 	 * indicate errors in DSISR but can validly be set in SRR1.
217 	 */
218 	if (trap == 0x400)
219 		error_code &= 0x48200000;
220 	else
221 		is_write = error_code & DSISR_ISSTORE;
222 #else
223 	is_write = error_code & ESR_DST;
224 #endif /* CONFIG_4xx || CONFIG_BOOKE */
225 
226 #ifdef CONFIG_PPC_ICSWX
227 	/*
228 	 * we need to do this early because this "data storage
229 	 * interrupt" does not update the DAR/DEAR so we don't want to
230 	 * look at it
231 	 */
232 	if (error_code & ICSWX_DSI_UCT) {
233 		rc = acop_handle_fault(regs, address, error_code);
234 		if (rc)
235 			goto bail;
236 	}
237 #endif /* CONFIG_PPC_ICSWX */
238 
239 	if (notify_page_fault(regs))
240 		goto bail;
241 
242 	if (unlikely(debugger_fault_handler(regs)))
243 		goto bail;
244 
245 	/* On a kernel SLB miss we can only check for a valid exception entry */
246 	if (!user_mode(regs) && (address >= TASK_SIZE)) {
247 		rc = SIGSEGV;
248 		goto bail;
249 	}
250 
251 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 			     defined(CONFIG_PPC_BOOK3S_64))
253   	if (error_code & DSISR_DABRMATCH) {
254 		/* breakpoint match */
255 		do_break(regs, address, error_code);
256 		goto bail;
257 	}
258 #endif
259 
260 	/* We restore the interrupt state now */
261 	if (!arch_irq_disabled_regs(regs))
262 		local_irq_enable();
263 
264 	if (in_atomic() || mm == NULL) {
265 		if (!user_mode(regs)) {
266 			rc = SIGSEGV;
267 			goto bail;
268 		}
269 		/* in_atomic() in user mode is really bad,
270 		   as is current->mm == NULL. */
271 		printk(KERN_EMERG "Page fault in user mode with "
272 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
273 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
274 		       regs->nip, regs->msr);
275 		die("Weird page fault", regs, SIGSEGV);
276 	}
277 
278 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
279 
280 	/*
281 	 * We want to do this outside mmap_sem, because reading code around nip
282 	 * can result in fault, which will cause a deadlock when called with
283 	 * mmap_sem held
284 	 */
285 	if (user_mode(regs))
286 		store_update_sp = store_updates_sp(regs);
287 
288 	if (user_mode(regs))
289 		flags |= FAULT_FLAG_USER;
290 
291 	/* When running in the kernel we expect faults to occur only to
292 	 * addresses in user space.  All other faults represent errors in the
293 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
294 	 * erroneous fault occurring in a code path which already holds mmap_sem
295 	 * we will deadlock attempting to validate the fault against the
296 	 * address space.  Luckily the kernel only validly references user
297 	 * space from well defined areas of code, which are listed in the
298 	 * exceptions table.
299 	 *
300 	 * As the vast majority of faults will be valid we will only perform
301 	 * the source reference check when there is a possibility of a deadlock.
302 	 * Attempt to lock the address space, if we cannot we then validate the
303 	 * source.  If this is invalid we can skip the address space check,
304 	 * thus avoiding the deadlock.
305 	 */
306 	if (!down_read_trylock(&mm->mmap_sem)) {
307 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
308 			goto bad_area_nosemaphore;
309 
310 retry:
311 		down_read(&mm->mmap_sem);
312 	} else {
313 		/*
314 		 * The above down_read_trylock() might have succeeded in
315 		 * which case we'll have missed the might_sleep() from
316 		 * down_read():
317 		 */
318 		might_sleep();
319 	}
320 
321 	vma = find_vma(mm, address);
322 	if (!vma)
323 		goto bad_area;
324 	if (vma->vm_start <= address)
325 		goto good_area;
326 	if (!(vma->vm_flags & VM_GROWSDOWN))
327 		goto bad_area;
328 
329 	/*
330 	 * N.B. The POWER/Open ABI allows programs to access up to
331 	 * 288 bytes below the stack pointer.
332 	 * The kernel signal delivery code writes up to about 1.5kB
333 	 * below the stack pointer (r1) before decrementing it.
334 	 * The exec code can write slightly over 640kB to the stack
335 	 * before setting the user r1.  Thus we allow the stack to
336 	 * expand to 1MB without further checks.
337 	 */
338 	if (address + 0x100000 < vma->vm_end) {
339 		/* get user regs even if this fault is in kernel mode */
340 		struct pt_regs *uregs = current->thread.regs;
341 		if (uregs == NULL)
342 			goto bad_area;
343 
344 		/*
345 		 * A user-mode access to an address a long way below
346 		 * the stack pointer is only valid if the instruction
347 		 * is one which would update the stack pointer to the
348 		 * address accessed if the instruction completed,
349 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
350 		 * (or the byte, halfword, float or double forms).
351 		 *
352 		 * If we don't check this then any write to the area
353 		 * between the last mapped region and the stack will
354 		 * expand the stack rather than segfaulting.
355 		 */
356 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
357 			goto bad_area;
358 	}
359 	if (expand_stack(vma, address))
360 		goto bad_area;
361 
362 good_area:
363 	code = SEGV_ACCERR;
364 #if defined(CONFIG_6xx)
365 	if (error_code & 0x95700000)
366 		/* an error such as lwarx to I/O controller space,
367 		   address matching DABR, eciwx, etc. */
368 		goto bad_area;
369 #endif /* CONFIG_6xx */
370 #if defined(CONFIG_8xx)
371 	/* 8xx sometimes need to load a invalid/non-present TLBs.
372 	 * These must be invalidated separately as linux mm don't.
373 	 */
374 	if (error_code & 0x40000000) /* no translation? */
375 		_tlbil_va(address, 0, 0, 0);
376 
377         /* The MPC8xx seems to always set 0x80000000, which is
378          * "undefined".  Of those that can be set, this is the only
379          * one which seems bad.
380          */
381 	if (error_code & 0x10000000)
382                 /* Guarded storage error. */
383 		goto bad_area;
384 #endif /* CONFIG_8xx */
385 
386 	if (is_exec) {
387 #ifdef CONFIG_PPC_STD_MMU
388 		/* Protection fault on exec go straight to failure on
389 		 * Hash based MMUs as they either don't support per-page
390 		 * execute permission, or if they do, it's handled already
391 		 * at the hash level. This test would probably have to
392 		 * be removed if we change the way this works to make hash
393 		 * processors use the same I/D cache coherency mechanism
394 		 * as embedded.
395 		 */
396 		if (error_code & DSISR_PROTFAULT)
397 			goto bad_area;
398 #endif /* CONFIG_PPC_STD_MMU */
399 
400 		/*
401 		 * Allow execution from readable areas if the MMU does not
402 		 * provide separate controls over reading and executing.
403 		 *
404 		 * Note: That code used to not be enabled for 4xx/BookE.
405 		 * It is now as I/D cache coherency for these is done at
406 		 * set_pte_at() time and I see no reason why the test
407 		 * below wouldn't be valid on those processors. This -may-
408 		 * break programs compiled with a really old ABI though.
409 		 */
410 		if (!(vma->vm_flags & VM_EXEC) &&
411 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
412 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
413 			goto bad_area;
414 	/* a write */
415 	} else if (is_write) {
416 		if (!(vma->vm_flags & VM_WRITE))
417 			goto bad_area;
418 		flags |= FAULT_FLAG_WRITE;
419 	/* a read */
420 	} else {
421 		/* protection fault */
422 		if (error_code & 0x08000000)
423 			goto bad_area;
424 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
425 			goto bad_area;
426 	}
427 
428 	/*
429 	 * If for any reason at all we couldn't handle the fault,
430 	 * make sure we exit gracefully rather than endlessly redo
431 	 * the fault.
432 	 */
433 	fault = handle_mm_fault(mm, vma, address, flags);
434 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
435 		rc = mm_fault_error(regs, address, fault);
436 		if (rc >= MM_FAULT_RETURN)
437 			goto bail;
438 		else
439 			rc = 0;
440 	}
441 
442 	/*
443 	 * Major/minor page fault accounting is only done on the
444 	 * initial attempt. If we go through a retry, it is extremely
445 	 * likely that the page will be found in page cache at that point.
446 	 */
447 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
448 		if (fault & VM_FAULT_MAJOR) {
449 			current->maj_flt++;
450 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
451 				      regs, address);
452 #ifdef CONFIG_PPC_SMLPAR
453 			if (firmware_has_feature(FW_FEATURE_CMO)) {
454 				u32 page_ins;
455 
456 				preempt_disable();
457 				page_ins = be32_to_cpu(get_lppaca()->page_ins);
458 				page_ins += 1 << PAGE_FACTOR;
459 				get_lppaca()->page_ins = cpu_to_be32(page_ins);
460 				preempt_enable();
461 			}
462 #endif /* CONFIG_PPC_SMLPAR */
463 		} else {
464 			current->min_flt++;
465 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
466 				      regs, address);
467 		}
468 		if (fault & VM_FAULT_RETRY) {
469 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
470 			 * of starvation. */
471 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
472 			flags |= FAULT_FLAG_TRIED;
473 			goto retry;
474 		}
475 	}
476 
477 	up_read(&mm->mmap_sem);
478 	goto bail;
479 
480 bad_area:
481 	up_read(&mm->mmap_sem);
482 
483 bad_area_nosemaphore:
484 	/* User mode accesses cause a SIGSEGV */
485 	if (user_mode(regs)) {
486 		_exception(SIGSEGV, regs, code, address);
487 		goto bail;
488 	}
489 
490 	if (is_exec && (error_code & DSISR_PROTFAULT))
491 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
492 				   " page (%lx) - exploit attempt? (uid: %d)\n",
493 				   address, from_kuid(&init_user_ns, current_uid()));
494 
495 	rc = SIGSEGV;
496 
497 bail:
498 	exception_exit(prev_state);
499 	return rc;
500 
501 }
502 
503 /*
504  * bad_page_fault is called when we have a bad access from the kernel.
505  * It is called from the DSI and ISI handlers in head.S and from some
506  * of the procedures in traps.c.
507  */
508 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
509 {
510 	const struct exception_table_entry *entry;
511 	unsigned long *stackend;
512 
513 	/* Are we prepared to handle this fault?  */
514 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
515 		regs->nip = entry->fixup;
516 		return;
517 	}
518 
519 	/* kernel has accessed a bad area */
520 
521 	switch (regs->trap) {
522 	case 0x300:
523 	case 0x380:
524 		printk(KERN_ALERT "Unable to handle kernel paging request for "
525 			"data at address 0x%08lx\n", regs->dar);
526 		break;
527 	case 0x400:
528 	case 0x480:
529 		printk(KERN_ALERT "Unable to handle kernel paging request for "
530 			"instruction fetch\n");
531 		break;
532 	default:
533 		printk(KERN_ALERT "Unable to handle kernel paging request for "
534 			"unknown fault\n");
535 		break;
536 	}
537 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
538 		regs->nip);
539 
540 	stackend = end_of_stack(current);
541 	if (current != &init_task && *stackend != STACK_END_MAGIC)
542 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
543 
544 	die("Kernel access of bad area", regs, sig);
545 }
546